Generalised FEs: Domain Decomposition, Optimal Local Approximation & Model Order Reduction

Robert Scheichl

Institute of Applied Mathematics & Interdisciplinary Centre for Scientific Computing Universität Heidelberg

Collaborators:

Victorita Dolean (Strathclyde), Frederic Nataf (Sorbonne), Clemens Pechstein (Dassault Systèmes), Daniel Peterseim (Augsburg), Nicole Spillane (École Polytechnique), Panayot Vassilevski (LLNL), Ludmil Zikatanov (Penn State)

Parallel Solution Methods for Systems Arising from PDEs

CIRM – Luminy, Marseille, September 16th, 2019

Rob Scheichl (Heidelberg)

- Problem Formulation & Motivation
- Robust Subspace Correction vs. Multiscale Discretisation
- Key message: use weighted norms for contrast independence

- Beyond scalar elliptic problem: anisotropic linear elasticity
- High performance implementation of GenEO.
- Some Numerical Results
- Outlook GenEO as a surrogate in Multilevel MCMC

- Problem Formulation & Motivation
- Robust Subspace Correction vs. Multiscale Discretisation
- Key message: use weighted norms for contrast independence

- Beyond scalar elliptic problem: anisotropic linear elasticity
- High performance implementation of GenEO
- Some Numerical Results.
- Outlook GenEO as a surrogate in Multilevel MCMC

- Problem Formulation & Motivation
- Robust Subspace Correction vs. Multiscale Discretisation
- Key message: use weighted norms for contrast independence

- Beyond scalar elliptic problem: anisotropic linear elasticity
- High performance implementation of GenEO
- Some Numerical Results
- Outlook GenEO as a surrogate in Multilevel MCMC

- Problem Formulation & Motivation
- Robust Subspace Correction vs. Multiscale Discretisation
- Key message: use weighted norms for contrast independence

- Beyond scalar elliptic problem: anisotropic linear elasticity
- High performance implementation of GenEO
- Some Numerical Results
- Outlook GenEO as a surrogate in Multilevel MCMC

- Problem Formulation & Motivation
- Robust Subspace Correction vs. Multiscale Discretisation
- Key message: use weighted norms for contrast independence

- Beyond scalar elliptic problem: anisotropic linear elasticity
- High performance implementation of GenEO
- Some Numerical Results
- Outlook GenEO as a surrogate in Multilevel MCMC

• Elliptic PDE in bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3

 $-\nabla \cdot (\boldsymbol{\alpha} \nabla u) = f + \text{suitable BCs on } \partial \Omega$

Issues adressed even more pronounced in other eqns., e.g. linear elasticity.

- Strongly varying coefficient $\alpha(x) \ge 1$ (otherwise rescale eqn.) (scalar α , or quasi-isotropic tensor α with $\lambda_{\max}(\alpha) \sim \lambda_{\min}(\alpha)$)
- FE discretisation (p.w. lin. V^h): $a(u_h, v_h) = (f, v_h) \forall v_h \in V_h$
- Two possible aims:
 - *h*-optimal, lpha-robust parallel solver (fine mesh \mathcal{T}^h , lpha resolved)
 - H-optimal, α-robust approximation in coarse space V¹
 (α not resolved: "Upscaling" no scale separation!)
- Key Question (for both): Robust coarse space

• Elliptic PDE in bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3

 $-\nabla \cdot (\boldsymbol{\alpha} \nabla u) = f + \text{suitable BCs on } \partial \Omega$

Issues adressed even more pronounced in other eqns., e.g. linear elasticity.

- Strongly varying coefficient $\alpha(x) \ge 1$ (otherwise rescale eqn.) (scalar α , or quasi-isotropic tensor α with $\lambda_{\max}(\alpha) \sim \lambda_{\min}(\alpha)$)
- FE discretisation (p.w. lin. V^h): $a(u_h, v_h) = (f, v_h) \forall v_h \in V_h$
- Two possible aims:
 - *h*-optimal, α -robust parallel **solver** (fine mesh \mathcal{T}^h , α resolved)
 - *H*-optimal, α-robust approximation in coarse space V^H (α not resolved: "Upscaling" – no scale separation!)
- Key Question (for both): Robust coarse space

• Elliptic PDE in bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3

 $-\nabla \cdot (\boldsymbol{\alpha} \nabla u) = f + \text{suitable BCs on } \partial \Omega$

Issues adressed even more pronounced in other eqns., e.g. linear elasticity.

- Strongly varying coefficient $\alpha(x) \ge 1$ (otherwise rescale eqn.) (scalar α , or quasi-isotropic tensor α with $\lambda_{\max}(\alpha) \sim \lambda_{\min}(\alpha)$)
- FE discretisation (p.w. lin. V^h): $a(u_h, v_h) = (f, v_h) \forall v_h \in V_h$
- Two possible aims:
 - *h*-optimal, α -robust parallel **solver** (fine mesh \mathcal{T}^h , α resolved)
 - *H*-optimal, α-robust approximation in coarse space V^H (α not resolved: "Upscaling" – no scale separation!)
- Key Question (for both): Robust coarse space

Applications: Simulation in Heterogeneous Media

• Elasticity, e.g. in bone or carbon fibre composites

• Subsurface flow, e.g. in an oil reservoir

(SPE10 benchmark)

• ... many more ...

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- Goal A: Efficient & scalable multilevel parallel solver
 - robust w.r.t. mesh size $h \iff w.r.t.$ problem size n: O(n) cost)
 - robust w.r.t. coefficients $\alpha(x)$
- Goal B: Simulate on coarse mesh where α is not resolved !
 - Discretisation in "special" coarse space $V^H
 ightarrow$ Upscaling
 - Approximation depends on (subgrid) variation & contrast in α !
- Robust multiscale space is expensive for general coefficients
- Unless we have periodicity, scale separation, multiple RHSs, parameter dependence, not clear why Goal B over Goal A
- Coefficient-robust theory for Goal B much less well developed !

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- Goal A: Efficient & scalable multilevel parallel solver
 - robust w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n: O(n) cost)
 - robust w.r.t. coefficients $\alpha(x)$!

• Goal B: Simulate on coarse mesh where α is not resolved !

- Discretisation in "special" coarse space $V^H
 ightarrow$ Upscaling
- Approximation depends on (subgrid) variation & contrast in α !
- Robust multiscale space is expensive for general coefficients
- Unless we have periodicity, scale separation, multiple RHSs, parameter dependence, not clear why Goal B over Goal A
- Coefficient-robust theory for Goal B much less well developed !

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- Goal A: Efficient & scalable multilevel parallel solver
 - robust w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n: O(n) cost)
 - robust w.r.t. coefficients $\alpha(x)$!
- Goal B: Simulate on coarse mesh where α is not resolved !
 - Discretisation in "special" coarse space $V^H \rightarrow$ Upscaling
 - Approximation depends on (subgrid) variation & contrast in α !
- Robust multiscale space is expensive for general coefficients
- Unless we have periodicity, scale separation, multiple RHSs, parameter dependence, not clear why Goal B over Goal A
- \bullet Coefficient-robust theory for Goal B much less well developed !

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- Goal A: Efficient & scalable multilevel parallel solver
 - robust w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n: O(n) cost)
 - robust w.r.t. coefficients $\alpha(x)$!
- Goal B: Simulate on coarse mesh where α is not resolved !
 - Discretisation in "special" coarse space $V^H \rightarrow$ Upscaling
 - Approximation depends on (subgrid) variation & contrast in α !
- Robust multiscale space is expensive for general coefficients
- Unless we have periodicity, scale separation, multiple RHSs, parameter dependence, not clear why Goal B over Goal A
- Coefficient-robust theory for Goal B much less well developed !

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- Goal A: Efficient & scalable multilevel parallel solver
 - robust w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n: O(n) cost)
 - robust w.r.t. coefficients $\alpha(x)$!
- Goal B: Simulate on coarse mesh where α is not resolved !
 - Discretisation in "special" coarse space $V^H \rightarrow$ Upscaling
 - Approximation depends on (subgrid) variation & contrast in α !
- Robust multiscale space is expensive for general coefficients
- Unless we have periodicity, scale separation, multiple RHSs, parameter dependence, not clear why Goal B over Goal A
- Coefficient-robust theory for Goal B much less well developed !

• Coarse grids resolve coefficient

Bramble, Pasciak & Schatz, 88 & 89; Mandel, 93; Dryja, Smith & Widlund, 94; Wang & Xie, 94; Chan & Mathew, 94; Dryja, Sarkis & Widlund, 96; Sarkis, 97; Klawonn & Widlund, 01, Mandel & Dohrmann, 03; Toselli & Widlund, 05; Xu & Zhu, 08; etc

• Coarse grids do not resolve coefficient

Graham & Hagger, 99; Graham, Lechner & RS, 07; Pechstein & RS, 08; Van lent, RS & Graham 09; Galvis & Efendiev 10; Dolean, Nataf, RS & Spillane, 11; RS, Vassilevski & Zikatanov, 11; Efendiev, Galvis, Lazarov & Willems, 12; Spillane, Dolean, Hauret, Nataf et al, 14; Heinlein, Klawonn & Rheinbach, 16; Gander & Loneland, 17; etc

Ideas from Algebraic Multigrid literature
 Alcouffe Brandt Dendy et al. 81: Ruge Stüben 87: Va

Vanek, Mandel & Brezina, 96; Chartier, Falgout, Henson et al, 03; Falgout, Vassilevski & Zikatanov 05; Vassilevski, 08; etc

• Coarse grids resolve coefficient

Bramble, Pasciak & Schatz, 88 & 89; Mandel, 93; Dryja, Smith & Widlund, 94; Wang & Xie, 94; Chan & Mathew, 94; Dryja, Sarkis & Widlund, 96; Sarkis, 97; Klawonn & Widlund, 01, Mandel & Dohrmann, 03; Toselli & Widlund, 05; Xu & Zhu, 08; etc

• Coarse grids do not resolve coefficient

Graham & Hagger, 99; Graham, Lechner & RS, 07; Pechstein & RS, 08; Van lent, RS & Graham 09; Galvis & Efendiev 10; Dolean, Nataf, RS & Spillane, 11; RS, Vassilevski & Zikatanov, 11; Efendiev, Galvis, Lazarov & Willems, 12; Spillane, Dolean, Hauret, Nataf et al, 14; Heinlein, Klawonn & Rheinbach, 16; Gander & Loneland, 17; etc

Ideas from Algebraic Multigrid literature

Alcouffe, Brandt, Dendy et al, 81; Ruge, Stüben, 87; Vassilevski, 92; Vanek, Mandel & Brezina, 96; Chartier, Falgout, Henson et al, 03; Falgout, Vassilevski & Zikatanov 05; Vassilevski, 08; etc • Coarse grids resolve coefficient

Bramble, Pasciak & Schatz, 88 & 89; Mandel, 93; Dryja, Smith & Widlund, 94; Wang & Xie, 94; Chan & Mathew, 94; Dryja, Sarkis & Widlund, 96; Sarkis, 97; Klawonn & Widlund, 01, Mandel & Dohrmann, 03; Toselli & Widlund, 05; Xu & Zhu, 08; etc

• Coarse grids do not resolve coefficient

Graham & Hagger, 99; Graham, Lechner & RS, 07; Pechstein & RS, 08; Van lent, RS & Graham 09; Galvis & Efendiev 10; Dolean, Nataf, RS & Spillane, 11; RS, Vassilevski & Zikatanov, 11; Efendiev, Galvis, Lazarov & Willems, 12; Spillane, Dolean, Hauret, Nataf et al, 14; Heinlein, Klawonn & Rheinbach, 16; Gander & Loneland, 17; etc

Ideas from Algebraic Multigrid literature
 Alcouffe, Brandt, Dendy et al, 81; Ruge, Stüben, 87; Vassilevski, 92;
 Vanek, Mandel & Brezina, 96; Chartier, Falgout, Henson et al, 03;
 Falgout, Vassilevski & Zikatanov 05; Vassilevski, 08; etc

Types of Multiscale Methods & Theory (incomplete list)

- Adaptive FEs ..., [Babuska, Rheinboldt, 1978]
- Generalised FEs [Babuska, Osborn, 1983]
- Numerical Upscaling ..., [Durlofsky, 1991]
- Multiscale Finite Elements [Hou, Wu, 1997], ...
- Variational Multiscale Method [Hughes et al, 1998]
- Multigrid Based Upscaling [Moulton, Dendy, Hyman, 1998]
- Multiscale Finite Volume Methods [Jenny, Lee, Tchelepi, 2003]
- Heterogeneous Multiscale Method [E, Engquist, 2003]
- Multiscale Mortar Spaces [Arbogast, Wheeler et al, 2007] (& other DD based methods)
- Adaptive Multiscale FVMs/FEs [Durlovsky, Efendiev, Ginting, 2007]
- Energy minimising bases [Dubois, Mishev, Zikatanov, 2009]
- Locally spectral (Generalised MsFEM) [Efendiev, Galvis, Wu, 2010]
- ... etc ...

- Periodicity \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997], ...
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast [Larson, Malqvist, '07], [Owhadi, Zhang, '11], [Grasedyck et al, '11], [Babuska, Lipton, '11], [Malqvist, Peterseim, '14] (no periodicity, no scale separation)
- Exploit links to DD theory [RS, Vassilevski, Zikatanov, 2011] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

- Periodicity \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997], ...
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast [Larson, Malqvist, '07], [Owhadi, Zhang, '11], [Grasedyck et al, '11], [Babuska, Lipton, '11], [Malqvist, Peterseim, '14] (no periodicity, no scale separation)
- Exploit links to DD theory [RS, Vassilevski, Zikatanov, 2011] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

- Periodicity \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997], ...
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast [Larson, Malqvist, '07], [Owhadi, Zhang, '11], [Grasedyck et al, '11], [Babuska, Lipton, '11], [Malqvist, Peterseim, '14] (no periodicity, no scale separation)
- Exploit links to DD theory [RS, Vassilevski, Zikatanov, 2011] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

- Periodicity \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997], ...
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast [Larson, Malqvist, '07], [Owhadi, Zhang, '11], [Grasedyck et al, '11], [Babuska, Lipton, '11], [Malqvist, Peterseim, '14] (no periodicity, no scale separation)
- Exploiting links to DD [RS, Vassilevski, Zikatanov, 2011] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

Classical theory and more recent ideas

Classical theory

- in H^1 and $H^{1/2}$ -norm
- based on standard Poincaré inequalities
- and robustness of weighted L₂-projections
 [Bramble, Xu, Math Comp 91], ... (for resolving coarse grids!)

More recent ideas

- directly in the energy norm
- based on weighted Poincaré type inequalities [Galvis, Efendiev, 2010], [Pechstein, RS, 2011 & 2012]
- and an **abstract Bramble-Hilbert Lemma** ← The (for energy minimising coarse spaces)

[RS, Vassilevski, Zikatanov, MMS 2011]

Classical theory and more recent ideas

Classical theory

- in H^1 and $H^{1/2}$ -norm
- based on standard Poincaré inequalities
- and robustness of weighted L₂-projections
 [Bramble, Xu, Math Comp 91], ... (for resolving coarse grids!)

More recent ideas

- directly in the energy norm
- based on weighted Poincaré type inequalities

[Galvis, Efendiev, 2010], [Pechstein, RS, 2011 & 2012]

[RS, Vassilevski, Zikatanov, MMS 2011]

Problem (in variational form): Find $u_h \in V_h$ s.t.

$$a(u_h, v_h) \equiv \int_{\Omega} \alpha \nabla u_h \cdot \nabla v_h = (f, v_h) \text{ for all } v_h \in V_h.$$

Precondition by solving (exactly or approximately) in subspaces $V_0, V_1, \ldots, V_L \subset V_h$ in parallel (additive) or successively (multiplicative)

Two-level overlapping Schwarz $V_{\ell} = \{v_h \in V_h : \operatorname{supp}(v_h) \subset \Omega_{\ell}\}$ with overlapping partitioning $\{\Omega_{\ell}\}_{\ell=1}^{L}$ of Ω

and $V_0 = \operatorname{span} \{ \Phi_j \in V_h : j = 1, \dots, N \}$ (abstract)

 $M_{add}^{-1} A = \sum_{\ell=0} \underbrace{R_{\ell}^{T} A_{\ell}^{-1} R_{\ell} A}_{= P_{\ell}} \qquad A_{\ell} = \text{restriction of } A \text{ to subspace } \Omega_{\ell}$ (assume overlap $\delta \gtrsim H$)

Geometric Multigrid & BPX

Problem (in variational form): Find $u_h \in V_h$ s.t.

$$a(u_h, v_h) \equiv \int_{\Omega} \alpha \nabla u_h \cdot \nabla v_h = (f, v_h) \text{ for all } v_h \in V_h.$$

Precondition by solving (exactly or approximately) in subspaces $V_0, V_1, \ldots, V_L \subset V_h$ in parallel (additive) or successively (multiplicative)

Two-level overlapping Schwarz $V_{\ell} = \{v_h \in V_h : \operatorname{supp}(v_h) \subset \Omega_{\ell}\}$ with overlapping partitioning $\{\Omega_{\ell}\}_{\ell=1}^{L}$ of Ω

and $V_0 = \text{span}\{\Phi_j \in V_h : j = 1, \dots, N\}$ (abstract)

 $M_{\text{add}}^{-1} A = \sum_{\ell=0}^{L} \underbrace{R_{\ell}^{T} A_{\ell}^{-1} R_{\ell} A}_{= P_{\ell}} \qquad A_{\ell} = \text{restriction of } A \text{ to subspace } \Omega_{\ell}$ (assume overlap $\delta \gtrsim H$)

Geometric Multigrid & BPX

similar with V_ℓ = p.w. lin. FE space on nested triangulations $\{\mathcal{T}_{h_\ell}\}_{\ell=1}^L$

Problem (in variational form): Find $u_h \in V_h$ s.t.

$$a(u_h, v_h) \equiv \int_{\Omega} \alpha \nabla u_h \cdot \nabla v_h = (f, v_h) \text{ for all } v_h \in V_h.$$

Precondition by solving (exactly or approximately) in subspaces $V_0, V_1, \ldots, V_L \subset V_h$ in parallel (additive) or successively (multiplicative)

Two-level overlapping Schwarz $V_{\ell} = \{v_h \in V_h : \operatorname{supp}(v_h) \subset \Omega_{\ell}\}$ with overlapping partitioning $\{\Omega_{\ell}\}_{\ell=1}^{L}$ of Ω

and $V_0 = \operatorname{span} \{ \Phi_j \in V_h : j = 1, \dots, N \}$ (abstract)

$$M_{\text{add}}^{-1} A = \sum_{\ell=0}^{L} \underbrace{R_{\ell}^{T} A_{\ell}^{-1} R_{\ell} A}_{= P_{\ell}} \qquad A_{\ell} = \text{restriction of } A \text{ to subspace } \Omega_{\ell}$$
(assume overlap $\delta \gtrsim H$)

Geometric Multigrid & BPX

similar with $V_\ell=$ p.w. lin. FE space on nested triangulations $\{\mathcal{T}_{h_\ell}\}_{\ell=0}^L$

Problem (in variational form): Find $u_h \in V_h$ s.t.

$$a(u_h, v_h) \equiv \int_{\Omega} \alpha \nabla u_h \cdot \nabla v_h = (f, v_h) \text{ for all } v_h \in V_h.$$

Precondition by solving (exactly or approximately) in subspaces $V_0, V_1, \ldots, V_L \subset V_h$ in parallel (additive) or successively (multiplicative)

Two-level overlapping Schwarz $V_{\ell} = \{v_h \in V_h : \operatorname{supp}(v_h) \subset \Omega_{\ell}\}$ with overlapping partitioning $\{\Omega_{\ell}\}_{\ell=1}^{L}$ of Ω

and $V_0 = \operatorname{span} \{ \Phi_j \in V_h : j = 1, \dots, N \}$ (abstract)

$$M_{\text{add}}^{-1} \mathbf{A} = \sum_{\ell=0}^{L} \underbrace{R_{\ell}^{T} A_{\ell}^{-1} R_{\ell} \mathbf{A}}_{= P_{\ell}} \qquad \mathbf{A}_{\ell} = \text{restriction of } \mathbf{A} \text{ to subspace } \Omega_{\ell}$$
(assume overlap $\delta \gtrsim H$)

Geometric Multigrid & BPX similar with V_{ℓ} = p.w. lin. FE space on nested triangulations $\{\mathcal{T}_{h_{\ell}}\}_{\ell=0}^{L}$

Two-level Overlapping Schwarz – Abstract Theory

Let
$$\|v\|_{0,\alpha}^2 = \int_{\Omega} \alpha v^2 dx$$
 (weighted L_2 -norm)

L

Analogously to classical theory (in H^1 -seminorm and L^2 -norm) we have:

Theorem (Two-level Schwarz) [RS, Vassilevski, Zikatanov, MMS 2011]						
If there exists an operator $\Pi:V_h o V_0$ such that, for all $v\in V_h$,						
$\frac{\ \Pi v \ _a^2}{(\text{stability})} \leq C_1 \ v \ _a^2$	and	$\ v - \Pi v \ _{0, oldsymbol{lpha}}^2$ (weak ap	$\leq C_2 \ v\ _a^2$ proximation)	(1)		
then $\kappa(M_{\text{add}}^{-1}A) \leq C_1 + C_2$.	The hi	dden constant is	independent of α	. L. h.		

Similar result for **geometric multigrid** (different norm $\|\cdot\|_*$ induced by smoother)

Main question: How to choose Π and how to prove (1)?

Two-level Overlapping Schwarz – Abstract Theory

Let
$$\|v\|_{0,\alpha}^2 = \int_{\Omega} \alpha v^2 dx$$
 (weighted L_2 -norm)

L

Analogously to classical theory (in H^1 -seminorm and L^2 -norm) we have:

Theorem (Two-level Schwarz) [RS, Vassilevski, Zikatanov, MMS 2011]						
If there exists an operator $\Pi:V_h o V_0$ such that, for all $v\in V_h$,						
$\frac{\ \Pi v \ _a^2}{(\text{stability})} \leq C_1 \ v \ _a^2$	and	$\ \mathbf{v} - \mathbf{\Pi} \mathbf{v} \ _{0, \boldsymbol{lpha}}^2$ (weak ap	$\leq C_2 \ v\ _a^2$ proximation)	(1)		
then $\kappa(M_{\text{add}}^{-1}A) \leq C_1 + C_2$.	The hi	dden constant is	independent of α	L. h.		

Similar result for **geometric multigrid** (different norm $\|\cdot\|_*$ induced by smoother)

Main question: How to choose Π and how to prove (1)?

"Nodal" Coarse Spaces, e.g. Piecewise Linears

• $V_0 = V_H$ cts. p.w. linears on a **shape-regular** grid T_H No assumption that **coefficient** is **resolved** on T_H !

(WPI) linked directly to local quasi-monotonicity [Pechstein, RS, 2012]

"Nodal" Coarse Spaces, e.g. Piecewise Linears

• $V_0 = V_H$ cts. p.w. linears on a shape-regular grid T_H No assumption that coefficient is resolved on T_H !

(WPI) linked directly to local quasi-monotonicity [Pechstein, RS, 2012]

"Nodal" Coarse Spaces, e.g. Piecewise Linears

• $V_0 = V_H$ cts. p.w. linears on a **shape-regular** grid T_H No assumption that **coefficient** is resolved on T_H !

(WPI) linked directly to local quasi-monotonicity [Pechstein, RS, 2012]

Rob Scheichl (Heidelberg) CIRM – Luminy, Sep 2019 Generalised Finite Elements

When is Poincaré constant independent of contrast in α ?

- Careful theory in [Pechstein, RS, 2012] linking robustness to quasi-monotonicity.
- **Bounds** for the <u>effective Poincaré constant</u> C_T^P : Darker colour means higher permeability.

When is Poincaré constant independent of contrast in α ?

- Careful theory in [Pechstein, RS, 2012] linking robustness to quasi-monotonicity.
- **Bounds** for the <u>effective Poincaré constant</u> C_T^P : Darker colour means higher permeability.

Rob Scheichl (Heidelberg)

CIRM - Luminy, Sep 2019
When is Poincaré constant independent of contrast in α ?

- Careful theory in [Pechstein, RS, 2012] linking robustness to quasi-monotonicity.
- **Bounds** for the <u>effective Poincaré constant</u> C_T^P : Darker colour means higher permeability.

- $\Omega = (0,1)^2$, uniform grids $\{\mathcal{T}_\ell\}_{\ell=0}^L$ with L = 4 and $h_L = 1/384$.
- Two "islands" not alligned with \mathcal{T}_0 and \mathcal{T}_1 where $\alpha(x) = \hat{\alpha}$ ($\alpha(x) = 1$ elsewhere)

Guiding principle for choice of "nodal" coarse spaces

 \mathcal{T}_H sufficiently fine (locally) s.t. $\alpha(x)$ quasi-monotone on all ω_K

When it is difficult to ensure **quasi-monotonicity** on all ω_K \longrightarrow **Coefficient-dependent Coarse Spaces** !

- $\Omega = (0,1)^2$, uniform grids $\{\mathcal{T}_\ell\}_{\ell=0}^L$ with L = 4 and $h_L = 1/384$.
- Two "islands" not alligned with \mathcal{T}_0 and \mathcal{T}_1 where $\alpha(x) = \hat{\alpha}$ ($\alpha(x) = 1$ elsewhere)

	C_{K}^{P} bounded for all ω_{K}		C_{K}^{P} not bdd. on some ω_{K}	
$\widehat{oldsymbol{lpha}}$	λ_1^{-1}	$\#$ MG lts (tol = 10^{-8})	λ_1^{-1}	#MG lts (tol $= 10^{-8}$)
10 ¹	1.69	10	1.72	10
10 ²	2.75	14	3.87	19
10 ³	3.32	12	14.5	23
10 ⁴	3.42	10	115.5	70
10 ⁵	3.42	10	1125	76

In right table islands closer to each other!

Guiding principle for choice of "nodal" coarse spaces

 \mathcal{T}_H sufficiently fine (locally) s.t. $\alpha(x)$ quasi-monotone on all ω_K

When it is difficult to ensure quasi-monotonicity on all ω_K

Coefficient-dependent Coarse Spaces !

- $\Omega = (0,1)^2$, uniform grids $\{\mathcal{T}_\ell\}_{\ell=0}^L$ with L = 4 and $h_L = 1/384$.
- Two "islands" not alligned with \mathcal{T}_0 and \mathcal{T}_1 where $\alpha(x) = \hat{\alpha}$ ($\alpha(x) = 1$ elsewhere)

	C_{K}^{P} bounded for all ω_{K}		C_{K}^{P} not bdd. on some ω_{K}	
$\widehat{oldsymbol{lpha}}$	λ_1^{-1}	$\#$ MG lts (tol = 10^{-8})	λ_1^{-1}	#MG lts (tol $= 10^{-8}$)
10 ¹	1.69	10	1.72	10
10 ²	2.75	14	3.87	19
10 ³	3.32	12	14.5	23
10 ⁴	3.42	10	115.5	70
10 ⁵	3.42	10	1125	76

In right table islands closer to each other!

Guiding principle for choice of "nodal" coarse spaces

 \mathcal{T}_H sufficiently fine (locally) s.t. $\alpha(x)$ quasi-monotone on all ω_K

When it is difficult to ensure **quasi-monotonicity** on all ω_K

Coefficient-dependent Coarse Spaces !

Rob Scheichl (Heidelberg)

- $\Omega = (0,1)^2$, uniform grids $\{\mathcal{T}_\ell\}_{\ell=0}^L$ with L = 4 and $h_L = 1/384$.
- Two "islands" not alligned with \mathcal{T}_0 and \mathcal{T}_1 where $\alpha(x) = \hat{\alpha}$ ($\alpha(x) = 1$ elsewhere)

	C_{K}^{P} bounded for all ω_{K}		C_{K}^{P} not bdd. on some ω_{K}	
$\widehat{oldsymbol{lpha}}$	λ_1^{-1}	$\#$ MG lts (tol = 10^{-8})	λ_1^{-1}	#MG lts (tol $= 10^{-8}$)
10 ¹	1.69	10	1.72	10
10 ²	2.75	14	3.87	19
10 ³	3.32	12	14.5	23
10 ⁴	3.42	10	115.5	70
10 ⁵	3.42	10	1125	76

In right table islands closer to each other!

Guiding principle for choice of "nodal" coarse spaces

 \mathcal{T}_H sufficiently fine (locally) s.t. $\alpha(x)$ quasi-monotone on all ω_K

When it is difficult to ensure quasi-monotonicity on all ω_K

 \longrightarrow Coefficient-dependent Coarse Spaces !

Suppose $\{\Omega_{\ell}\}_{\ell=1}^{L}$ is an overlapping partition of Ω and $\{\chi_{\ell}\}_{\ell=1}^{L}$ an associate partition of unity w. $\|\chi_{\ell}\|_{\infty} \leq 1 \& \|\nabla\chi_{\ell}\|_{\infty} \leq \delta_{\ell}^{-1} \leq H_{\ell}^{-1}$ (This could be a set of FE basis functions and their supports.)

Local Energy Minimization subject to Functional Constraints

For each subdomain Ω_{ℓ} , assume that we have a collection of **linear** functionals $\{f_{\ell,j}\}_{j=1}^{m_{\ell}} \subset V_h(\Omega_{\ell})'$ and let

 $\Psi_{\ell,j} = \arg\min_{v \in V_h(\Omega_\ell)} \|v\|_{a,\Omega_\ell}^2 \quad \text{subject to} \quad f_{\ell,k}(\Psi_{\ell,j}) = \delta_{jk} \,. \tag{2}$

Now, with I_h the standard nodal interpolant onto V_h , let

 $V_H = ext{span} \{ \Phi_{\ell,j} \}$ with $\Phi_{\ell,j} = I_h \left(\chi_\ell \Psi_{\ell,j} \right), \ \ell = \overline{1,L}, \ j = \overline{1,m_\ell}$.

("glueing" together the locally energy minimising bases via a partition of unity)

Suppose $\{\Omega_{\ell}\}_{\ell=1}^{L}$ is an overlapping partition of Ω and $\{\chi_{\ell}\}_{\ell=1}^{L}$ an associate partition of unity w. $\|\chi_{\ell}\|_{\infty} \lesssim 1 \& \|\nabla\chi_{\ell}\|_{\infty} \lesssim \delta_{\ell}^{-1} \lesssim H_{\ell}^{-1}$ (This could be a set of FE basis functions and their supports.)

Local Energy Minimization subject to Functional Constraints

For each subdomain Ω_{ℓ} , assume that we have a collection of **linear** functionals $\{f_{\ell,j}\}_{j=1}^{m_{\ell}} \subset V_h(\Omega_{\ell})'$ and let

 $\Psi_{\ell,j} = \arg\min_{v \in V_h(\Omega_\ell)} \|v\|_{a,\Omega_\ell}^2 \quad \text{subject to} \quad f_{\ell,k}(\Psi_{\ell,j}) = \delta_{jk} \,. \tag{2}$

Now, with I_h the standard nodal interpolant onto V_h , let

 $V_H = ext{span}\{\Phi_{\ell,j}\} ext{ with } \Phi_{\ell,j} = I_h\left(\chi_\ell \Psi_{\ell,j}
ight), \ \ell = \overline{1,L}, \ j = \overline{1,m_\ell}.$

("glueing" together the locally energy minimising bases via a partition of unity)

Suppose $\{\Omega_{\ell}\}_{\ell=1}^{L}$ is an overlapping partition of Ω and $\{\chi_{\ell}\}_{\ell=1}^{L}$ an associate partition of unity w. $\|\chi_{\ell}\|_{\infty} \lesssim 1 \& \|\nabla\chi_{\ell}\|_{\infty} \lesssim \delta_{\ell}^{-1} \lesssim H_{\ell}^{-1}$ (This could be a set of FE basis functions and their supports.)

Local Energy Minimization subject to Functional Constraints

For each subdomain Ω_{ℓ} , assume that we have a collection of **linear** functionals $\{f_{\ell,j}\}_{j=1}^{m_{\ell}} \subset V_h(\Omega_{\ell})'$ and let

 $\Psi_{\ell,j} = \arg\min_{v \in V_h(\Omega_\ell)} \|v\|_{a,\Omega_\ell}^2 \quad \text{subject to} \quad f_{\ell,k}(\Psi_{\ell,j}) = \delta_{jk} \,. \tag{2}$

Now, with I_h the standard nodal interpolant onto V_h , let

$$V_H = \operatorname{span}\{\Phi_{\ell,j}\}$$
 with $\Phi_{\ell,j} = I_h(\chi_\ell \Psi_{\ell,j}), \ \ell = \overline{1, L}, \ j = \overline{1, m_\ell}.$

("glueing" together the locally energy minimising bases via a partition of unity)

Importance of energy minimization noted in AMG literature:

Explicitly: [Mandel, Brezina & Vanek, 99]; [Wan, Chan & Smith, 99]; [Xu & Zikatanov, 04]; [Brannick, Brezina et al, 05]

(implicitly in **all** AMG methods)

Theorem [RS, Vassilevski, Zikatanov, MMS 2011] If $\forall v \in V_h(\Omega_\ell)$ the local **quasi-interpolant** $\Pi_\ell v = \sum_j f_{\ell,j}(v) \Psi_{\ell,j}$ satisfies $\|\Pi_\ell v\|_{a,\Omega_\ell} \lesssim \|v\|_{a,\Omega_\ell}$ $\int_{\Omega_\ell} \alpha |v - \Pi_\ell v|^2 \, dx \lesssim H_\ell^2 \|u\|_{a,\Omega_\ell}^2$ then $\kappa(M_{add}^{-1}A) \lesssim 1$ with $\Pi v = \sum_{\ell=1}^L \sum_{j=1}^{m_\ell} f_{\ell,j}(v) \Phi_{\ell,j}$.

The assumptions of this theorem follow from a 'novel' abstract approximation result related to the **Bramble-Hilbert Lemma**.

Importance of energy minimization noted in AMG literature:

Explicitly: [Mandel, Brezina & Vanek, 99]; [Wan, Chan & Smith, 99]; [Xu & Zikatanov, 04]; [Brannick, Brezina et al, 05]

(implicitly in **all** AMG methods)

Theorem [RS, Vassilevski, Zikatanov, MMS 2011] If $\forall v \in V_h(\Omega_\ell)$ the local **quasi-interpolant** $\Pi_\ell v = \sum_j f_{\ell,j}(v)\Psi_{\ell,j}$ satisfies $\|\Pi_\ell v\|_{a,\Omega_\ell} \lesssim \|v\|_{a,\Omega_\ell}$ $\int_{\Omega_\ell} \alpha |v - \Pi_\ell v|^2 dx \lesssim H_\ell^2 \|u\|_{a,\Omega_\ell}^2$ then $\kappa(M_{add}^{-1}A) \lesssim 1$ with $\Pi v = \sum_{\ell=1}^L \sum_{i=1}^{m_\ell} f_{\ell,i}(v)\Phi_{\ell,i}$.

The assumptions of this theorem follow from a 'novel' abstract approximation result related to the **Bramble-Hilbert Lemma**.

Importance of energy minimization noted in AMG literature:

Explicitly: [Mandel, Brezina & Vanek, 99]; [Wan, Chan & Smith, 99]; [Xu & Zikatanov, 04]; [Brannick, Brezina et al, 05]

(implicitly in **all** AMG methods)

Theorem [RS, Vassilevski, Zikatanov, MMS 2011] If $\forall v \in V_h(\Omega_\ell)$ the local **quasi-interpolant** $\Pi_\ell v = \sum_j f_{\ell,j}(v) \Psi_{\ell,j}$ satisfies $\|\Pi_\ell v\|_{a,\Omega_\ell} \lesssim \|v\|_{a,\Omega_\ell}$ $\int_{\Omega_\ell} \alpha |v - \Pi_\ell v|^2 dx \lesssim H_\ell^2 \|u\|_{a,\Omega_\ell}^2$ then $\kappa(M_{add}^{-1}A) \lesssim 1$ with $\Pi v = \sum_{\ell=1}^L \sum_{i=1}^{m_\ell} f_{\ell,i}(v) \Phi_{\ell,i}$.

The assumptions of this theorem follow from a 'novel' abstract approximation result related to the Bramble-Hilbert Lemma.

Suppose $V \subset \mathcal{H}$ and \mathcal{H} **Hilbert** with norm $\|\cdot\|$, *a* is an abstract **symmetric** continuous bilinear form on $V \times V$ and $\{f_k\}_{k=1}^m \subset V'$ and define (as in the specific case above), for all $v \in V$,

 $\psi_k = \arg\min_{v \in V} |v|_a^2$, subject to $f_j(\psi_k) = \delta_{jk}$ $j, k = 1, \dots, m$.

Make the following assumptions:

A1. a is positive semi-definite and defines a semi-norm | · |_a on V and √||v||² + |v|²_a defines a norm on V.
A2. For all q ∈ ℝ^m there exists a v_q ∈ V with f_k(v_q) = q_k, and ||v_q|| ≤ c_q ||q||_{l²(ℝ^m)}.
A3. ||v||² ≤ c_a|v|²_a + c_f ∑^m_{k=1} |f_k(v)|², for all v ∈ V.

Suppose $V \subset \mathcal{H}$ and \mathcal{H} **Hilbert** with norm $\|\cdot\|$, *a* is an abstract **symmetric** continuous bilinear form on $V \times V$ and $\{f_k\}_{k=1}^m \subset V'$ and define (as in the specific case above), for all $v \in V$,

 $\psi_k = \arg\min_{v \in V} |v|_a^2$, subject to $f_j(\psi_k) = \delta_{jk}$ $j, k = 1, \dots, m$.

Make the following assumptions:

A1. *a* is positive semi-definite and defines a semi-norm $|\cdot|_a$ on *V* and $\sqrt{||v||^2 + |v|_a^2}$ defines a norm on *V*.

A2. For all $\mathbf{q} \in \mathbb{R}^m$ there exists a $v_{\mathbf{q}} \in V$ with

 $f_k(v_{\mathbf{q}}) = q_k$, and $\|v_{\mathbf{q}}\| \lesssim c_q \|\mathbf{q}\|_{l^2(\mathbb{R}^m)}$.

A3. $\|v\|^2 \le c_a |v|_a^2 + c_f \sum_{k=1}^m |f_k(v)|^2$, for all $v \in V$.

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then $\pi u = \sum_k f_k(u)\psi_k$ satisfies

 $|\pi u|_a \leq |u|_a$ and $||u - \pi u|| \leq \sqrt{c_a} |u|_a$ for all $u \in V$.

(Note that this is independent of the constants c_q and c_f in A2 and A3.)

Proof.

- First one notes that given u ∈ V, πu minimizes energy subject to f_k(v) = f_k(u). Thus |πu|_a ≤ |u|_a by construction.
- Secondly, from A3, the fact that f_k(v − Πv) = 0 ∀k and the stability estimate, we get

$\begin{aligned} \|v - \Pi v\|^2 &\leq |c_1|v - \Pi v|_s^2 + c_1 \sum_{t=1}^{t} |f(v - \Pi v)|^2 \\ &= |c_1|v - \Pi v|_s^2 \leq 2c_1(|v|_s^2 + |\Pi v|_s^2) \leq 4c_1 \end{aligned}$

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then $\pi u = \sum_k f_k(u)\psi_k$ satisfies

 $|\pi u|_a \leq |u|_a$ and $||u - \pi u|| \leq \sqrt{c_a} |u|_a$ for all $u \in V$.

(Note that this is independent of the constants c_q and c_f in A2 and A3.)

Proof.

• First one notes that given $u \in V$, πu minimizes energy subject to $f_k(v) = f_k(u)$. Thus $|\pi u|_a \le |u|_a$ by construction.

• Secondly, from A3, the fact that $f_k(v - \Pi v) = 0 \ \forall k$ and the stability estimate, we get

$$\begin{aligned} \|v - \Pi v\|^2 &\leq c_a \|v - \Pi v\|_a^2 + c_f \sum_{l=1}^m |f(v - \Pi v)|^2 \\ &= c_a \|v - \Pi v\|_a^2 \leq 2c_a (\|v\|_a^2 + |\Pi v\|_a^2) \leq 4c_a \|v\|_a^2. \end{aligned}$$

can lose factor 2 by more careful bound

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then $\pi u = \sum_k f_k(u)\psi_k$ satisfies

 $|\pi u|_a \leq |u|_a$ and $||u - \pi u|| \leq \sqrt{c_a} |u|_a$ for all $u \in V$.

(Note that this is independent of the constants c_q and c_f in A2 and A3.)

Proof.

- First one notes that given $u \in V$, πu minimizes energy subject to $f_k(v) = f_k(u)$. Thus $|\pi u|_a \le |u|_a$ by construction.
- Secondly, from A3, the fact that $f_k(v \Pi v) = 0 \ \forall k$ and the stability estimate, we get

$$\begin{aligned} \|v - \Pi v\|^2 &\leq c_a |v - \Pi v|_a^2 + c_f \sum_{l=1}^m |f(v - \Pi v)|^2 \\ &= c_a |v - \Pi v|_a^2 \leq 2c_a (|v|_a^2 + |\Pi v|_a^2) \leq 4c_a |v|_a^2. \end{aligned}$$

(can lose factor 2 by more careful bound)

In our specific model problem considered above

- Assumption A1 is naturally satisfied on any subdomain Ω_{ℓ} with $\mathcal{H} = L_2(\Omega_{\ell})$ and $||v|| = \int_{\Omega_{\ell}} \alpha v^2 dx$ (weighted L²-norm !)
- Assumption **A2** simply means the functionals {*f_k*} should be linearly independent.
- Coarse space robustness reduced to verifying Assumption A3
 - For one functional reduces to (WPI) and quasi-monotonicity.
 - For more then one functional opens possibility of coefficient robustness **even** for **non-quasi-monotone** coefficients.

More importantly: can be applied also to other problems, e.g. **elasticity, Stokes, ...**

In our specific model problem considered above

- Assumption A1 is naturally satisfied on any subdomain Ω_{ℓ} with $\mathcal{H} = L_2(\Omega_{\ell})$ and $||v|| = \int_{\Omega_{\ell}} \alpha v^2 dx$ (weighted L²-norm !)
- Assumption A2 simply means the functionals $\{f_k\}$ should be linearly independent.
- Coarse space robustness reduced to verifying Assumption A3
 - For one functional reduces to (WPI) and quasi-monotonicity.
 - For more then one functional opens possibility of coefficient robustness **even** for **non-quasi-monotone** coefficients.

More importantly: can be applied also to other problems, e.g. elasticity, Stokes, ...

- **(Galvis, Efendiev '10]**: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ where $\Psi_{\ell,j}$ is the *j*th eigenfunction of matrix pencil of local stiffness & mass matrix
- **2** [RS, Vassilevski, Zikatanov '11]: $f_{\ell,j}(\mathbf{v}) = \int_{\Omega_{\ell,j}} \alpha \mathbf{v} \, d\mathbf{x} / \int_{\Omega_{\ell,j}} \alpha \, d\mathbf{x}$ where $\{\Omega_{\ell,j}\}_{j=1}^{m_{\ell}}$ is partitioning of Ω_{ℓ} s.t. (WPI) holds on each $\Omega_{\ell,j}$ (Construction of $\Psi_{\ell,j}$ requires solution of m_{ℓ} local saddle point systems.)
- **③** [Dolean, Nataf, RS, Spillane '12]: $f_{\ell,j}(v) = \int_{\partial \Omega_{\ell}} \alpha \Psi_{\ell,j} v \, ds$ where $\Psi_{\ell,j}$ is *j*th eigenfunction of Dirichlet-to-Neumann operator on $\partial \Omega_{\ell}$
- [Spillane et al '14]: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \nabla (\chi_{\ell} \Psi_{\ell,j}) \cdot \nabla (\chi_{\ell} v) dx$ where $\Psi_{\ell,j}$ is *j*th eigenfect. of matrix pencil stiffness matrix & $a(\chi_{\ell} \cdot, \chi_{\ell} \cdot)$

But also in multiscale literature:

[Babuska, Lipton (11]: $h_{2}(x) = \int_{M} d\nabla \Psi_{0,2} \cdot \nabla x \, dx$ with $m_{2} \in \Omega_{T}$

 $@ [Peterseim, RS '16] (LOD): f_G(v) = \int_{\Omega_0} \alpha \gamma v \, dx / \int_{\Omega_0} \alpha \gamma \, dx$

- **(Galvis, Efendiev '10]**: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ where $\Psi_{\ell,j}$ is the *j*th eigenfunction of matrix pencil of local stiffness & mass matrix
- **2** [RS, Vassilevski, Zikatanov '11]: $f_{\ell,j}(v) = \int_{\Omega_{\ell,j}} \alpha v \, dx / \int_{\Omega_{\ell,j}} \alpha \, dx$ where $\{\Omega_{\ell,j}\}_{j=1}^{m_{\ell}}$ is partitioning of Ω_{ℓ} s.t. (WPI) holds on each $\Omega_{\ell,j}$ (Construction of $\Psi_{\ell,j}$ requires solution of m_{ℓ} local saddle point systems.)
- **③** [Dolean, Nataf, RS, Spillane '12]: $f_{\ell,j}(v) = \int_{\partial \Omega_{\ell}} \alpha \Psi_{\ell,j} v \, ds$ where $\Psi_{\ell,j}$ is *j*th eigenfunction of Dirichlet-to-Neumann operator on $\partial \Omega_{\ell}$
- **③** [Spillane et al '14]: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \nabla(\chi_{\ell} \Psi_{\ell,j}) \cdot \nabla(\chi_{\ell} v) dx$ where $\Psi_{\ell,j}$ is *j*th eigenfct. of matrix pencil stiffness matrix & $a(\chi_{\ell} \cdot, \chi_{\ell} \cdot)$

But also in multiscale literature:

[Babuska, Lipton (11]: $f_{ij}(s) = \int_{a_j} a \nabla \Psi_{ij} \circ \nabla s$ do with $a_j \in \Omega_f$

 \Im [Peterseim, RS '16] (LOD): $f_{ij}(v) = \int_{\partial U} a x_0 v \, dx / \int_{\partial U} a x_0 \, dx$

- **(Galvis, Efendiev '10]**: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ where $\Psi_{\ell,j}$ is the *j*th eigenfunction of matrix pencil of local stiffness & mass matrix
- **2** [RS, Vassilevski, Zikatanov '11]: $f_{\ell,j}(v) = \int_{\Omega_{\ell,j}} \alpha v \, dx / \int_{\Omega_{\ell,j}} \alpha \, dx$ where $\{\Omega_{\ell,j}\}_{j=1}^{m_{\ell}}$ is partitioning of Ω_{ℓ} s.t. (WPI) holds on each $\Omega_{\ell,j}$ (Construction of $\Psi_{\ell,j}$ requires solution of m_{ℓ} local saddle point systems.)
- **3** [Dolean, Nataf, RS, Spillane '12]: $f_{\ell,j}(v) = \int_{\partial \Omega_{\ell}} \alpha \Psi_{\ell,j} v \, ds$ where $\Psi_{\ell,j}$ is *j*th eigenfunction of Dirichlet-to-Neumann operator on $\partial \Omega_{\ell}$
- **3** [Spillane et al '14]: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \nabla(\chi_{\ell} \Psi_{\ell,j}) \cdot \nabla(\chi_{\ell} v) dx$ where $\Psi_{\ell,j}$ is *j*th eigenfect. of matrix pencil stiffness matrix & $a(\chi_{\ell} \cdot, \chi_{\ell} \cdot)$

But also in multiscale literature:

-) [Babuska, Lipton '11]: $f_{\ell,l}(v) = \int_{\omega_\ell} lpha
 abla \Psi_{\ell,l} \cdot
 abla v$ dx with $\omega_\ell \subset \Omega_\ell$
- **Peterseim, RS '16]** (LOD): $f_{\ell,j}(\mathbf{v}) = \int_{\Omega_\ell} \alpha \chi_j \mathbf{v} \, d\mathbf{x} / \int_{\Omega_\ell} \alpha \chi_j \, d\mathbf{x}$
- [Owhadi '17] (Gamblets): Hierarchy of functionals similar to Case 2

- **(Galvis, Efendiev '10]**: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ where $\Psi_{\ell,j}$ is the *j*th eigenfunction of matrix pencil of local stiffness & mass matrix
- **2** [RS, Vassilevski, Zikatanov '11]: $f_{\ell,j}(v) = \int_{\Omega_{\ell,j}} \alpha v \, dx / \int_{\Omega_{\ell,j}} \alpha \, dx$ where $\{\Omega_{\ell,j}\}_{j=1}^{m_{\ell}}$ is partitioning of Ω_{ℓ} s.t. (WPI) holds on each $\Omega_{\ell,j}$ (Construction of $\Psi_{\ell,j}$ requires solution of m_{ℓ} local saddle point systems.)
- **3** [Dolean, Nataf, RS, Spillane '12]: $f_{\ell,j}(v) = \int_{\partial \Omega_{\ell}} \alpha \Psi_{\ell,j} v \, ds$ where $\Psi_{\ell,j}$ is *j*th eigenfunction of Dirichlet-to-Neumann operator on $\partial \Omega_{\ell}$
- **③** [Spillane et al '14]: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \nabla(\chi_{\ell} \Psi_{\ell,j}) \cdot \nabla(\chi_{\ell} v) dx$ where $\Psi_{\ell,j}$ is *j*th eigenfct. of matrix pencil stiffness matrix & $a(\chi_{\ell} \cdot, \chi_{\ell} \cdot)$

But also in multiscale literature:

-) [Babuska, Lipton '11]: $f_{\ell J}(v) = \int_{\omega_\ell} lpha
 abla \Psi_{\ell J} \cdot
 abla v$ dx with $\omega_\ell \in \Omega_\ell$
- **)** [Peterseim, RS '16] (LOD): $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \chi_j v \, dx / \int_{\Omega_{\ell}} \alpha \chi_j \, dx$
- [Owhadi '17] (Gamblets): Hierarchy of functionals similar to Case 2

← GenEO – see below!

- **(Galvis, Efendiev '10]**: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ where $\Psi_{\ell,j}$ is the *j*th eigenfunction of matrix pencil of local stiffness & mass matrix
- **2** [RS, Vassilevski, Zikatanov '11]: $f_{\ell,j}(v) = \int_{\Omega_{\ell,j}} \alpha v \, dx / \int_{\Omega_{\ell,j}} \alpha \, dx$ where $\{\Omega_{\ell,j}\}_{j=1}^{m_{\ell}}$ is partitioning of Ω_{ℓ} s.t. (WPI) holds on each $\Omega_{\ell,j}$ (Construction of $\Psi_{\ell,j}$ requires solution of m_{ℓ} local saddle point systems.)
- **3** [Dolean, Nataf, RS, Spillane '12]: $f_{\ell,j}(v) = \int_{\partial \Omega_{\ell}} \alpha \Psi_{\ell,j} v \, ds$ where $\Psi_{\ell,j}$ is *j*th eigenfunction of Dirichlet-to-Neumann operator on $\partial \Omega_{\ell}$
- (Spillane et al '14]: $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \nabla(\chi_{\ell} \Psi_{\ell,j}) \cdot \nabla(\chi_{\ell} v) dx$ where $\Psi_{\ell,j}$ is *j*th eigenfct. of matrix pencil stiffness matrix & $a(\chi_{\ell} \cdot, \chi_{\ell} \cdot)$ (GenEO - see below!) But also in multiscale literature:
- But also in multiscale literature:
 - **(**] [Babuska, Lipton '11]: $f_{\ell,j}(v) = \int_{\omega_{\ell}} \alpha \nabla \Psi_{\ell,j} \cdot \nabla v \, dx$ with $\omega_{\ell} \subset \Omega_{\ell}$
 - **2** [Peterseim, RS '16] (LOD): $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \chi_j v \, dx / \int_{\Omega_{\ell}} \alpha \chi_j \, dx$
 - **3** [Owhadi '17] (Gamblets): Hierarchy of functionals similar to Case 2

Recall on subdomain Ω_ℓ chose $\mathcal{H} = L_2(\Omega_\ell)$ and $\|v\| = \int_{\Omega_\ell} \alpha v^2 dx$

• Case 2: Applying (WPI) on each subsubdomain $\Omega_{\ell,j}$:

$$\|v\|^{2} \leq \sum_{j=1}^{m_{\ell}} C_{\ell,j}^{P} H_{\ell}^{2} \int_{\Omega_{\ell,j}} \alpha |\nabla v|^{2} dx + \underbrace{\alpha_{\max} H_{\ell}^{d}}_{=: c_{f}} |f_{\ell,j}(v)|^{2}$$
$$\leq c_{a} \|v\|_{a}^{2} + c_{f} \sum_{j=1}^{m_{\ell}} |f_{\ell,j}(v)|^{2} \quad \text{with} \quad c_{a} := (\max_{j} C_{\ell,j}^{P}) H_{\ell}^{2}$$

 Case 1: Recall f_{ℓ,j}(v) = ∫_{Ω_ℓ} αΨ_{ℓ,j}v dx with Ψ_{ℓ,j} the eigenfunction related to pair of energy and weighted L²-inner product. Thus:

$$\|v\|^2 \leq c_s \|v\|_2^2 + c_t \sum_{l=1}^{m_t} |\ell_{i,l}(v)|^2 \quad \text{with} \quad c_s := \lambda_{Gm_t+1}^{-1}$$

Recall on subdomain Ω_ℓ chose $\mathcal{H} = L_2(\Omega_\ell)$ and $\|v\| = \int_{\Omega_\ell} \alpha v^2 dx$

• Case 2: Applying (WPI) on each subsubdomain $\Omega_{\ell,j}$:

$$\begin{aligned} \|v\|^2 &\leq \sum_{j=1}^{m_\ell} C_{\ell,j}^P H_\ell^2 \int_{\Omega_{\ell,j}} \alpha |\nabla v|^2 \,\mathrm{d}x + \underbrace{\alpha_{\max} H_\ell^d}_{=: c_f} |f_{\ell,j}(v)|^2 \\ &\leq c_a \|v\|_a^2 + c_f \sum_{j=1}^{m_\ell} |f_{\ell,j}(v)|^2 \quad \text{with} \quad c_a := (\max_j C_{\ell,j}^P) H_\ell^2 \end{aligned}$$

• **Case 1:** Recall $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ with $\Psi_{\ell,j}$ the eigenfunction related to pair of energy and weighted L^2 -inner product. Thus:

$$\|v\|^2 \leq c_a \|v\|_a^2 + c_f \sum_{j=1}^{m_\ell} |f_{\ell,j}(v)|^2$$
 with $c_a := \lambda_{\ell,m_\ell+1}^{-1}$

Recall on subdomain Ω_ℓ chose $\mathcal{H} = L_2(\Omega_\ell)$ and $\|v\| = \int_{\Omega_\ell} \alpha v^2 dx$

• Case 2: Applying (WPI) on each subsubdomain $\Omega_{\ell,j}$:

$$\begin{aligned} \|v\|^2 &\leq \sum_{j=1}^{m_\ell} C_{\ell,j}^P H_\ell^2 \int_{\Omega_{\ell,j}} \alpha |\nabla v|^2 \,\mathrm{d}x + \underbrace{\alpha_{\max} H_\ell^d}_{=: c_f} |f_{\ell,j}(v)|^2 \\ &\leq c_a \|v\|_a^2 + c_f \sum_{j=1}^{m_\ell} |f_{\ell,j}(v)|^2 \quad \text{with} \quad c_a := (\max_j C_{\ell,j}^P) H_\ell^2 \end{aligned}$$

• Case 1: Recall $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ with $\Psi_{\ell,j}$ the eigenfunction related to pair of energy and weighted L^2 -inner product. Thus:

$$\|v\|^2 \leq c_a \|v\|_a^2 + c_f \sum_{j=1}^{m_\ell} |f_{\ell,j}(v)|^2 \quad ext{with} \quad c_a := \lambda_{\ell,m_\ell+1}^{-1}$$

Recall on subdomain Ω_ℓ chose $\mathcal{H} = L_2(\Omega_\ell)$ and $\|v\| = \int_{\Omega_\ell} \alpha v^2 dx$

• Case 2: Applying (WPI) on each subsubdomain $\Omega_{\ell,j}$:

$$\begin{aligned} \|v\|^2 &\leq \sum_{j=1}^{m_\ell} C_{\ell,j}^P H_\ell^2 \int_{\Omega_{\ell,j}} \alpha |\nabla v|^2 \,\mathrm{d}x + \underbrace{\alpha_{\max} H_\ell^d}_{=: c_f} |f_{\ell,j}(v)|^2 \\ &\leq c_a \|v\|_a^2 + c_f \sum_{j=1}^{m_\ell} |f_{\ell,j}(v)|^2 \quad \text{with} \quad c_a := (\max_j C_{\ell,j}^P) H_\ell^2 \end{aligned}$$

• Case 1: Recall $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ with $\Psi_{\ell,j}$ the eigenfunction related to pair of energy and weighted L^2 -inner product. Thus:

$$\|v\|^2 \leq c_{\mathsf{a}} \|v\|_{\mathsf{a}}^2 + c_f \sum_{j=1}^{m_\ell} |f_{\ell,j}(v)|^2 \quad ext{with} \quad c_{\mathsf{a}} := \lambda_{\ell,m_\ell+1}^{-1}$$

How can we use this **abstract Bramble-Hilbert Lemma** to obtain a contrast-robust approximation theory for LOD or GFEM?

Localizable Orthogonal Decomposition (LOD)

- FE space V_H := span{Φ_j} associated with (coarse) FE mesh T_H
- Quasi-interpolation operator $\Pi: V_h \rightarrow V_H$ with

 $\mathsf{\Pi} \mathsf{v} := \sum_{j} \frac{(\mathsf{v}, \Phi_j)_{L^2(\Omega)}}{(1, \Phi_j)_{L^2(\Omega)}} \, \Phi_j$

 $(\Pi \text{ invertible on } V_H!)$

Decomposition

 $V_h = V_H \oplus V_h^{\mathrm{f}}$ with $V_h^{\mathrm{f}} := \operatorname{kernel} \Pi = \{ v \in V_h \mid \Pi v = 0 \}$

• For each $v \in V_h$ define the fine scale projection $P^f v \in V_h^f$ by $a(P^f v, w) = a(v, w)$ for all $w \in V_h^f$ (global!)

a-Orthogonal Decomposition [Malqvist, Peterseim, '11]

 $V_h = V_H^{\mathsf{ms}} \oplus V_h^{\mathsf{f}}$ and $a(V_H^{\mathsf{ms}}, V_h^{\mathsf{f}}) = 0$ with $V_H^{\mathsf{ms}} := (1 - P^{\mathsf{f}})V_H$

Localizable Orthogonal Decomposition (LOD)

- FE space V_H := span{Φ_j} associated with (coarse) FE mesh T_H
- Quasi-interpolation operator $\Pi: V_h \to V_H$ with

 $\mathsf{\Pi} \mathsf{v} := \sum_{j} \frac{(\mathsf{v}, \Phi_j)_{L^2(\Omega)}}{(1, \Phi_j)_{L^2(\Omega)}} \, \Phi_j$

 $(\Pi \text{ invertible on } V_H!)$

Decomposition

$$V_h = V_H \oplus V_h^{\mathrm{f}}$$
 with $V_h^{\mathrm{f}} := \operatorname{kernel} \Pi = \{ v \in V_h \mid \Pi v = 0 \}$

• For each $v \in V_h$ define the fine scale projection $P^{f}v \in V_h^{f}$ by

$$a(P^{f}v, w) = a(v, w)$$
 for all $w \in V_{h}^{f}$ (global!)

a-Orthogonal Decomposition [Malqvist, Peterseim, '11]

 $V_h = V_H^{ms} \oplus V_h^{f}$ and $a(V_H^{ms}, V_h^{f}) = 0$ with $V_H^{ms} := (1 - P^{f})V_H$

Rob Scheichl (Heidelberg)

Modified (multiscale) nodal basis

- $\{\Phi_j \mid j=1,\ldots,N\} \subset V_H$ denotes classical nodal basis
- $\varphi_j^f := P^f \Phi_j \in V_h^f$ denotes the fine scale correction of Φ_j

Ideal multiscale FE space

$$V_H^{\mathsf{ms}} = \mathsf{span}\left\{ \Phi_j - arphi_j^f \mid j = 1, \dots, N
ight\}$$

Exponential decay and localisation

• Define nodal patches $\omega_{j,k}$ of k-th order around vertex x_j of \mathcal{T}_H

- Can show that $|\varphi_j^f|_{H^1(\Omega\setminus\omega_{j,k})}\lesssim \gamma^k|\varphi_j^f|_{H^1(\Omega)}$ (with $\gamma<1$).
- Define $\varphi_{j,k}^{f} \in V_{h}^{f}(\omega_{j,k}) := \{v \in V_{h}^{f} \mid \text{supp } v \subset \omega_{j,k}\}$ (the localised correction) s.t.

$$\mathsf{a}(arphi_{j,k}^{\mathrm{f}}, \mathsf{w}) = \mathsf{a}(\Phi_j, \mathsf{w}) \quad ext{for all} \quad \mathsf{w} \in V^{\mathrm{f}}_h(\omega_{j,k})$$

Localized multiscale FE spaces

$$V_{H,k}^{\mathsf{ms}} := \mathsf{span}\{\Phi_j^H - arphi_{j,k}^f \mid j = 1, \dots, N\}$$

Rob Scheichl (Heidelberg)

Multiscale Coarse Problem & Approximation Result

Multiscale approximation

Seek $u_{H,k}^{ms} \in V_{H,k}^{ms}$ such that

$$a(u_{H,k}^{\mathsf{ms}},v) = (f,v) \quad ext{ for all } v \in V_{H,k}^{\mathsf{ms}}$$

- dim $V_{H,k}^{ms}$ = dim $V_H = N$ & basis functions have local support
- Overlap of the supports is proportional to the parameter k

Theorem (Malqvist & Peterseim, 2011)

 $|u - u_{H,k}^{\mathsf{ms}}|_{H^{1}(\Omega)} \lesssim k^{d} \gamma^{k} ||f||_{H^{-1}(\Omega)} + H ||f||_{L_{2}(\Omega)} + |u - u_{h}|_{H^{1}(\Omega)}$

Thus, provided $k \gtrsim \log_{\gamma}(\frac{1}{H})$ and *h* is suff'ly small we have **optimal** $\mathcal{O}(H)$ convergence without any assumptions on scales or regularity.

Multiscale Coarse Problem & Approximation Result

Multiscale approximation

Seek $u_{H,k}^{ms} \in V_{H,k}^{ms}$ such that

$$a(u_{H,k}^{\mathsf{ms}}, v) = (f, v) \quad ext{ for all } v \in V_{H,k}^{\mathsf{ms}}$$

- dim $V_{H,k}^{ms}$ = dim $V_H = N$ & basis functions have local support
- Overlap of the supports is proportional to the parameter k

Theorem (Malqvist & Peterseim, 2011)

 $\|u - u_{H,k}^{\mathsf{ms}}\|_{H^{1}(\Omega)} \lesssim k^{d} \gamma^{k} \|f\|_{H^{-1}(\Omega)} + H \|f\|_{L_{2}(\Omega)} + \|u - u_{h}\|_{H^{1}(\Omega)}$

Thus, provided $k \gtrsim \log_{\gamma}(\frac{1}{H})$ and *h* is suff'ly small we have **optimal** $\mathcal{O}(H)$ convergence without any assumptions on scales or regularity.

Thus for high contrast (in theory) no localization !

∜

Thus for high contrast (in theory) no localization !
Theorem (Peterseim & RS, 2016)

If \exists linear, cont. quasi-interpolation operator $\Pi: V_h \rightarrow V_H$ s.t.

$$\begin{array}{ll} (Q|1) & (\Pi|_{V_{H}})^{-1}\Pi v_{H} = v_{H}, \ \text{for all } v_{H} \in V_{H} \\ (Q|2) & H_{T}^{-2} \|v - \Pi v\|_{0,\alpha,T}^{2} + \|v - \Pi v\|_{a,T}^{2} \leq C_{2} \|v\|_{a,\omega_{T}}^{2} \\ \text{for all } v \in V_{h} \text{ and } T \in \mathcal{T}_{H} \end{array}$$

(QI3) for all
$$v_H \in V_H$$
 there exists a $v \in V_h$, s.t. $\Pi v = v_H$,
supp $v \subset$ supp v_H and $||v||_a \leq C_3 ||v_H||_a$.

then (with some universal constant $m \lesssim 1$)

$$\|u-u_{H,k}^{\mathsf{ms}}\|_{\mathfrak{a}} \lesssim \left(\frac{\alpha_{\mathsf{max}}}{\alpha_{\mathsf{min}}}\right)^{m} \frac{e^{-k}}{H} \|f\|_{H^{-1}(\Omega)} + \frac{H}{\alpha_{\mathsf{min}}^{-1/2}} \|f\|_{L_{2}(\Omega)} + \|u-u_{h}\|_{\mathfrak{a}}$$

Thus, provided $k \gtrsim \ln(\frac{\alpha_{\max}}{\alpha_{\min}}\frac{1}{H})$ and *h* suff'ly small we have **optimal** $\mathcal{O}(H)$ convergence without assumptions on regularity or contrast.

A suitable quasi-interpolation operator

 For simplicity assume α p.w. constant w.r.t. some grid T_η, with h < η < H, but not by T_H (T_H ⊂ T_η ⊂ T_H nested)

• Choose
$$\Pi v := \sum_{j=1}^{N} \frac{(\alpha v, \Phi_j)_{L^2(\Omega)}}{(\alpha, \Phi_j)_{L^2(\Omega)}} \Phi_j$$
 (again weighted!)

A suitable quasi-interpolation operator

 For simplicity assume α p.w. constant w.r.t. some grid T_η, with h < η < H, but not by T_H (T_H ⊂ T_η ⊂ T_H nested)

• Choose
$$\Pi v := \sum_{j=1}^{N} \frac{(\alpha v, \Phi_j)_{L^2(\Omega)}}{(\alpha, \Phi_j)_{L^2(\Omega)}} \Phi_j$$
 (again weighted!)

Theorem [Peterseim, RS '16]

For all $T \in \mathcal{T}_H$, let $C_T^P > 0$ be the best constant s.t.

$$\inf_{\xi \in \mathbb{R}} \|v - \xi\|_{0, \alpha, \omega_T}^2 \le C_T^P H_T^2 \|v\|_{a, \omega_T}^2 \quad \forall v \in V_h.$$
 (WPI)

Then

$$H_{T}^{-2} \|v - \Pi v\|_{0,\alpha,T}^{2} + \|v - \Pi v\|_{a,T}^{2} \lesssim C_{2} \|v\|_{a}^{2}$$

where $C_2 \approx \frac{H}{\eta} \max_{T \in \mathcal{T}_H} C_T^P$, i.e. Assumption (QI2).

Moreover, (QI1) and (QI3) hold with $C_3 \approx \left(\frac{H}{n}\right)$

A suitable quasi-interpolation operator

• For simplicity assume α p.w. constant w.r.t. some grid \mathcal{T}_{η} , with $h < \eta < H$, but not by \mathcal{T}_{H} $(\mathcal{T}_{H} \subset \mathcal{T}_{\eta} \subset \mathcal{T}_{H} \text{ nested})$

• Choose
$$\Pi v := \sum_{j=1}^{N} \frac{(\alpha v, \Phi_j)_{L^2(\Omega)}}{(\alpha, \Phi_j)_{L^2(\Omega)}} \Phi_j$$
 (again weighted!)

Theorem [Peterseim, RS '16]

For all $T \in \mathcal{T}_H$, let $C_T^P > 0$ be the best constant s.t.

$$\inf_{\xi \in \mathbb{R}} \|v - \xi\|_{0, \alpha, \omega_T}^2 \le C_T^P H_T^2 \|v\|_{a, \omega_T}^2 \quad \forall v \in V_h.$$
 (WPI)

Then

$$H_{T}^{-2} \|v - \Pi v\|_{0,\alpha,T}^{2} + \|v - \Pi v\|_{a,T}^{2} \lesssim C_{2} \|v\|_{a}^{2}$$

where
$$C_2 \approx \frac{H}{\eta} \max_{T \in \mathcal{T}_H} C_T^P$$
, i.e. Assumption (QI2).
Moreover, (QI1) and (QI3) hold with $C_3 \approx \left(\frac{H}{\eta}\right)^2$.

In summary, we do get **contrast independent** convergence rates, but so far only under **fairly stringent** assumptions on the type of coefficient variation

(i.e. locally quasi-monotone & p.w. constant w.r.t. \mathcal{T}_η for moderate H/η)

Key tool: Weighted Caccioppoli-type Inequality

Let $\omega \subset \Omega$ s.t. $dist(\partial \omega, \partial \Omega) > \delta > 0$. Then

 $\|u\|_{a,\omega} \leq 2\delta^{-1} \|u\|_{0,\alpha,\Omega}$ for all *a*-harmonic *u* on Ω .

Ideas for non-quasi-monotone coefficients – Work in Progress!

Adapt grid or enrich local space or change functionals !

- LOD: Refine base grid T_H locally where C^P_T depends on contrast (similar to multiresolution idea in gamblets)
- GFEM: Use eigenproblem with Ω_ℓ ⊂ Ω^{*}_ℓ and combine (abstract) Bramble-Hilbert (Tool 1) with (weighted) Caccioppoli (Tool 2) [Babuska, Lipton '11], [Smetana, Patera '16], [Buhr, Smetana '18]

Ideas for non-quasi-monotone coefficients – Work in Progress!

Adapt grid or enrich local space or change functionals !

- LOD: Refine base grid T_H locally where C_T^P depends on contrast (similar to multiresolution idea in gamblets)
- GFEM: Use eigenproblem with Ω_ℓ ⊂ Ω^{*}_ℓ and combine (abstract)
 Bramble-Hilbert (Tool 1) with (weighted) Caccioppoli (Tool 2)
 [Babuska, Lipton '11], [Smetana, Patera '16], [Buhr, Smetana '18]

Ideas for non-quasi-monotone coefficients – Work in Progress!

Adapt grid or enrich local space or change functionals !

- LOD: Refine base grid T_H locally where C_T^P depends on contrast (similar to multiresolution idea in gamblets)
- GFEM: Use eigenproblem with Ω_ℓ ⊂ Ω^{*}_ℓ and combine (abstract) Bramble-Hilbert (Tool 1) with (weighted) Caccioppoli (Tool 2) [Babuska, Lipton '11], [Smetana, Patera '16], [Buhr, Smetana '18]

Beyond scalar elliptic problems

Linear elasticity equations:

$$a(\mathbf{u},\mathbf{v}) := \int_{\Omega} C(\mathbf{x})\varepsilon(\mathbf{u}) : \varepsilon(\mathbf{v}) \, \mathrm{d}\mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, \mathrm{d}\mathbf{x} + \int_{\Gamma} (\sigma \cdot \mathbf{n}) \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in V$$

small length scales (<mm), high contrast and strongly anisotropic

CERTEST (EPSRC Project) Bristol, Bath, Exeter, Heidelberg,.

STEAM (Turing/Royce Project) Exeter, Heidelberg, Imperial,...

Rob Scheichl (Heidelberg)

CIRM - Luminy, Sep 2019

Generalised Finite Elements

Beyond scalar elliptic problems

Linear elasticity equations:

$$a(\mathbf{u},\mathbf{v}) := \int_{\Omega} C(\mathbf{x}) \varepsilon(\mathbf{u}) : \varepsilon(\mathbf{v}) \, \mathrm{d}\mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, \mathrm{d}\mathbf{x} + \int_{\Gamma} (\sigma \cdot \mathbf{n}) \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in V$$

small length scales (<mm), high contrast and strongly anisotropic

CERTEST (EPSRC Project) Bristol, Bath, Exeter, Heidelberg,...

Rob Scheichl (Heidelberg)

CIRM - Luminy, Sep 2019

STEAM (Turing/Royce Project) Exeter, Heidelberg, Imperial,...

Key lemma in subspace correction theory to bound $\kappa(M_{add}^{-1}A)$:

Lions' Lemma – Stable splitting
$$\exists C_0 > 0: \ \forall v \in V_h: \ \exists v_\ell \in V_\ell: \ v = \sum_{\ell=0}^L v_\ell \text{ and } \sum_{\ell=0}^L \|v_\ell\|_a^2 \le C_0^2 \|v\|_a^2$$

Key observation in [Spillane, Dolean, Hauret, Nataf, Pechstein, RS '14]:

Lemma (Local sufficient condition) – <u>Tool 3</u>

Suppose that $\exists C_1 > 0$: $\forall \ell = 1, ..., L$: $\|v_\ell\|^2_{a,\Omega_\ell} \leq C_1^2 \|v\|^2_{a,\Omega_\ell}$. Then the splitting above is stable with $C_0^2 = 2 + k_0 C_1^2 + 2k_0^2 C_1^2$ (where k_0 is the maximal #subdomains any degree of freedom belongs to)

Choose $v_{\ell} := \chi_{\ell}(v - v_0)$. Motivates following (variational) eigenproblem:

 $a_{\Omega_\ell}(\psi_{\ell,j}, v) = \lambda_j a_{\Omega_\ell}(\chi_\ell \psi_{\ell,j}, \chi_\ell v) \quad \forall v \in V_h(\Omega_\ell) \quad (\text{full overlap case})$

and w. $V_0 := \operatorname{span}\left\{I_h(\chi_\ell \psi_{\ell,j}) : \ell \leq L, j \leq m_\ell\right\} \operatorname{get} \|v_\ell\|_{a,\Omega_\ell}^2 \leq \lambda_{\ell,m_\ell+1}^{-1} \|v\|_{a,\Omega_\ell}^2$

Key lemma in subspace correction theory to bound $\kappa(M_{add}^{-1}A)$:

Lions' Lemma – Stable splitting
$$\exists C_0 > 0: \ \forall v \in V_h: \ \exists v_\ell \in V_\ell: \ v = \sum_{\ell=0}^L v_\ell \ \text{and} \ \sum_{\ell=0}^L \|v_\ell\|_a^2 \le C_0^2 \|v\|_a^2$$

Key observation in [Spillane, Dolean, Hauret, Nataf, Pechstein, RS '14]:

Lemma (Local sufficient condition) - Tool 3

Suppose that $\exists C_1 > 0$: $\forall \ell = 1, \dots, L$: $\|v_\ell\|_{a,\Omega_\ell}^2 \leq C_1^2 \|v\|_{a,\Omega_\ell}^2$. Then the splitting above is stable with $C_0^2 = 2 + k_0 C_1^2 + 2k_0^2 C_1^2$ (where k_0 is the maximal #subdomains any degree of freedom belongs to)

Choose $v_{\ell} := \chi_{\ell}(v - v_0)$. Motivates following (variational) **eigenproblem**:

 $a_{\Omega_\ell}(\psi_{\ell,j},v) = \lambda_j a_{\Omega_\ell}(\chi_\ell \psi_{\ell,j},\chi_\ell v) \quad \forall v \in V_h(\Omega_\ell) \quad (\text{full overlap case})$

and w. $V_0 := \operatorname{span}\left\{I_h(\chi_\ell \psi_{\ell,j}) : \ell \leq L, j \leq m_\ell\right\} \operatorname{get} \|v_\ell\|_{a,\Omega_\ell}^2 \leq \lambda_{\ell,m_\ell+1}^{-1} \|v\|_{a,\Omega_\ell}^2$

Key lemma in subspace correction theory to bound $\kappa(M_{add}^{-1}A)$:

Lions' Lemma – Stable splitting
$$\exists C_0 > 0: \ \forall v \in V_h: \ \exists v_\ell \in V_\ell: \ v = \sum_{\ell=0}^L v_\ell \ \text{and} \ \sum_{\ell=0}^L \|v_\ell\|_a^2 \le C_0^2 \|v\|_a^2$$

Key observation in [Spillane, Dolean, Hauret, Nataf, Pechstein, RS '14]:

Lemma (Local sufficient condition) - Tool 3

Suppose that $\exists C_1 > 0$: $\forall \ell = 1, \dots, L$: $\|v_\ell\|_{a,\Omega_\ell}^2 \leq C_1^2 \|v\|_{a,\Omega_\ell}^2$. Then the splitting above is stable with $C_0^2 = 2 + k_0 C_1^2 + 2k_0^2 C_1^2$ (where k_0 is the maximal #subdomains any degree of freedom belongs to)

Choose $v_{\ell} := \chi_{\ell}(v - v_0)$. Motivates following (variational) **eigenproblem**: $a_{\Omega_{\ell}}(\psi_{\ell,j}, v) = \lambda_j a_{\Omega_{\ell}}(\chi_{\ell}\psi_{\ell,j}, \chi_{\ell}v) \quad \forall v \in V_h(\Omega_{\ell})$ (full overlap case) and $w_{\ell}(v) = \operatorname{span} \left[\ell \left(\lambda_{\ell}\psi_{\ell,j}, \chi_{\ell}v \right) \right] \quad \forall v \in V_h(\Omega_{\ell})$

Key lemma in subspace correction theory to bound $\kappa(M_{add}^{-1}A)$:

Lions' Lemma – Stable splitting
$$\exists C_0 > 0: \ \forall v \in V_h: \ \exists v_\ell \in V_\ell: \ v = \sum_{\ell=0}^L v_\ell \ \text{and} \ \sum_{\ell=0}^L \|v_\ell\|_a^2 \le C_0^2 \|v\|_a^2$$

Key observation in [Spillane, Dolean, Hauret, Nataf, Pechstein, RS '14]:

Lemma (Local sufficient condition) - Tool 3

CIRM – Luminy, Sep 2019

Rob Scheichl (Heidelberg)

Suppose that $\exists C_1 > 0$: $\forall \ell = 1, \dots, L$: $\|v_\ell\|_{a,\Omega_\ell}^2 \leq C_1^2 \|v\|_{a,\Omega_\ell}^2$. Then the splitting above is stable with $C_0^2 = 2 + k_0 C_1^2 + 2k_0^2 C_1^2$ (where k_0 is the maximal #subdomains any degree of freedom belongs to)

Choose $v_{\ell} := \chi_{\ell}(v - v_0)$. Motivates following (variational) **eigenproblem**: $a_{\Omega_{\ell}}(\psi_{\ell,j}, v) = \lambda_j a_{\Omega_{\ell}}(\chi_{\ell}\psi_{\ell,j}, \chi_{\ell}v) \quad \forall v \in V_h(\Omega_{\ell}) \quad (\text{full overlap case})$ and w. $V_0 := \text{span}\{I_h(\chi_{\ell}\psi_{\ell,j}) : \ell \leq L, j \leq m_{\ell}\} \text{ get } \|v_{\ell}\|^2_{a,\Omega_{\ell}} \leq \lambda_{\ell,m_{\ell}+1}^{-1} \|v\|^2_{a,\Omega_{\ell}}$

Generalised Finite Elements

Toy Composite Example for Demonstration - Cantilever

- Flat composite plate $[0, 100mm] \times [0, 20mm]$
- Cantilever under uniform pressure (top surface)
- 12 Layers 11 weak interfaces

 $[\pm 45^{\circ}/0^{\circ}/90^{\circ}/\pm 45^{\circ}/\mp 45^{\circ}/90^{\circ}/0^{\circ}/\pm 45^{\circ}].$

• 20-node serendipity elements

GenEO Modes & Numerical Results (Benchmarking)

N	AS		ZEM			GenEO			BoomerAMG	
	it	cond κ	it	cond κ	$\dim(V_H)$	it	cond κ	$\dim(V_H)$	it	Num. levels
4	89	79,735	26	394	12	16	10	78	258	10
8	97	84,023	30	245	42	15	9	126	258	11
16^{\star}	107	98,579	36	177	84	16	10	182	257	12
32	158	$226,\!871$	42	230	168	16	9	526	263	12

[Butler, Dodwell, Reinarz, Sandhu, RS, Seelinger '19]

Rob Scheichl (Heidelberg)

Generalised Finite Elements

Industrially motivated problem (with over 2×10^8 DOFs)

Wingbox section with defect under internal fuel pressure

(ply-scale stress resolution!!)

Rob Scheichl (Heidelberg) CIRM – Luminy, Sep 2019 Generalised Finite Elements

Parallel Efficiency of HPC Implementation up to 15,360 cores

• HPC implementation of GenEO within

• Parallel performance on UK National HPC Cluster Oarcher

[Butler, Dodwell, Reinarz, Sandhu, RS, Seelinger '19]

This scale of computations brings composites problems that would otherwise be unthinkable into the feasible range.

- Extend to nonlinear elasticity & composite failure
- More complicated geometries & bigger overlap
- GenEO as a GFEM: first results in [Dodwell, Sandhu, RS '17] (different functional as [Babuska, Lipton], [Buhr, Smetana]: <u>'Knob' 1</u>)
- Bayesian inference: surrogate in multilevel MCMC
- <u>'Knob' 2</u>: Choice of partition of unity (seems to have big effect)
 <u>'Knob' 3</u>: ARPACK eigensolver vs. randomised eigensolver
- Theoretical Aim: Prove contrast-independent approximation results for (versions of) LOD and GFEM !

THANK YOU!

- Extend to nonlinear elasticity & composite failure
- More complicated geometries & bigger overlap
- GenEO as a GFEM: first results in [Dodwell, Sandhu, RS '17] (different functional as [Babuska, Lipton], [Buhr, Smetana]: <u>'Knob' 1</u>)
- Bayesian inference: surrogate in multilevel MCMC
- <u>'Knob' 2</u>: Choice of partition of unity (seems to have big effect)
- <u>'Knob' 3</u>: ARPACK eigensolver vs. randomised eigensolver

Some initial experiments below!

• **Theoretical Aim:** Prove **contrast-independent** approximation results for (versions of) **LOD** and **GFEM** !

THANK YOU!

- Extend to nonlinear elasticity & composite failure
- More complicated geometries & bigger overlap
- GenEO as a GFEM: first results in [Dodwell, Sandhu, RS '17] (different functional as [Babuska, Lipton], [Buhr, Smetana]: <u>'Knob' 1</u>)
- Bayesian inference: surrogate in multilevel MCMC
- <u>'Knob' 2</u>: Choice of partition of unity (seems to have big effect)
- <u>'Knob' 3</u>: ARPACK eigensolver vs. randomised eigensolver

Some initial experiments below!

• Theoretical Aim: Prove contrast-independent approximation results for (versions of) LOD and GFEM !

THANK YOU!

- Extend to **nonlinear** elasticity & composite failure
- More complicated geometries & bigger overlap
- GenEO as a GFEM: first results in [Dodwell, Sandhu, RS '17] (different functional as [Babuska, Lipton], [Buhr, Smetana]: <u>'Knob' 1</u>)
- Bayesian inference: surrogate in multilevel MCMC
- <u>'Knob' 2</u>: Choice of partition of unity (seems to have big effect)
- <u>'Knob' 3</u>: ARPACK eigensolver vs. randomised eigensolver

Some initial experiments below!

• Theoretical Aim: Prove contrast-independent approximation results for (versions of) LOD and GFEM !

THANK YOU!

References

- RS, PS Vassilevski & LT Zikatanov, Weak Approximation Properties of Elliptic Projections with Functional Constraints, *Multiscale Model Sim (SIAM)* 9, 2011.
- N Spillane, V Dolean, P Hauret, F Nataf, C Pechstein & RS, Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps, *Numer Math* 126, 2014.
- O Peterseim & RS, Robust Numerical Upscaling of Elliptic Multiscale Problems at High Contrast, *Comput Meth Appl Math* 16, 2016.
- TJ Dodwell, A Sandhu & RS, Customized Coarse Models for Highly Heterogeneous Materials, in "Bifurcation and Degradation of Geomaterials with Engineering Applications" (Papamichos et al Eds.), Springer Series in Geomechanics and Geoengineering, 2017.
- R Butler, TJ Dodwell, A Reinarz, A Sandhu, RS & L Seelinger, Highperformance dune modules for solving large-scale, strongly anisotropic elliptic problems with applications to aerospace composites arXiv:1901.05188, 2019.

Eigenfunctions for Different Partitions of Unity (scalar elliptic)

Coefficient function

First 6 eigenmodes in each domain:

Harmonic POU - 1st Mode

[Arne Strehlow]

P.O.U.		λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
p.w. const	. Ω1	0.00272	0.00536	0.19743	0.22077	0.28599	0.34094
	Ω_2	0.00315	0.00749	0.20680	0.22085	0.30189	0.34094
Sarkis	Ω_1	0.01963	0.05366	0.09788	1.05319	1.05517	1.05974
	Ω_2	0.01599	0.04153	0.09416	0.99473	1.05318	1.05327
Harmonic	Ω_1	0.03357	0.21091	0.78878	1.05086	1.05326	1.05974
	Ω_2	0.03444	0.28577	0.83536	1.00547	1.00852	1.00915

Eigenfunctions for Different Partitions of Unity (scalar elliptic)

Coefficient function

First 6 eigenmodes in each domain:

Harmonic POU - 1st Mode

[Arne Strehlow]

P.O.U.		λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
p.w. const	. Ω1	0.00272	0.00536	0.19743	0.22077	0.28599	0.34094
	Ω_2	0.00315	0.00749	0.20680	0.22085	0.30189	0.34094
Sarkis	Ω_1	0.01963	0.05366	0.09788	1.05319	1.05517	1.05974
	Ω_2	0.01599	0.04153	0.09416	0.99473	1.05318	1.05327
Harmonic	Ω_1	0.03357	0.21091	0.78878	1.05086	1.05326	1.05974
	Ω_2	0.03444	0.28577	0.83536	1.00547	1.00852	1.00915

Eigenfunctions for Different Partitions of Unity (scalar elliptic)

'Disconnected' cross (4 subdomains)

[Arne Strehlow]

Harmonic POU

Piecewise constant POU

Rob Scheichl (Heidelberg)

CIRM - Luminy, Sep 2019

GenEO as GFEM for scalar elliptic problem

[Tim Dodwell]

First 5 eigenfunctions on Ω_6 (16 subdomains; $a(\mathbf{x})$ is log-normal sample):

 $\lambda_6^{(1)} = 0.0 \qquad \lambda_6^{(2)} = 0.0193 \quad \lambda_6^{(3)} = 0.0511 \quad \lambda_6^{(4)} = 0.0937 \quad \lambda_6^{(5)} = 0.2056$

Rob Scheichl (Heidelberg)

Figure: Parameter Distribution

[Linus Seelinger]

Figure: Coarse Error – 1 EV/subdomain

Rob Scheichl (Heidelberg) CIRM – Luminy, Sep 2019 Generalised Finite Elements

[Linus Seelinger]

Figure: Coarse Error – 2 EV/subdomain

[Linus Seelinger]

Figure: Coarse Error – 3 EV/subdomain

Rob Scheichl (Heidelberg) CIRM – Luminy, Sep 2019 Generalised Finite Elements

[Linus Seelinger]

Figure: Coarse Error – 4 EV/subdomain

[Linus Seelinger]

Figure: Coarse Error – 5 EV/subdomain

Rob Scheichl (Heidelberg) CIRM – Luminy, Sep 2019 Generalised Finite Elements