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Challenge in getting scalable and robust solvers

On large scale computers, Krylov solvers reach less than 2% of the peak
performance.
= Typically, each iteration of a Krylov solver requires
11 Sparse matrix vector product
— point-to-point communication

7 Dot products for orthogonalization
— global communication

= When solving complex linear systems arising, e.g. from large discretized
systems of PDEs with strongly heterogeneous coefficients
most of the highly parallel preconditioners lack robustness
U wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one
level DDM methods (Additive Schwarz, RAS)
o A few small eigenvalues hinder the convergence of iterative methods



Can we have both scalable and robust methods ?

Difficult ...
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Motivation of our work

Can we have both scalable and robust methods ?

Difficult ... but crucial ...
since complex and large scale applications very often challenge existing
methods

Focus on increasing scalability by reducing coummunication/increasing
arithmetic intensity while preserving robustness/dealing with small
eigenvalues.

= Robust preconditioners that guarantee the condition number of
preconditioned matrix
0 Robust multilevel Additive Schwarz, using Geneo framework

= Enlarged Krylov methods

1 reduce communication,
U increase arithmetic intensity - compute sparse matrix-set of vectors product.
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Recap on Additive Schwarz methods

Notations

Solve M~1Ax = M~1b, where A € R"™*" is SPD
Notations:

= DOFs partitioned into {Qy;}

mai, N2,... I‘ILN1

1 overlapping domains of dimensions

B Ry € R™™" restriction operator, Ryj = In(Qyj,:)
B Ay € R'WX™: restriction of A to domain j, Ajj = RUARLT
u {Dlj}j-v:ll: algebraic partition of unity , I, = Zszll Ry Dy Ry




Additive and Restrictive Additive Schwarz methods

Original idea from Schwarz algorithm at the continuous level (Schwarz
1870)

® Symmetric formulation, Additive Schwarz (1989) defined as

Myd = RIAGRy

Jj=1

Restricted Additive Schwarz (Cai & Sarkis 1999) defined as
Ny
Mgas =Y R DA Ry
j=1

= |n practice, RAS more efficient than AS



Relation between IC0O and RAS

m Consider an Alternating Min Max layers ordering for 1CO

® Duplicate data on domain j, include all DOFs at distance 2 plus a
constant number of other DOFs.

BUI5161718192 24
AN BUBW2AB 3
2930313233343 3% ¢
1

52:63 64 65 66 67 68 69 70
NMNNBUITNBG
79 80 81 82 83 84 85 86

= With LJ-LJ-T the 1CO factor of
domain j, ICO preconditioner is

10510 111 161
113114115116 117118 119120 1 63 164 165 166 167 168 169 170
N1 121122123124125126 127128 1 71172173174175176 177178
1 T T 1 129130131132133 134135136 104 1 79180 181 182 183 184 185 186
Ico "= E Ry Dy(LiL; )" Ry
7 P I —
Q €20 + ghost data for €0 + ghost data for
backward substitution forward substitution

® For structured 2D grids, RAS with 1CO in subdomains and overlap 2
similar to 1CO (modulo a constant number of extra DOFs per subdomain)

® with S. Moufawad and S. Cayrols (proofs in their Phds thesis)



: -1
Upper bound for the eigenvalues of MAS,IA

Let ki be number of distinct colours to colour the subdomains of A. The
following holds (e.g. Chan and Mathew 1994)

Amax(l\/lA_5171A) < klc

— Two level preconditioners are required



Recap on Additive Schwarz methods

Two level preconditioners

Given a coarse subspace Sy, S; = span (V4), V4 € R™ ™ the coarse grid
Ay = VT AV;.
the two level AS preconditioner is,

Ny
Mpso = Vi(A) VW + 3 RE(Ay) ™' Ry
j=1

Let ki be minimum number of distinct colors so that {span{RE}}lg;SNl of
the same color are mutually A-orthogonal. The following holds (e.g. Chan
and Mathew 1994)

/\max(MXSIQ) S klc +1



How to compute the coarse subspace S; = span (V)

® Nicolaides 87 (CG): kernel of the operator (constant vectors)

Vi o= (R:EDURUI)J':LNI

m Other early references: [Morgan 92] (GMRES), [Chapman, Saad 92],
[Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]

m Estimations of eigenvectors corresponding to smallest eigenvalues /
knowledge from the physics

® Geneo [Spillane et al., 2014]: through solving local Gen EVPs, bounds
smallest eigenvalue for standard FE and bilinear forms, SPD input matrix



How to compute the coarse subspace S; = span (V)

® Nicolaides 87 (CG): kernel of the operator (constant vectors)

Vi o= (R:EDURUI)J':LNI

m Other early references: [Morgan 92] (GMRES), [Chapman, Saad 92],
[Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]

m Estimations of eigenvectors corresponding to smallest eigenvalues /
knowledge from the physics

® Geneo [Spillane et al., 2014]: through solving local Gen EVPs, bounds
smallest eigenvalue for standard FE and bilinear forms, SPD input matrix

subd dofs | AS | AS-ZEM (V;) | GenEO (V1)
4 1452 | 79 54 (24) 16 (46)
8 29040 | 177 87 (48) 16 (102)
16 | 58080 | 378 145 (96) 16 (214)

(V1): size of the coarse space
AS-ZEM Nicolaides with rigid body motions, 6 per subdomain
Results for 3D elasticity problem provided by F. Nataf



A robust multilevel additive Schwarz preconditioner

A robust multilevel additive Schwarz preconditioner
Theory of a class of robust two level methods in algebraic setting
Extension to multilevel methods
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Fictitious space lemma (Nepomnyaschikh 1991)

Let Ae R™" B € R"8*" be two SPD matrices. Suppose there exists

% : R — R
Vng > BVng,

such that the following holds
1. The operator & is surjective
2. There exists ¢, > 0 such that

(%VHB)TA(%V,,B) < ¢y, v,;'; Bvp,, Yv,, € R™

3. Stable decomposition: there exists ¢; > 0 such that Vv € R", Jv,, € R"
with v = Zv,, and

ol v,,TB Bvp, < (%VHB)TA(%VHB) —vTAv
Then, the spectrum of the operator ZB~1%T A is in the segment [, ¢,].
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Geneo two level DDM preconditioner

Consider the generalized eigenvalue problem for each domain j, for given 7:
Find (u;uk, )‘Uk) e R"1 x R, )\ljk < 1/T

such that ANQIjeuuljk = A1jk D1jA1j Dyjunji

where Aﬁe“ is the Neumann matrix of domain i, Vi basis of Si,
Ny
S = @ D1_,'R1—;Z1j, le = span {Uljk | )\ljk < 1/7’}
j=1

_ Ny
Vi (VITAvl) VA SO RIAGR

j=t

S
“e
N
g
8

Il

Theorem (Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl'14)

With two technical assumptions fulfilled by standard FE and bilinear forms
K (M;;ZGWA) < (ke + 1) (2 + (2kic + 1) ko)
where kic = number of distinct colours to colour the graph of A,

ki = max number of domains that share a common vertex.

of 4



Local SPSD splitting of A wrt a subdomain

with H. Al Daas [Daas and Grigori, 2019]

= Challenge: can we find an algebraic stable decomposition ?

= We call {Ay;}M), Aj; € R"™" a splitting of A into local SPSD matrices if
the following conditions are satisfied:

RijaAij =0,

o o
u ZAljugku Au,Yu € R
j=1

where Ryj A is the restriction operator to complimentary unknowns,
Ay =Q\Qy

B First condition means that Alj is local to subdomain €y}, i.e., there is a permutation

matrix P;, AJ, r € RMj XMy
N V-
PjAle)j = < (I),I' 0> .

B |If these two conditions are satisfied, the construction of the coarse space can be
obtained through the theory of Geneo.
¥ In Geneo, k = ki, max number of domains that share a vertex.
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Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j, for given 7:
Find (uljk, )‘Uk) e R™ x R,)\ljk < 1/7’

such that leAlle-;Llljk = AljlejAllejuljk

where /Z\lj is a local SPSD splitting of A suitably permuted, S; = span (V;),

Ny
Sl,ALSP = @ Dlle—Jr-le, le = span {uljk | >‘1J'k < 1/7’} (2)
j=1
1 M
Mads o = Vi(VWA) T W+ RIALIR (3)

j=t

F (MadpepA) < (ke +1) (2 + (2kc + 1)kr)

where ki is the number of distinct colors required to color the graph of A,
k < Np, where Nj is the number of subdomains




Local SPSD splitting of A wrt a subdomain

® For each domain j, we impose the condition
UTAljU <uTAu,Yu € R",

there exists a decomposition A = /Z\lj + C, where Alj and C are SPSD
u Alj is local to subdomain €y

= Consider domain 1, where By; corresponds to interior DOFs, By, the
DOFs at the interface of 1 with all other domains, and Bssz the remaining

DOFs:
Bii B
A= | By Bxn Bx
B, Bss

® We note S(Baz) the Schur complement with respect to By,

S(Bx) = By — Bo1By1* Bia — Ba3By3' Bso.



A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Characterization of algebraic local SPSD splittings

Algebraic local SPSD splitting lemma
Let A € R"™*" an SPD matrix, and ;\11 € R™" be partitioned as follows

Bii B _ By B
A= |Bx By Bxa|, Au=|Ba Bxn
B Bss 0

where B;; € R™*™ is non trivial matrix for i € {1,2,3}. If B,y € Rm2xm2 g
a symmetric matrix verifying the following inequalities

UTleBl_llBlzu < UTézzu < UT (822 = 82383_31832) u, Yue RmZ,

then A — Ay is SPSD, that is the following inequality holds

0<uTAju< uTAu, Yu € R".

Remember: 5(822) = 822 - Bngﬂlslz - 3235:;31 B32.
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Properties of the algebraic splitting

Algebraic local SPSD splitting A; satisfies
UTleBl_llBlgU < UTB22U < u (822 — BQ3B3_31832) u, YueR™ (4)

1. The set of matrices A; that verify the condition (4) is not empty

2. There exist matrices By, that verify the condition (4) with strict
inequalities, e.g.

=~ 1
By = 55(322) + By Bi;' Bua,
where 5(822) = Bzg — leBl_ll Bl2 — 823351832. Then we have,

~ _ ~ _ 1
Byy — By1Byi'Bir = By — (B2 — 3233331332) = 55(522),

which is an SPD matrix. Hence, the strict inequalities in (4) follow.
3. The left and right inequalities are optimal



Dimension of coarse subspace

Let /Z\},Af be two SPSD splittings of A associated to domain j and
Shisps Saisp associated coarse subspaces, eq (2). If

uT/Z\}u < uT/Z\J?u, YueR" j=1,...Ny, then dim(Si sp) > dim(Si,sp)

® dim(51, aLsp) associated to A~1j, j=1,..., Ny constructed similarly to
A11 below, is minimal,

3 Bu B2
A= | Bx By — BxnB3'Bn
0
® dim(51 aLsp) associated to /Z\lj, j=1,..., Ny constructed similarly to Alj
below, is maximal (dimension of the overlap at least for each domain j),
B Bio

A= | Ba BuBg'Bi
0



A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Comparison with Geneo

® Number of deflated vectors per subdomain in GenEO (black) versus
minimal number of deflated vectors per subdomain by ALSP

® 3D elasticity problem, 128 domains

EI3d 128 subdomains

Number ofdeflated vectors

80
‘Subdomain number



Multilevel methods

Several different multilevel methods exist, only a selection presented here.
Often based on hierarchical meshing, both in multigrid and DDM.
® Multispace and multilevel BDDC [Mandel, Sousedik, Dohrmann’08]

m Algebraic multilevel additive Schwarz method [Borzi, De Simone, Di
Serafino’13]

= Multilevel Schwarz domain decomposition solver for elasticity problems
[Kong and Cai'16]

® Multilevel balancing domain decomposition at extreme scales [Badia,
Martin, Principe’16]

® Three level method based on applying recursively the two-level

Generalized Dryja-Smith-Widlund preconditioner [Heinlein, Klawonn,
Rheinbach, Rover, 18]
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Extension of the theory to a multilevel method

with H. Al Daas, P. Jolivet, P. H. Tournier [Daas et al., 2019]
Based on a hierarchy of robust coarse spaces S; defined for i =2 : L.

® Given coarse space S;, S; = span (V4), coarse grid matrix Ay = VITAVL
preconditioner for A is:

Ny
Ml\jli\s = MXIMAS = VlAz_1 V1T + Z REAl_jl Ryj, (5)

1,
j=1

= For level i = 2 : L, define preconditioner /\/I,-_1 for A; based on AS and
additive coarse grid correction,

N;
My luas = VIAZA VT + 3 R AG Ry, (6)
j=1

® Coarse space S; chosen such that condition number of M,.’_A%,ASA,- is
bounded.
= S; =span (V;), coarse grid matrix A;41 = VT A}V,
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Aggregation of subdomains into superdomains

For each level i=1:Land j=1:N,,

m Q; =[1: ] is the set of unknowns at level /, partitioned into N;
overlapping subdomains, €; ;

" R;j € R"*" restriction operator, R;;j = I,,(Qi;,:)

® R;j A restriction operator to complimentary unknowns, A;; = Q; \ ; ;,
Rij = In(Qi,:)

u Define superdomains G; x, k =1 : Njy1, as the concatenation of d

neighboring domains, Uivz“’ll Gik={1,...,N;}.




A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Multilevel Additive Schwarz My as

for level i =1 and each domain j = 1: N; in parallel (A = A;) do
Ay = RyjALRY; (local matrix associated to domain j)
Aﬁe” is Neumann matrix of domain j (local SPSD splitting)
Solve Gen EVP, set Zi; = span {uyjc | Ayjx < 2}
Find (Llljk, )‘Uk) e R xR
Aﬁ-e”uljk = A1jx D1jAy Dijugjy.
Let Sy = @M, DyRy; Zyj, St = span (Vi), A = V' A1V, A € R™X™
end for
Preconditioner defined as: M;ﬁMAS = V1A271 VIT + ZJN:ll R:EA;J-1 Ry
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Multilevel Additive Schwarz My as

Agy=si WALV

for level i = 2 to log,; N; do
for each domain j =1 : N; in parallel do
~ jd T s o
Aj = ka:(jil)dﬂ V.T JAi_1kVi—1 (local SPSD splitting)
Aj = R,-,-A,-RUT (local matrix associated to domain j)
Solve Gen EVP, Z; = span {uj | Ajx < 1}
Find (uji, Aji) € R" x R ML = VATLVT N RTAZIR;
d “%h ijk AiMAS = ViV +Zj:1 i i i
RUAURU Ujjk = )\,-jkD,-jA,-jD,-ju,-jk
Let S; = @,&1 DR} Zj, Si = span (V;), Aiy1 = VT AiVi, Aiy € RT+177i41
end for end for
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Definition of local SPSD matrices at each level

For each level i +1=2:L, N;y; = N;/d, coarse grid matrix A;11
B let Ai,jv j=1,...,N; be local SPSD splittings of A;, that is
N;
u' ZAN,‘,J'U < kiu" Aju VueR",
j=1
" Let Gi1,...,Gin,, bea setof superdomains at level i associated with

the partitioning at level i 4 1.
® The matrices Ajt1j, j=1,..., Nij1, defined as:

Airj= > Vi'AixVi ()
kegi;

are local SPSD splittings of A;;1, that is

v A
0, that is ;AP = (A(')I 8)

Riv1j.aAiv1

/+1

T
§ Al+1 _]

k,-+1uTA,-+1u Yu e R"i,

IN




A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Construction of coarse space

m Correspondence between the columns of V; (on the left) and the rows
and columns of A;;; (on the right).

= No overlapping in V; is possible through a nonoverlapping partition of
unity.

./\DMZM (RI1Ds1Z:1) " Ai(R[ 1\ Di1Z51)

D;3Z;3 (Rl3D;37;3)" Ai(R[ 4D 4 Z; 4)
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Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level i =1 : logy N; as

N;

-1 1T T a1

My, mas = ViALL V) + Z Ri A" Rij
=

then Myzs = Mty a5 and,
KM asAi) < (kic +1) (2 + (2kic + 1)kiT) ,

where kjc = number of distinct colours to colour the graph of A;,
k; = max number of domains that share a common vertex at level i.
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Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level i =1 : logy N; as

N;
-1 1T T a1
My, mas = ViALL V) + Z Ri A" Rij

j=1
then Myzs = Mty a5 and,
KM asAi) < (kic +1) (2 + (2kic + 1)kiT) ,

where kjc = number of distinct colours to colour the graph of A;,
k; = max number of domains that share a common vertex at level i.

Bk <k fori=2:L

= |f Neumann matrices are used at the first level, k; is bounded by the
maximum number of subdomains at level 1 that share an unknown.

B k. is the minimum number of colors required to colour the graph of A;

= Constants independent of Ny, number of subdomains at level 1
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Efficiency of multilevel AS

Communication efficiency

= Construction of M,,}s preconditioner requires O(log, N;) messages.

= Application of M,,4s preconditioner requires O((log, Ny)'°8« M) messages
per iteration.




A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Difusion and linear elasticity test cases

B Heterogeneous difusion problem, FreeFem++ using P, FE in 3D and P4 in 2D.

-V (k(x)Vu) = finQ
u = 0ondQp «
Su 1.7-10%
— = 0o0ndQ
6" on N 1-108
where 5108
(x) = 10%([9y]), if [9x] = [9y] = 0(mod?2), !
f - 1, otherwise.

B Heterogeneous linear elasticity problem, FreeFem++ using P, FE in 3D and PP3 in 2D.

div(o(u))+f =0 on €,
u =up on 0Qp,
o(u)-n =g on 0Qy,

B Young's modulus E and Poisson’s ratio v,
(E1,v1) = (2-10%,0.25), and
(E2,v2) = (107, 0.45).
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Difusion 2D and 3D with 2,048 domains

Difusion 2D, 441x10° unknowns

2-level Geneo 3-level Geneo
B Number of outer N2 | CS Solve ‘ CS Solve Inner it.
} ';“’“”_‘5: 32”\ 424 119 | 65 274 14
IMENSIons ot Aa: 16 | 1.8 11.3 | 3.6 15.4 15
o = 252,048 51,200 64 |19 121 |30 167 14
3: n3 =20 X Ny
256 | 2.4 184 | 2.8 13.9 13
Difusion 3D, 784x10° unknowns
2-level Geneo 3-level Geneo
B Number of outer N2 | CS Solve ‘ CS Solve Inner it.
; 'Et:'at'”_‘S: 19”\ 470 209|169 436 17
imensions o1 ~2: 16 | 5.0 198 | 7.7 267 17
T2 = 252,048 - 91,200 64 |51 201 | 58 327 15
3: n3 =20 X Ny
256 | 5.2 24.1 5.3 22.6 14

2-level Geneo, CS: time needed to assemble and factor A; on N, procs, once V; was
computed

3-level Geneo, CS: time to assemble local subdomain matrices {A ;};—1.n,, level 2 local

SPSD matrices, solve GenEVP concurrently, assemble and factor A3 on one proc.



Elasticity 2D and 3D with 2,048 domains

Elasticity 2D, 441x10° unknowns

2-level Geneo 3-level Geneo
B Number of outer N2 | CS Solve \ CS Solve Inner it.
B} ';?”“”_‘5: 73fA 4|48 527 | 225 1793 31
|mensions ot fa: M = 16 | 3.9 50.3 9.3 124.9 57
_ 105
e e 64 | 40 531 | 72 715 34
256 | 4.8 632 | 6.8 712 44
Elasticity 3D, 784x10° unknowns
2-level Geneo 3-level Geneo
B Number of outer N2 CS  Solve ‘ CS Solve Inner it.
. ';‘_”"“”_‘5: 45fA 4| 285 469 | 789 296.7 23
{mensions ot /s 16 | 17.3 354 | 245 1245 23
= 25x2,048 = 51,2
e, % 64 | 150 332 | 154 622 21
256 | 13.6  40.7 | 106  50.7 23

2-level Geneo, CS: time needed to assemble and factor Ay on N, procs, once Vi was
computed

3-level Geneo, CS: time to assemble local subdomain matrices {A ;};—1.n,, level 2 local
SPSD matrices, solve GenEVP concurrently, assemble and factor A3 on one proc.



A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Parallel performance for linear elasticity

B Machine: IRENE (Genci), Intel Skylake 8168,
2,7 GHz, 24 cores each

B Stopping criterion: 107>

¥ Young's modulus E and Poisson’s ratio v take
two values, (Ej,v1) = (2- 104, 0.35), and
(Ea, 1) = (107, 0.45)

Linear elasticity, 121x10° unknowns, PETSc versus GenEO HPDDM

PETSc GAMG HPDDM
# P | PCSetUp KSPSolve  Total | Deflation Domain  Coarse Solve  Total
subspace factor  matrix
1,024 39.9 85.7 125.7 185.8 26.8 3.0 62.0 277.7
2,048 42.1 21.2 63.3 76.1 8.5 4.2 28.5 1173
4,096 95.1 182.8 277.9 32.0 3.6 8.5 18.1 62.4
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Parallel performance for linear elasticity (contd)

(LT

B Machine: IRENE (Genci), Intel Skylake 8168,
2,7 GHz, 24 cores each

B Stopping criterion: 107° (1072 for 2nd level)

¥ Young's modulus E and Poisson’s ratio v take
two values, (E1, v1) = (2 -10",0.35), and
(E2,v») = (107, 0.45)

Linear elasticity, 616 - 10° unknowns, GenEO versus GenEQO muiltilevel

# P | Deflation  Domain  Coarse  Solve  Total  # iter

subspace factor matrix
GenEO
8192 113.3 11.9 27.5 52.0 152.8 53
GenEO multilevel
8192 113.3 11.9 13.2 52.0 1385 53

A, of dimension 328 - 10> x 328 - 10%, 40 vectors per subdomain, 1072 tolerance.
As of dimension 5120 x 5120, 128 procs

MUMPS for factoring subdomains, Arpack, Pardiso for coarse grids.



Enlarged Krylov methods

Enlarged Krylov methods
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Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

Partition the matrix into N domains

Split the residual ry into t vectors corresponding to the N domains,

o R

%

= Generate t new basis vectors, obtain an enlarged Krylov subspace
Kek(A, r) = span{R¢, ARS, A’RS, ..., AKTIREY

Kik(A, r) € Ke k(A ro)

Search for the solution of the system Ax = b in K; «(A, ro)

36 of 49



Enlarged Krylov subspace methods based on CG

Defined by the subspace K; x and the following two conditions:
1. Subspace condition: xx € xg + Kt &

2. Orthogonality condition: rx L Ky«

= At each iteration, the new approximate solution xi is found by
minimizing ¢(x) = 3(x*Ax) — b'x over xo + K¢ x:

P(xx) = min{¢(x),Vx € xo + K¢ k(A r0)}
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Enlarged Krylov subspace methods based on CG

Defined by the subspace K; x and the following two conditions:
1. Subspace condition: xx € xg + Kt &

2. Orthogonality condition: rx L Ky«

= At each iteration, the new approximate solution xi is found by
minimizing ¢(x) = 3(x*Ax) — b'x over xo + K¢ x:

P(xx) = min{¢(x),Vx € xo + K¢ k(A r0)}

® Can be seen as a particular case of a block Krylov method
0 AX = S(b), such that S(b)ones(t,1) = b; R§ = AXo — S(b)
1 Orthogonality condition involves the block residual Ry L Ky «
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Enlarged Krylov methods

Related work

® Block Krylov methods [O'Leary, 1980]: solve systems with multiple rhs
AX = B,
by searching for an approximate solution X, € Xy + ICkD(A, Ro),
KP(A, Ry) = block — span{Ry, ARy, A2Ry, ..., A"1Ry}.
U coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses
0 BRRHS-CG [Nikishin and Yeremin, 1995]: use a block method with t-1

random right hand sides

= Multiple preconditioners

1 GMRES with multiple preconditioners [Greif, Rees, Szyld, 2011]
o AMPFETI [Rixen, 97], [Gosselet et al, 2015]

= And to reduce communication: s-step methods, pipelined methods
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Convergence analysis

Given

® Ais an SPD matrix, x* is the solution of Ax = b
= ||x* — Xk||a is the k™ error of CG, g = x* — xo

= |[x* — xk||a is the k" error of ECG

CG ECG
* ~ \/K/_t_l
xilla < 2ol (L
. _ \/E_l K ||X Xk”A \/K/_t"l'l
Ix —xknAszneonA(
VE+1

0

where 1, = 22 & = Fo(o] E) ! (0) o,
1

denotes the t eigenvectors associated to the smallest

— )\maX(A)
where Kk = (&)

eigenvalues, and Ej is the initial enlarged error.

From here on, results on enlarged CG obtained with O. Tissot
[Grigori and Tissot, 2019].
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Classical CG vs. Enlarged CG derived from Block CG

Algorithm 1 Classical CG Algorithm 2 ECG
1: p1 = ro(ry Arg)~Y/? 1: P = RS(RSTARS)™Y/?
2: while ||r—1||2 > &]|b||> do 2: while || 57, RV|[> < ¢[|b]]> do
3: Qk = Py Tk—1 3: ax =P R_1 >t X t matrix
4: Xk = Xk—1 + Pkk 4. Xk = Xk—1 + Pra
5: e = re—1 — Apk 5: Ry = Rk_1 — APray
6:  zi = — prlpy And) 6: Zen = AP — Pu(PJAAP) —
r L T (CARV.E NS Pi_1(P/_1AAPy)
8: end while 7 Piy1 = Zi1(Z11AZiia) ™2
8: end while
9 x=3, x¥
Cost per iteration . .
# flops = O(%) ~ BLAS 1 & 2 Cost per lterattzlon
# words = O(1) # flops = O(%) — B_LAS 3
# messages = O(1) from SpMV + # words = O(t”) « Fit in the buffer
O(logP) from dot prod + norm # messages = O(1) from SpMV +

O(logP) from A-ortho



Construction of the search directions Py

1 Construct Zx41 s.t. Z/,1AP; =0, Vi < k by using:

1.2 Orthomin as in block CG [OLeary, 1980] and original CG
method [Hestenes and Stiefel, 1952]:

Ziy1 = Re — Pu(P{ ARy)

1.b or Orthodir as in ECG [Grigori et al., 2016], based on Lanczos formula
[Ashby et al., 1990]:

Zii1 = APy — Pi(P{ AAPY) — Pi_1(PL_1AAPy)
2 A-orthonormalize Py.1, using e.g. A Cholesky QR:

Py = Zk+1(ZI<T+1AZI<+1)71/2

Orthomin (Omin) Orthodir (Odir)
— Cheaper — More expensive
— In practice breakdowns — In practice no breakdowns
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Enlarged Krylov methods

Test cases

m 3 of 5 largest SPD matrices of Tim Davis’ collection
= Heterogeneous linear elasticity problem discretized with FreeFem++

using P; FE
div(e(u))+f =0 on Q,
u =up on 09 p,
o(u)-n =g on OQy,

® 4 e RY is the unknown displacement field, f is
some body force.

B Young's modulus E and Poisson’s ratio v,
(E1,v1) = (2-10%,0.25), and
(E2,v2) = (107,0.45).

Name Size Nonzeros Problem
Hook_1498 1,498,023 59,374,451 Structural problem
Flan_1565 1,564,794 117,406,044  Structural problem
Queen_4147 4,147,110 316,548,962  Structural problem
Ela_4 4,615,683 165,388,197 Linear elasticity
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Enlarged Krylov methods

Enlarged CG: dynamic reduction of search directions

Flan_1565, # procs = 56

10’

10°1

107

107

107 , , , , ,

0 50 100 150 200 250
Iteration

Figure : solid line: normalized residual (scale on the left),
dashed line: number of search directions (scale on the
right)

— Reduction occurs when the convergence has started



Strong scalability

® Run on Kebnekaise, Umed University (Sweden) cluster, 432 nodes with
Broadwell processors (28 cores per node)

= Compiled with Intel Suite 18

® PETSc 3.7.6 (linked with the MKL)

® Pure MPI (no threading)

= Stopping criterion tolerance is set to 10~° (PETSc default value)

= Block diagonal preconditioner, number blocks equals number of MPI
processes
0 Cholesky factorization on the block with MKL-PARDISO solver
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Strong scalability

Hook, D-Odir(10) Flan, D-Odir(14)
1500 o .
: 3000
10
1250 2500
5
1000 2000 .
2
750 1500 #
500 4 1000
250 500
0.0 0
252 504 1008 2016 252 504 1008 2016
Queen, Omin(6) Ela_4, D-Odir(20) 20000
X6.9 .
1800 250 x6.4 .
100 15000
1600
10 10000
1400
5000
o 1200 0
252 504 1008 2016 252 504 1008 2016

BN PETSc PCG I ECG
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Conclusions

Conclusions

Most of the methods discussed available in libraries:

= Multilevel Additive Schwarz

[ available in HPDDM as multilevel Geneo (P. Jolivet)
1 code for reproducing the results available at
https://github.com/prj-/aldaas2019multi

» Krylov subspace methods:
preAlps library https://github.com/NLAFET/preAlps:
© Enlarged CG: Reverse Communication Interface
© Enlarged GMRES will be available as well

Acknowledgements

» NLAFET H2020 european project, EMC? ERC Synergy project, ANR,
Total
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https://github.com/prj-/aldaas2019multi
https://github.com/NLAFET/preAlps

Prospects for the future

= Multilevel Additive Schwarz

o from theory to practice, find an efficient local algebraic splitting that allows
to solve the Gen. EVP locally on each processor

Collaborators: S. Cayrols, H. Al Daas, P. Jolivet, S. Moufawad, F. Nataf, P.
H. Tournier, O. Tissot.
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