Parallel preconditioning for time-dependent PDEs and PDE control

Andy Wathen Oxford University, UK

joint work with Elle McDonald (CSIRO, Australia), Jen Pestana (University of Strathclyde, UK), Anthony Goddard (Durham University, UK) Systems/PDEs

Symmetric/self-adjoint

VS

Nonsymmetric/non-selfadjoint

Luminy, 2019 – p.2/39

Iterative methods for linear systems

For self-adjoint problems/symmetric matrices, iterative methods of choice exist: conjugate gradients for SPD, MINRES otherwise

but many possible methods for non-self-adjoint problems/nonsymmetric matrices: GMRES, BICGSTAB, QMR, IDR, ...

Iterative methods for linear systems

For self-adjoint problems/symmetric matrices, iterative methods of choice exist: conjugate gradients for SPD, MINRES otherwise

but many possible methods for non-self-adjoint problems/nonsymmetric matrices: GMRES, BICGSTAB, QMR, IDR, ...

For almost all need *preconditioning*

Preconditioner **P** such that

$$\mathbf{P}^{-1}\mathbf{B}\mathbf{x} = \mathbf{P}^{-1}\mathbf{b}^{\mathbf{n}}$$

has much faster convergence with the appropriate iterative method than Bx = b.

Iterative methods: Bx = c, $B \in \mathbb{R}^{n \times n}$

From x_0 generate $\{x_1, x_2, \ldots, x_k, \ldots\}$ using one matrix \times vector product at each iteration:

 $Br, B(Br), \ldots, B^k r, \ldots$

 \Rightarrow Krylov subspace methods:

$$\label{eq:rk} \begin{split} \mathsf{r}_k = \mathsf{p}_k(\mathsf{B})\mathsf{r}_0, \qquad \mathsf{r}_k = \mathsf{c} - \mathsf{B}\mathsf{x}_k, \quad \mathsf{p}_k \in \Pi_k, \mathsf{p}_k(0) = 1 \\ \text{so if } \mathsf{B} = \mathsf{X} \Lambda \mathsf{X}^{-1} \text{ then} \end{split}$$

 $\|\mathbf{r}_{k}\| \leq \|\mathbf{X}\| \|\mathbf{p}_{k}(\Lambda)\| \|\mathbf{X}^{-1}\| \|\mathbf{r}_{0}\|$

and if $\mathbf{B} = \mathbf{B}^{\mathsf{T}}$ so that $\mathbf{X}^{-1} = \mathbf{X}^{\mathsf{T}}$ then this bound on convergence in $\|\cdot\|_2$ depends only eigenvalues

Well distributed (clustered) eigenvalues \Rightarrow fast convergence for symmetric matrices.

Nonsymmetric matrices: GMRES

• Eigenvalue/eigenvector bound:

 $\|\boldsymbol{r}_k\|/\|\boldsymbol{r}_0\| \leq \|\boldsymbol{X}\| \; \|\boldsymbol{X}^{-1}\| \; \min_{\boldsymbol{p}\in \Pi_k, \boldsymbol{p}(0)=1} \; \max_j \; |\boldsymbol{p}(\lambda_j)|$

• Field of Values bound:

$$\begin{split} \mathsf{W}(\mathsf{B}) &= \{ x^*\mathsf{B}x/x^*x; x \neq 0 \} \\ \| \mathsf{r}_k \| / \| \mathsf{r}_0 \| &\leq 2 \min_{p \in \Pi_k, p(0) = 1} \max_{z \in \mathsf{W}(\mathsf{B})} | p(z) | \end{split}$$

• Pseudospectral bound:

$$\Lambda_{\epsilon}(\mathsf{B}) = \{ \mathsf{z} \in \mathbb{C} : \|(\mathsf{z}\mathsf{I} - \mathsf{B})^{-1}\| > \epsilon^{-1} \}$$
$$\|\mathsf{r}_{\mathsf{k}}\|/\|\mathsf{r}_{\mathsf{0}}\| \leq \mathcal{L}(\partial\Lambda_{\epsilon})/2\pi\epsilon \min_{\mathsf{p}\in\mathsf{\Pi}_{\mathsf{k}},\mathsf{p}(\mathsf{0})=1} \max_{\mathsf{z}\in\Lambda_{\epsilon}(\mathsf{B})} |\mathsf{p}(\mathsf{z})|$$

Krylov subspace methods

So difference between symmetric and non-symmetric problems arises because of convergence guarantees:

- for symmetric matrices: descriptive convergence bounds based on eigenvalues ⇒ a priori estimates of iterations for acceptable convergence; good preconditioning *guarantees* fast convergence.
- for nonsymmetric matrices: by contrast, to date there are no generally applicable and descriptive convergence bounds even for GMRES; for any of the other nonsymmetric methods without a minimisation property, convergence theory is extremely limited ⇒ no good a priori way to identify what are the desired qualities of a preconditioner

A major theoretical difficulty, but heuristic ideas abound!

2 Theorems: Bx = c

If $B \in \mathbb{R}^{n \times n}$ is self-adjoint in $\langle \cdot, \cdot \rangle_H$, $H = H^T$ SPD —means $\langle y, z \rangle_H = z^T H y$ and $\forall y, z \in \mathbb{R}^n$ that $\langle By, z \rangle_H = \langle y, Bz \rangle_H \ (\Leftrightarrow HB = B^T H)$ —

then for minimum residual methods (MINRES), iterates x_k ,

$$\|c - Bx_k\|_H \le \min_{p \in \Pi_k, p(0) = 1} \max_j \|p(\lambda_j)\| \|c - Bx_0\|_H$$

 $\lambda_j \in \mathbb{R}$: eigenvalues of B (not HB)

and if B is also positive definite in $\langle\cdot,\cdot\rangle_H$ (Conjugate Gradients) then

$$\|x - x_k\|_{HB} \le \min_{p \in \Pi_k, p(0) = 1} \max_j \|p(\lambda_j)\| \|x - x_0\|_{HB}$$

 $\lambda_j \in \mathbb{R}$: eigenvalues of B (not HB)

2 Theorems: Bx = c

If $B \in \mathbb{R}^{n \times n}$ is self-adjoint in $\langle \cdot, \cdot \rangle_H$, $H = H^T$ SPD —means $\langle y, z \rangle_H = z^T H y$ and $\forall y, z \in \mathbb{R}^n$ that $\langle By, z \rangle_H = \langle y, Bz \rangle_H \ (\Leftrightarrow HB = B^T H)$ —

then for minimum residual methods (MINRES), iterates x_k ,

$$\|c - Bx_k\|_H \le \min_{p \in \Pi_k, p(0) = 1} \max_j \|p(\lambda_j)\| \|c - Bx_0\|_H$$

 $\lambda_j \in \mathbb{R}$: eigenvalues of B (not HB)

makes sense because there exists such and H if and only if B is diagonalisable and has real eigenvalues.

2 Theorems: Bx = c

Given any nonincreasing positive sequence $f(0) \ge f(1) \ge \cdots \ge f(n-1) > 0$ there exists $B \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$ with $||c - Bx_0|| = f(0)$ such that $f(k) = ||c - Bx_k||, k = 1, \cdots, n-1$, where x_k is the iterate at step k of the GMRES algorithm applied to Bx = c, with initial iterate x_0 . Moreover, the matrix B can be chosen to have any eigenvalues.

Greenbaum, Ptak & Strakos (1996)

To summarise

- for a symmetric system convergence of iterative methods can be bounded only in terms of eigenvalues
- badly distributed eigenvalues can give you bad convergence of iterative methods, but for nonsymmetric systems even with good eigenvalues one can get arbitrarily bad convergence.

Consequence:

- preconditioning for symmetric systems is well-founded: clustering eigenvalues guarantees fast convergence.
- preconditioning for nonsymmetric systems must generally be heuristic unless the preconditioner endows symmetry

Nonsymmetric problems

$$\mathcal{L}u=f$$

where

$$\langle \mathcal{L} u, v
angle
eq \langle u, \mathcal{L} v
angle$$

 $\langle \cdot, \cdot \rangle$ is any inner product

Classic examples:

- convection-diffusion (or most odd/even derivative problems)
- time-dependent problems

(since
$$\langle u_t,v
angle=-\langle u,v_t
angle$$
.)

Time-dependent problems: ODEs

$$y'=ay+f, \qquad y(t_0)=y_0,$$

discretise: e.g.

$$rac{\mathrm{y}^{k+1}-\mathrm{y}^k}{ au}= heta a\mathrm{y}^{k+1}+(1- heta)a\mathrm{y}^k+f^k, \hspace{1em}\mathrm{y}^0=y_0,$$

$$k=0,1,\ldots,\ell$$
 with $\ell au=T$ gives

where the $\ell \times \ell$ coefficient matrix B is

$$\begin{bmatrix} b & & & & \\ c & b & & & \\ & c & b & & \\ & \ddots & \ddots & \\ & & & c & b \end{bmatrix},$$

$$b=1-a heta au$$
 , $c=-1-a(1- heta) au$.

i.e. *B* is a bidiagonal Toeplitz matrix.

Now use *Pestana & W, 2015*: If **B** is a real Toeplitz matrix then

is the real symmetric (Hankel) matrix

Thus MINRES can be robustly applied to **BY** — it is symmetric but generally indefinite — and its convergence will depend only on eigenvalues.

BUT preconditioning? – needs to be symmetric and positive definite for MINRES

Fortunately it is well known that many Toeplitz matrices are well approximated by related circulant matrices, C (*Strang, 1986, Chan, 1988, Chan, 1989, Tyrtishnikov, 1996/7*) which are diagonalised by an FFT in $O(n \log n)$ work: $C = F^* \Lambda F$,

For many symmetric Toeplitz matrices we have that the Strang or Optimal (Chan) circulant **C** satisfy

$\mathbf{C}^{-1}\mathbf{B} = \mathbf{I} + \mathbf{R} + \mathbf{E}$

where **R** is of small rank and **E** is of small norm

 \Rightarrow eigenvalues clustered around 1 except for a few outliers

To ensure a symmetric and positive definite preconditioner for **BY** just use

$$|\mathsf{C}| = \mathsf{F}^{\star}|\mathsf{\Lambda}|\mathsf{F}$$

which is real symmetric and positive definite

To ensure a symmetric and positive definite preconditioner for **BY** just use

 $|\mathbf{C}| = \mathbf{F}^{\star} |\mathbf{\Lambda}| \mathbf{F}$

which is real symmetric and positive definite

Theorem (*Pestana & W, 2015*)

$$|\mathbf{C}|^{-1}\mathbf{B}\mathbf{Y} = \mathbf{J} + \mathbf{R} + \mathbf{E}$$

where J is real symmetric and orthogonal with eigenvalues ± 1 , R is of small rank and E is of small norm

 \Rightarrow guaranteed fast convergence because MINRES convergence only depends on eigenvalues which are clustered around ± 1 except for few outliers!

To ensure a symmetric and positive definite preconditioner for **BY** just use

 $|\mathbf{C}| = \mathbf{F}^{\star} |\mathbf{\Lambda}| \mathbf{F}$

which is real symmetric and positive definite

Theorem (Pestana & W, 2015)

$$|\mathbf{C}|^{-1}\mathbf{B}\mathbf{Y} = \mathbf{J} + \mathbf{R} + \mathbf{E}$$

where J is real symmetric and orthogonal with eigenvalues ± 1 , R is of small rank and E is of small norm

For the ODE problem (au = 0.2, a = -0.3, heta = 0.8):

l	$\kappa(B)$	Iterations
10	10.474	4
100	30.852	4
1000	33.887	4

Multistep method: BDF2

$$rac{\mathrm{y}^{k+1}-rac{4}{3}\mathrm{y}^k+rac{1}{3}\mathrm{y}^{k-1}}{ au}=rac{2}{3}a\mathrm{y}^{k+1}+rac{2}{3}f^{k+1},$$

with $y^0 = y_0$ and $y^{-1} = y_{-1}$ leads to the monolithic or all-at-once system

where the coefficient matrix B is

$$\begin{bmatrix} 1 - \frac{2}{3}a\tau & & & \\ -\frac{4}{3} & 1 - \frac{2}{3}a\tau & & \\ \frac{1}{3} & -\frac{4}{3} & 1 - \frac{2}{3}a\tau & & \\ & \ddots & \ddots & \ddots & \ddots & \\ & & \frac{1}{3} & -\frac{4}{3} & 1 - \frac{2}{3}a\tau \end{bmatrix}$$

Same approach:

l	$\kappa(B)$	Iterations
10	29.33	6
100	67.49	6
1000	67.67	6

•

Thus we have *proved* and observed fast convergence for

$$|\mathsf{C}|^{-1}\mathsf{B}\mathsf{Y}\mathsf{y} = |\mathsf{C}|^{-1}\mathsf{f}.$$

To observe if it is more generally

Krylov friendly (Tim Kelley),

we try GMRES simply for

$$\mathbf{C}^{-1}\mathbf{B}\mathbf{y} = \mathbf{C}^{-1}\mathbf{f}$$

and find it is quicker.

PDEs: diffusion problem

 $egin{array}{rcl} u_t&=&\Delta u+f& ext{in }\Omega imes(0,T],&\Omega\subset\mathbb{R}^2 ext{ or }\mathbb{R}^3,\ u&=&g& ext{on }\partial\Omega,\ u(x,0)&=&u_0(x)& ext{ at }t=0 \end{array}$

Discretize - finite elements, mesh size h, and n spatial dofs:

$$Mrac{\mathrm{u}_k-\mathrm{u}_{k-1}}{ au}+K\mathrm{u}_k=\mathrm{f}_k, \quad k=1,\ldots,\ell,$$

or

$$\mathcal{A}_{BE} \mathrm{x} := \left[egin{array}{ccc} A_0 & & & \ A_1 & A_0 & & \ & \ddots & \ddots & \ & & A_1 & A_0 \end{array}
ight] \left[egin{array}{c} \mathrm{u}_1 \ \mathrm{u}_2 \ \mathrm{i} \ \mathrm{u}_\ell \end{array}
ight] = \left[egin{array}{ccc} M \mathrm{u}_0 + au \mathrm{f}_1 \ au \mathrm{f}_2 \ \mathrm{i} \ \mathrm{i} \ \mathrm{u}_\ell \end{array}
ight],$$

where $A_0 = M + au K$ is symmetric positive definite and $A_1 = -M$ is symmetric.

We use the block circulant preconditioner

$$\mathcal{P}_{BE} := \left[egin{array}{cccc} A_0 & & A_1 \ A_1 & A_0 & & \ & \ddots & \ddots & \ & & \ddots & \ddots & \ & & A_1 & A_0 \end{array}
ight]$$

Theorem (McDonald, Pestana & W, 2018)

 $\mathcal{P}_{BE}^{-1}\mathcal{A}_{BE}$ is diagonalisable, has $(\ell - 1)n$ eigenvalues of 1 and *n* eigenvalues which cluster around 1 for small *h*.

Figure 0: The eigenvalues of $\mathcal{P}_{BE}^{-1}\mathcal{A}_{BE}$, n = 81, $\ell = 10$ and $\tau = 0.1$.

Kronecker Product form

 $\Sigma = \left[egin{array}{cccc} 0 & & & \ 1 & 0 & & \ & \ddots & \ddots & \ & & 1 & 0 \end{array}
ight], \quad C = \left[egin{array}{ccccc} 0 & & & 1 \ 1 & 0 & & \ & 1 & 0 \end{array}
ight] = U\Lambda U^*, \ & & \ddots & \ddots & \ & & 1 & 0 \end{array}
ight]$

then

$$egin{array}{rcl} \mathcal{A}_{BE} &=& I_\ell \otimes A_0 + \Sigma \otimes A_1, \ \mathcal{P}_{BE} &=& I_\ell \otimes A_0 + C \otimes A_1, \end{array}$$

and using $(W \otimes X)(Y \otimes Z) = (WY \otimes XZ)$

 $\mathcal{P}_{BE} = I_\ell \otimes A_0 + C \otimes A_1 = (U \otimes I_n) [I_\ell \otimes A_0 + \Lambda \otimes A_1] (U^* \otimes I_n)$

SO

$${\mathcal P}_{BE}^{-1} = (U \otimes I_n) [I_\ell \otimes A_0 + \Lambda \otimes A_1]^{-1} (U^* \otimes I_n)$$

$$\mathcal{P}_{BE}^{-1} = (U \otimes I_n) [I_\ell \otimes A_0 + \Lambda \otimes A_1]^{-1} (U^* \otimes I_n)$$

so $\mathcal{P}_{BE}^{-1}r$ requires

- multiplication of r by $U \otimes I_n$ and $U^* \otimes I_n$; parallel over n processors?
- inversion of the block diagonal matrix $I_{\ell} \otimes A_0 + \Lambda \otimes A_1$: easier if A_i are symmetric as for diffusion, but could use AMG when A_i are non symmetric.

lead to fast parallel execution?

Heat Equation

Times (seconds) for solving $\mathcal{P}^{-1}\mathcal{A}U = \mathcal{P}^{-1}b$ with GMRES (tol = 10⁻⁵). *p* is the number of processors.

l	\boldsymbol{n}	p = 1	p=2	p=4	p=8	p=16	p=32
	320	77.72	29.26	15.32	8.95	5.11	3.34
768	512	152.64	57.54	32.71	17.52	11.54	6.69
	768	245.47	97.77	50.81	30.71	16.66	9.65
	320	146.67	54.68	28.40	17.059	10.35	6.07
1024	512	265.22	107.07	60.86	34.13	20.40	11.75
	768	459.12	198.94	101.23	55.85	28.55	16.12
	320	325.14	124.67	63.64	39.78	22.74	13.06
1440	512	646.81	239.65	123.44	72.44	40.95	22.50
	768	979.85	432.46	215.77	114.99	59.80	32.41
1440	1568	2119.91	815.93	431.13	218.24	118.62	63.30

$$(63.30 \times 32 = 2025.6)$$

Wave Equation

Times (seconds) for solving $\mathcal{R}_{BD2}^{-1}\mathcal{C}_{BD2}U = \mathcal{R}_{BD2}^{-1}b_{BD2}$ with GMRES (tol = 10⁻⁵). p is the number of processors.

l	\boldsymbol{n}	p = 1	p=2	p=4	p=8	p = 16	p=32
	320	79.07	31.29	16.20	9.53	6.11	4.36
768	512	163.68	61.33	34.33	19.76	11.54	7.09
	768	251.37	100.99	53.14	27.31	14.64	11.09
	320	153.37	53.39	30.47	20.99	12.38	7.39
1024	512	287.23	119.72	65.84	39.81	23.23	12.08
	768	497.12	222.93	115.24	60.84	32.46	18.01
	320	328.17	125.71	65.64	41.70	23.32	14.21
1440	512	680.15	243.53	124.65	73.92	41.42	24.51
	768	960.33	434.46	211.01	115.95	60.54	35.12
1440	1568	2211.97	820.21	444.31	230.42	122.63	68.10

 $(68.10 \times 32 = 2179.2)$

In a similar manner for multistep methods:

 $\mathcal{P} = (U \otimes I_n) \mathcal{G}(U^* \otimes I_n),$

where $\mathcal{G} = \operatorname{diag}(G_1, \ldots, G_\ell)$ and $G_j = \sum_{i=0}^p \lambda_j^i A_i$.

Can use

$$\mathcal{Y}:=\left[egin{array}{ccc} & I_n \ & \cdot & \ & I_n \end{array}
ight]=Y{\otimes}I_n, \ Y=\left[egin{array}{ccc} & 1 \ & \cdot & \ & 1 \end{array}
ight]$$
 as before

to symmetrize any block Toeplitz matrix with symmetric blocks and use a SPD absolute value preconditioner as before.

When A_i are not symmetric (e.g. convection-diffusion problems) GMRES/FGMRES are necessary

Theory: MINRES for $|\mathcal{P}|^{-1}\mathcal{YA}$ guaranteed to converge in a number of iterations independent of ℓ

Practice:

- very few MINRES itertions required
- GMRES with \mathcal{P} does better, but no guarantee!
- AMG (AGMG Y. Notay) also few iterations

Numerics: Heat Eqn, Backwards Euler

n	l	DoF	GMRES $\mathcal{P}^{-1}\mathcal{A}$	MINRES $ \mathcal{P} ^{-1}\mathcal{YA}$	FGMRES $\mathcal{P}_{MG}^{-1}\mathcal{A}$
289	2^4	4624	3	11	8
	2^6	18496	3	13	8
	$\mathbf{2^8}$	73984	3	15	8
	2^{10}	295936	3	19	8
	2^{12}	1183744	3	18	7
	2^{14}	4734976	3	16	7
1089	2^4	17424	3	10	8
	2^6	69696	3	13	8
	$\mathbf{2^8}$	278784	3	14	8
	2^{10}	1115136	3	18	8
	2^{12}	4460544	3	20	7
	2^{14}	17842176	3	19	6
4225	2^4	67600	3	10	15
	2^6	270400	3	11	16
	$\mathbf{2^8}$	1081600	3	13	16
	2^{10}	4326400	3	18	16
	2^{12}	17305600	3	20	17
	2^{14}	69222400	2	19	16

Numerics: Heat Eqn, BDF2

n	l	DoF	GMRES $\mathcal{P}^{-1}\mathcal{A}$	MINRES $ \mathcal{P} ^{-1}\mathcal{YA}$	FGMRES $\mathcal{P}_{MG}^{-1}\mathcal{A}$
289	2^4	4624	3	13	7
	2^6	18496	3	16	8
	$\mathbf{2^8}$	73984	3	19	8
	2^{10}	295936	3	21	7
	2^{12}	1183744	3	24	7
	2^{14}	4734976	3	22	6
1089	2^4	17424	3	13	8
	2^6	69696	3	15	8
	$\mathbf{2^8}$	278784	3	18	8
	2^{10}	1115136	3	22	7
	2^{12}	4460544	3	24	7
	2^{14}	17842176	3	25	6
4225	2^4	67600	3	11	15
	2^6	270400	3	13	16
	$\mathbf{2^8}$	1081600	3	18	16
	2^{10}	4326400	3	21	17
	2^{12}	17305600	3	24	17
	2^{14}	69222400	3	25	16

Numerics: Convection-diffusion, BE

n	l	DoF	GMRES $\mathcal{P}^{-1}\mathcal{A}$	FGMRES $\mathcal{P}_{MG}^{-1}\mathcal{A}$
289	2^4	4624	13	12
	2^6	18496	13	12
	$\mathbf{2^8}$	73984	13	12
	2^{10}	295936	13	12
	2^{12}	1183744	13	12
	2^{14}	4734976	13	12
1089	2^4	17424	12	12
	2^6	69696	13	12
	$\mathbf{2^8}$	278784	13	12
	2^{10}	1115136	13	12
	2^{12}	4460544	13	12
	2^{14}	17842176	13	12
4225	2^4	67600	12	22
	2^6	270400	12	22
	$\mathbf{2^8}$	1081600	12	23
	2^{10}	4326400	12	23
	2^{12}	17305600	12	23
	2^{14}	69222400	12	23

Control

Minimise

$$\frac{1}{2} \int_0^T \int_{\Omega_1} \left(y(\mathbf{x}, t) - \bar{y}(\mathbf{x}, t) \right)^2 dx dt + \frac{\beta}{2} \int_0^T \int_{\Omega_2} \left(u(\mathbf{x}, t) \right)^2 dx dt$$

subject to

$$y_t - \nabla^2 y = u$$
 in $\Omega \times [0, T]$

with boundary conditions y = 0 on $\partial \Omega$ and initial condition $y(x, 0) = y_0(x)$.

Adjoint PDE:

$$-p_t - \nabla^2 p = y - \bar{y}$$

with p = 0 on $\partial\Omega$, $p(x,T) = y(x,T) - \bar{y}(x,T)$.

Backwards Euler in time, Galerkin finite elements in space

Discretise, Optimize \Rightarrow saddle point system

$$\begin{bmatrix} M & 0 & K^T \\ 0 & \beta M & -M \\ K & -M & 0 \end{bmatrix} \begin{bmatrix} y \\ u \\ p \end{bmatrix} = r.h.s$$

where K is the discrete forward differential operator and K^T its adjoint

Main issue for time-dependent PDE is that *K* is monolithic as above, so *all* time steps values $y_1, y_2, ..., y_N$ are involved:

SO

$$\begin{bmatrix} \underline{M} & 0 & -\underline{K}^T \\ 0 & \beta \underline{M} & \underline{M} \\ -\underline{K} & \underline{M} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \underline{M} \mathbf{y} \\ 0 \\ d \end{bmatrix}$$

is a very large dimensional system, but matrix × vector multiplication easy and block preconditioning ideas apply...

Main issue: approximation of the Schur complement

$$\underline{KM}^{-1}\underline{K}^T + \frac{1}{\beta}\underline{M}$$

via the Pearson matching idea

$$\frac{1}{\beta}\underline{M} + \underline{K}\underline{M}^{-1}\underline{K}^{T}$$
$$= -\frac{2}{\sqrt{\beta}}\underline{K} + \left(\underline{K} + \frac{1}{\sqrt{\beta}}\underline{M}\right)\underline{M}^{-1}\left(\underline{K} + \frac{1}{\sqrt{\beta}}\underline{M}\right)^{T}$$

So we need to approximate $\underline{K} + \frac{1}{\sqrt{\beta}}\underline{M}$, (similarly its transpose) and we use the above monolithic ideas

(Pearson & W (2010), Schoberl & Zulehner (2007))

Numerics: Heat Control

h	l	DoF	GMRES iterations
2^{-4}	20	17340	16
2^{-5}	20	65340	17
2^{-6}	20	253500	17
2^{-7}	20	998460	18
2^{-8}	20	3962940	16
2^{-5}	20	65340	17
2^{-5}	40	130680	19
2^{-5}	60	196020	21
2^{-5}	80	261360	21
2^{-5}	100	326700	21

References and Acknowledgement

McDonald, E, Pestana, J. & Wathen, A.J., 2018, 'Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations', SIAM J. Sci. Comput. **40**, pp. A1012–A1033.

Pestana, J. & Wathen, A.J., 2015,

'A preconditioned MINRES method for nonsymmetric Toeplitz matrices', SIAM J. Matrix Anal. Appl. **36**, pp. 273–288.

Goddard, A. & Wathen, A.J., 2019,

'A note on parallel preconditioning for all-at-once evolutionary PDEs', ETNA 51, pp. 135–150.

Wathen, A.J., 2015,

'Preconditioning',

Acta Numerica (2015) 24, pp. 329-376.

This work is partially supported by Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST)