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Density Functional Theory

Formulate energy minimization in terms of the particle density only:
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Levy–Lieb formulation of the ground state energy: inf = inf⇢ inf ,⇢ =⇢:
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[Lieb ’83].
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Local Density Approximation

For slowly varying densities ⇢,

FLL(⇢) ⇡
1
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⇢(x)⇢(y)

|x� y| dx dy

| {z }
non-local

classical Coulomb energy

+
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f(⇢(x))dx

| {z }
local

energy per unit volume

of uniform electron gas
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Main Result

THEOREM (Justification of LDA)
There exists a universal constant C > 0 and a universal function f : R+ ! R such that
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for every " > 0 and every ⇢ 2 L1 \ L2(R3) such that rp
⇢ 2 L2 \ L4(R3).

Remarks:

• Last term can be replaced by "1�4p
R
|r⇢✓|p with p > 3, ✓ > 0 and 2  p✓  1+p/2.

• F̃LL grand-canonical version (convex hull), but same result expected for FLL.

• For ⇢(x) = �(x/N1/3) we find

F̃LL(⇢) =
N5/3
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Energy of the Uniform Electron Gas

For ⇢0 > 0 we have

f(⇢0) = lim
`!1
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◆

The limit exists and is independent of ⌦ and � [Hainzl-Lewin-Solovej ’09].

• cTF = 3
5 (3⇡

2)2/3

• cD = 3
4 (3/⇡)

1/3

• 1.4442  cSCE  1.4508 (strongly cor-
related electrons)
• next order for large ⇢ believed to
by ⇢ ln ⇢ [Macke ’50, Bohm-Pines ’53,
GellMann-Brueckner ’57]
• non-smooth because of phase transi-
tions (solid/fluid, ferro/paramagnetic)
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Phase Diagram

Zong, Lin, Ceperley, PRE
(2002)
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Exchange-Correlation Energy

In practice one often considers the exchange-correlation energy

Exc(⇢) = F̃LL(⇢)�
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where T (⇢) is the (Kohn-Sham) kinetic energy functional

T (⇢) = min
0�1
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Our result on the LDA applies to Exc(⇢) as well, since

THEOREM (LDA for kinetic energy) [Nam ’18, LLS ’19]. For any " > 0,
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Upper Bound on T (⇢)

Recall that

Pt = 1

✓
�r2  5

3
cTFt

2/3

◆

has density ⇢Pt = t and kinetic energy density cTFt5/3.

For the upper bound on T (⇢), use as a trial density matrix the ‘layer cake’ trial state
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and optimize over the choice of ⌘ with
R1
0 ⌘(t)dt = 1 and

R1
0 ⌘(t)t�1dt  1
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Strategy of the Proof (of the Main Theorem)

The key is to prove an approximate locality of the indirect energy

Find(⇢) = F̃LL(⇢)�
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• For a tiling {⌦`,j} of R3 with boxes of size ` = `("),

Find(⇢) ⇡
X

j

Find(⇢1⌦`,j ⇤ �)

• In each box, estimate di↵erence of Find(⇢1⌦`,j ⇤�) and Find(⇢̄1⌦`,j ⇤�) in terms of
derivatives of ⇢

• Compare Find(⇢̄1⌦`,j ⇤ �) with f(⇢̄)|⌦`,j |.
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Locality: Lower Bound

THEOREM (Graf-Schenker ’94) Let {�n} be a tiling of R3 of tetrahedra (of size
1). Then, for all N � 2, zj 2 R and xj 2 R3,
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Tiling with tetrahedra, averaged
over translations and rotations.

Local number of particles not fixed
! grand-canonical description
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Difficulties in the Upper Bound

For a suitable tiling we want to prove that

Find(⇢) .
X

j

Find(⇢1⌦`,j ⇤ �)

Di�culties:

• Need a trial state with the exact density ⇢

• Tensor products work badly for fermions if the supports intersect!

Our solution:

• Partition of unity with holes, average over translations and dilations

• Averaging of the direct term gives error ⇠ �2
R
⇢2, where � = size of holes

• Di�cult to do canonically
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Summary and Open Problems

• We give a mathematically rigorous justification of the Local Density Approxi-
mation in Density Functional Theory.

• We provide a quantitative estimate on the di↵erence between the (grand-canonical)
Levy–Lieb energy of a given density and the integral over the Uniform Electron
Gas energy of this density.

Many open problems remain:

• Extension to canonical, pure state LL energy functional

• Next order correction terms, expected to scale as N1/3 for densities of the form
⇢(x) = �(N�1/3x).

• Phase transitions, Wigner crystal, . . .
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