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Motivation of our work

Challenge in getting scalable and robust solvers

On large scale computers, Krylov solvers reach less than 2% of the peak
performance.

� Typically, each iteration of a Krylov solver requires
� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication

� When solving complex linear systems arising, e.g. from large discretized
systems of PDEs with strongly heterogeneous coefficients
most of the highly parallel preconditioners lack robustness
� wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one

level DDM methods (Additive Schwarz, RAS)
� A few small eigenvalues hinder the convergence of iterative methods
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Motivation of our work

Can we have both scalable and robust methods ?

Difficult ... but crucial ...
since complex and large scale applications very often challenge existing
methods

Focus on increasing scalability by reducing coummunication/increasing
arithmetic intensity while preserving robustness/dealing with small
eigenvalues.

� Robust preconditioners that guarantee the condition number of
preconditioned matrix
� Robust multilevel Additive Schwarz, using Geneo framework

� Enlarged Krylov methods
� reduce communication,
� increase arithmetic intensity - compute sparse matrix-set of vectors product.
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Recap on Additive Schwarz methods

Notations

Solve M−1Ax = M−1b, where A ∈ Rn×n is SPD
Notations:

� DOFs partitioned into {Ω1j}N1
j=1 overlapping domains of dimensions

n11, n12, . . . n1,N1

� R1j ∈ Rn1j×n restriction operator, R1j = In(Ω1j , :)

� A1j ∈ Rn1j×n1j : restriction of A to domain j , A1j = R1jAR
T
1j

� {D1j}N1
j=1: algebraic partition of unity , In =

∑N1
j=1 R

T
1jD1jR1j

A1

Page 56 

Direct factorization of a matrix in  
arrow block diagonal form 

1 1 

1 1 1/2 1 1 1/2 
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Recap on Additive Schwarz methods

Additive and Restrictive Additive Schwarz methods

� Original idea from Schwarz algorithm at the continuous level (Schwarz
1870)

� Symmetric formulation, Additive Schwarz (1989) defined as

M−1
AS :=

N1∑

j=1

RT
1jA
−1
1j R1j

� Restricted Additive Schwarz (Cai & Sarkis 1999) defined as

M−1
RAS :=

N1∑

j=1

RT
1jD1jA

−1
1j R1j

� In practice, RAS more efficient than AS
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Recap on Additive Schwarz methods

Relation between IC0 and RAS

� Consider an Alternating Min Max layers ordering for IC0

� Duplicate data on domain j , include all DOFs at distance 2 plus a
constant number of other DOFs.

� With LjL
T
j the IC0 factor of

domain j , IC0 preconditioner is

M−1
IC0 :=

N1∑

j=1

RT
1jD1j(LjL

T
j )−1R1j

4.2. CA-ILU(K) FACTORIZATION 21

     1     2     3     4     5     6     7     8     9   10   51   52   53   54   55   56   57   58   59   60
   11   12   13   14   15   16   17   18   19   20   61   62   63   64   65   66   67   68   69   70
   21   22   23   24   25   26   27   28   29   30   71   72   73   74   75   76   77   78   79   80
   31   32   33   34   35   36   37   38   39   40   81   82   83   84   85   86   87   88   89   90
   41   42   43   44   45   46   47   48   49   50   91   92   93   94   95   96   97   98   99 100
 101 102 103 104 105 106 107 108 109 110 151 152 153 154 155 156 157 158 159 160
 111 112 113 114 115 116 117 118 119 120 161 162 163 164 165 166 167 168 169 170
 121 122 123 124 125 126 127 128 129 130 171 172 173 174 175 176 177 178 179 180
 131 132 133 134 135 136 137 138 139 140 181 182 183 184 185 186 187 188 189 190
 141 142 143 144 145 146 147 148 149 150 191 192 193 194 195 196 197 198 199 200

         + ghost data for 
backward substitution

         + ghost data for 
forward substitution

Figure 4.1: Natural Ordering

  13   14   15   16   17   18   19   20     2   47   97   52   63   64   65   66   67   68   69   70
  21   22   23   24   25   26   27   28     3   48   98   53   71   72   73   74   75   76   77   78
  29   30   31   32   33   34   35   36     4   49   99   54   79   80   81   82   83   84   85   86
    5     6     7     8     9   10   11   12     1   46   96   51   55   56   57   58   59   60   61   62
  38   39   40   41   42   43   44   45   37   50 100   87   88   89   90   91   92   93   94   95
138 139 140 141 142 143 144 145 137 150 200 187 188 189 190 191 192 193 194 195
105 106 107 108 109 110 111 112 101 146 196 151 155 156 157 158 159 160 161 162
113 114 115 116 117 118 119 120 102 147 197 152 163 164 165 166 167 168 169 170
121 122 123 124 125 126 127 128 103 148 198 153 171 172 173 174 175 176 177 178 
129 130 131 132 133 134 135 136 104 149 199 154 179 180 181 182 183 184 185 186

         + ghost data for 
backward substitution

         + ghost data for 
forward substitution

Figure 4.2: Reordering layers with k = 0

Difference of dependency size between the original matrix (4.1) and the reordered matrix (4.2)

Consider a different ordering applied on the vertices of each subdomain as in Figure 4.2 where in
each subdomain the vertices adjacent to other subdomains are numbered with the highest indices of the
subdomain and their adjacent vertices in the subdomain are numbered with the smallest indices on the
subdomain. The set of reachable vertices of v50 in bW+ is N •

bW+
(v50) = {100,150,200}. The hashed

rectangular in Figure 4.2 represents b0 = N •
bW+

(W0)[V (W0) whose size is much smaller than in the
natural ordering case. Therefore, to solve this problem, we propose to reorder each domain, taking into
account the structure and properties of U and L.

4.2.2 The reordering applied on each subdomain reduces the size of the overlap
ILU(k) algorithm applied on A introduces entries in the factor matrix Fk, i.e. edges in E(Fk), following
the condition that if there is a path of length at most k + 1 from u to v through vertices numbered lower
than both, then fI (u),I (v) becomes a nonzero element of Fk, equals to the shortest path from u to v, and
(u,v) 2 E(Fk).

We introduce some notations. The vertices of a subdomain Wi can be split into two subsets. The first
subset is composed of vertices that are adjacent to vertices of other subdomains. We call it the boundary
layer of Wi, defined as

L i
0 = {v | (u,v) 2 E(W),u 2V (W)\V (Wi),v 2V (Wi)}, (4.7)

where the subscript 0 represents the boundary layer. It can be rewritten as the union of adjacent set of
vertices from other subdomains in Wi as

L i
0 =

[

j 6=i, j={0, ..., p�1}
N 1

Wi[W j
(V (W j)) . (4.8)

The second subset contains the interior vertices of the subdomain. In other words, a vertex v of a sub-
domain Wi which is not in L i

0, can be reached from other subdomains only through its boundary layer.
The adjacent set of vertices of the boundary layer of Wi in Wi forms a layer defined as L i

1 = N 1
Wi

�
L i

0
�
.

Recursively, we define the k’th layer as

8k � 1, L i
k+1 = N 1

Wi

�
L i

k
�
\

[

j={0, ...,k�1}
L i

j . (4.9)

� For structured 2D grids, RAS with IC0 in subdomains and overlap 2
similar to IC0 (modulo a constant number of extra DOFs per subdomain)

� with S. Moufawad and S. Cayrols (proofs in their Phds thesis)
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Recap on Additive Schwarz methods

Upper bound for the eigenvalues of M−1
AS ,1A

Let k1c be number of distinct colours to colour the subdomains of A. The
following holds (e.g. Chan and Mathew 1994)

λmax(M−1
AS,1A) ≤ k1c

→ Two level preconditioners are required
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Recap on Additive Schwarz methods

Two level preconditioners

Given a coarse subspace S1, S1 = span (V1), V1 ∈ Rn×n2 , the coarse grid
A2 = V T

1 AV1.
the two level AS preconditioner is,

M−1
AS,2 := V1 (A2)−1 V T

1 +
N1∑

j=1

RT
1j (A1j)

−1 R1j

Let k1c be minimum number of distinct colors so that {span{RT
1j }}1≤i≤N1 of

the same color are mutually A-orthogonal. The following holds (e.g. Chan
and Mathew 1994)

λmax(M−1
AS,2) ≤ k1c + 1
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Recap on Additive Schwarz methods

How to compute the coarse subspace S1 = span (V1)

� Nicolaides 87 (CG): kernel of the operator (constant vectors)

V1 :=
(
RT

1jD1jR1j1
)
j=1:N1

� Other early references: [Morgan 92] (GMRES), [Chapman, Saad 92],
[Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]

� Estimations of eigenvectors corresponding to smallest eigenvalues /
knowledge from the physics

� Geneo [Spillane et al., 2014]: through solving local Gen EVPs, bounds
smallest eigenvalue for standard FE and bilinear forms, SPD input matrix

subd dofs AS AS-ZEM (V1) GenEO (V1)
4 1452 79 54 (24) 16 (46)
8 29040 177 87 (48) 16 (102)

16 58080 378 145 (96) 16 (214)
(V1): size of the coarse space
AS-ZEM Nicolaides with rigid body motions, 6 per subdomain
Results for 3D elasticity problem provided by F. Nataf
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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Fictitious space lemma (Nepomnyaschikh 1991)

Let A ∈ Rn×n, B ∈ RnB×nB be two SPD matrices. Suppose there exists

R : RnB → Rn

vnB 7→ RvnB ,

such that the following holds

1. The operator R is surjective

2. There exists cu > 0 such that

(RvnB )T A (RvnB ) ≤ cu v>nBBvnB , ∀vnB ∈ RnB

3. Stable decomposition: there exists cl > 0 such that ∀v ∈ Rn,∃vnB ∈ RnB

with v = RvnB and

cl v
>
nBBvnB ≤ (RvnB )> A (RvnB ) = v>Av

Then, the spectrum of the operator RB−1RTA is in the segment [cl , cu].
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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Geneo two level DDM preconditioner

Consider the generalized eigenvalue problem for each domain j , for given τ :

Find (u1jk , λ1jk) ∈ Rni,1 × R, λ1jk ≤ 1/τ

such that ÃNeu
1j u1jk = λ1jkD1jA1jD1ju1jk

where ÃNeu
1j is the Neumann matrix of domain i , V1 basis of S1,

S1 :=

N1⊕
j=1

D1jR
>
1j Z1j , Z1j = span {u1jk | λ1jk < 1/τ}

M−1
AS,2Geneo

:= V1

(
V T

1 AV1

)−1

V T
1 +

N1∑
j=1

RT
1jA
−1
1j R1j

Theorem (Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl’14)

With two technical assumptions fulfilled by standard FE and bilinear forms

κ
(
M−1

AS,2Geneo
A
)
≤ (k1c + 1) (2 + (2k1c + 1)k1τ)

where k1c = number of distinct colours to colour the graph of A,
k1 = max number of domains that share a common vertex.
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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Local SPSD splitting of A wrt a subdomain

with H. Al Daas [Daas and Grigori, 2019]
� Challenge: can we find an algebraic stable decomposition ?
� We call {Ã1j}N1

j=1, Ã1j ∈ Rn×n a splitting of A into local SPSD matrices if
the following conditions are satisfied:

R1j,∆Ã1j = 0,

u>
N1∑

j=1

Ã1ju 6 ku>Au,∀u ∈ Rn,
(1)

where R1j,∆ is the restriction operator to complimentary unknowns,
∆1j = Ω \ Ω1j

� First condition means that Ã1j is local to subdomain Ω1j , i.e., there is a permutation

matrix Pj , Ã
j
I ,Γ ∈ Rn1j×n1j

Pj Ã1jP>j =

(
Ãj
I ,Γ 0

0 0

)
.

� If these two conditions are satisfied, the construction of the coarse space can be
obtained through the theory of Geneo.

� In Geneo, k = k1, max number of domains that share a vertex.
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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j , for given τ :

Find (u1jk , λ1jk) ∈ Rn1j × R, λ1jk ≤ 1/τ

such that R1j Ã1jR
T
1j u1jk = λ1jkD1jA1jD1ju1jk

where Ã1j is a local SPSD splitting of A suitably permuted, S1 = span (V1),

S1,ALSP :=
N1⊕

j=1

D1jR
>
1j Z1j , Z1j = span {u1jk | λ1jk < 1/τ} (2)

M−1
AS,2ALSP

:= V1

(
V T

1 AV1

)−1
V T

1 +
N1∑

j=1

RT
1jA
−1
1j R1j (3)

κ
(
M−1

AS,2ALSP
A
)
≤ (kc + 1) (2 + (2kc + 1)kτ)

where k1c is the number of distinct colors required to color the graph of A,
k ≤ N1, where N1 is the number of subdomains
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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Local SPSD splitting of A wrt a subdomain

� For each domain j , we impose the condition

u>Ã1ju 6 u>Au,∀u ∈ Rn,

there exists a decomposition A = Ã1j + C , where Ã1j and C are SPSD

� Ã1j is local to subdomain Ω1j

� Consider domain 1, where B11 corresponds to interior DOFs, B22 the
DOFs at the interface of 1 with all other domains, and B33 the remaining
DOFs:

A =



B11 B12

B21 B22 B23

B32 B33




� We note S(B22) the Schur complement with respect to B22,

S(B22) = B22 − B21B
−1
11 B12 − B23B

−1
33 B32.
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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Characterization of algebraic local SPSD splittings

Algebraic local SPSD splitting lemma

Let A ∈ Rn×n, an SPD matrix, and Ã11 ∈ Rn×n be partitioned as follows

A =



B11 B12

B21 B22 B23

B32 B33


 , Ã11 =



B11 B12

B21 B̃22

0




where Bii ∈ Rmi×mi is non trivial matrix for i ∈ {1, 2, 3}. If B̃22 ∈ Rm2×m2 is
a symmetric matrix verifying the following inequalities

uTB21B
−1
11 B12u ≤ uT B̃22u ≤ uT

(
B22 − B23B

−1
33 B32

)
u, ∀u ∈ Rm2 ,

then A− Ã11 is SPSD, that is the following inequality holds

0 ≤ uT Ã11u ≤ uTAu, ∀u ∈ Rn.

Remember: S(B22) = B22 − B21B
−1
11 B12 − B23B

−1
33 B32.

17 of 49



A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Properties of the algebraic splitting

Algebraic local SPSD splitting Ã1 satisfies

uTB21B
−1
11 B12u ≤ uT B̃22u ≤ uT

(
B22 − B23B

−1
33 B32

)
u, ∀u ∈ Rm2 (4)

1. The set of matrices Ã11 that verify the condition (4) is not empty

2. There exist matrices B̃22 that verify the condition (4) with strict
inequalities, e.g.

B̃22 :=
1

2
S(B22) + B21B

−1
11 B12,

where S(B22) = B22 − B21B
−1
11 B12 − B23B

−1
33 B32. Then we have,

B̃22 − B21B
−1
11 B12 = B̃22 −

(
B22 − B23B

−1
33 B32

)
=

1

2
S(B22),

which is an SPD matrix. Hence, the strict inequalities in (4) follow.

3. The left and right inequalities are optimal
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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Dimension of coarse subspace

Let Ã1
j , Ã

2
j be two SPSD splittings of A associated to domain j and

S1
ALSP ,S

2
ALSP associated coarse subspaces, eq (2). If

uT Ã1
j u ≤ uT Ã2

j u, ∀u ∈ Rn, j = 1, . . .N1, then dim(S1
ALSP) ≥ dim(S2

ALSP)

� dim(S1,ALSP) associated to Ã1j , j = 1, . . . ,N1 constructed similarly to

Ã11 below, is minimal,

Ã11 =



B11 B12

B21 B22 − B23B
−1
33 B32

0




� dim(S1,ALSP) associated to Ã1j , j = 1, . . . ,N1 constructed similarly to Ã1j

below, is maximal (dimension of the overlap at least for each domain j),

Ã11 =



B11 B12

B21 B21B
−1
11 B12

0



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A robust multilevel additive Schwarz preconditioner Theory of a class of robust two level methods in algebraic setting

Comparison with Geneo

� Number of deflated vectors per subdomain in GenEO (black) versus
minimal number of deflated vectors per subdomain by ALSP

� 3D elasticity problem, 128 domains
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Multilevel methods

Several different multilevel methods exist, only a selection presented here.
Often based on hierarchical meshing, both in multigrid and DDM.

� Multispace and multilevel BDDC [Mandel, Sousedik, Dohrmann’08]

� Algebraic multilevel additive Schwarz method [Borzi, De Simone, Di
Serafino’13]

� Multilevel Schwarz domain decomposition solver for elasticity problems
[Kong and Cai’16]

� Multilevel balancing domain decomposition at extreme scales [Badia,
Martin, Principe’16]

� Three level method based on applying recursively the two-level
Generalized Dryja-Smith-Widlund preconditioner [Heinlein, Klawonn,
Rheinbach, Rover, 18]
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Extension of the theory to a multilevel method

with H. Al Daas, P. Jolivet, P. H. Tournier [Daas et al., 2019]
Based on a hierarchy of robust coarse spaces Si defined for i = 2 : L.

� Given coarse space S1, S1 = span (V1), coarse grid matrix A2 = V>1 AV1,
preconditioner for A is:

M−1
MAS = M−1

A1,MAS = V1A
−1
2 V T

1 +
N1∑

j=1

R>1jA
−1
1j R1j , (5)

� For level i = 2 : L, define preconditioner M−1
i for Ai based on AS and

additive coarse grid correction,

M−1
Ai ,MAS = ViA

−1
i+1V

T
i +

Ni∑

j=1

R>ij A
−1
ij Rij , (6)

� Coarse space Si chosen such that condition number of M−1
i,MASAi is

bounded.
� Si = span (Vi ), coarse grid matrix Ai+1 = V T

i AiVi
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Aggregation of subdomains into superdomains

For each level i = 1 : L and j = 1 : Ni ,

� Ωi = [1 : ni ] is the set of unknowns at level i , partitioned into Ni

overlapping subdomains, Ωi,j

� Ri,j ∈ Rni,j×ni restriction operator, Ri,j = Ini (Ωi,j , :)

� Ri,j,∆ restriction operator to complimentary unknowns, ∆i,j = Ωi \ Ωi,j ,
Ri,j = Ini (Ωi,j , :)

� Define superdomains Gi,k , k = 1 : Ni+1, as the concatenation of d

neighboring domains,
⋃Ni+1

k=1 Gi,k = {1, . . . ,Ni}.
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Multilevel Additive Schwarz MMAS

A1

D1;3Z1;3

D1;1Z1;1

V1

for level i = 1 and each domain j = 1 : N1 in parallel (A = A1) do
A1j = R1jA1R

T
1j (local matrix associated to domain j)

ÃNeu
1j is Neumann matrix of domain j (local SPSD splitting)

Solve Gen EVP, set Z1j = span
{
u1jk | λ1jk <

1
τ

}
Find (u1jk , λ1jk ) ∈ Rn1j × R
ÃNeu

1j u1jk = λ1jkD1jA1jD1ju1jk .

Let S1 =
⊕N1

j=1 D1jR
>
1j Z1j , S1 = span (V1), A2 = V T

1 A1V1, A2 ∈ Rn2×n2

end for

Preconditioner defined as: M−1
A1,MAS = V1A

−1
2 V T

1 +
∑N1

j=1 R
>
1j A
−1
1j R1j
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Multilevel Additive Schwarz MMAS

~A2;1 =
P4
j=1 V

>
1

~A1;jV1

A1

(R>
1 D1Z1)>A(R>

1 D1Z1)

(R>
11D11Z11)>A(R>

6 D6Z6)

~A2;1 =
P4
j=1 V

>
1

~A1;jV1

for level i = 2 to logd Ni do
for each domain j = 1 : Ni in parallel do

Ãij =
∑jd

k=(j−1)d+1
VT
i−1Ãi−1,kVi−1 (local SPSD splitting)

Aij = RijAiR
T
ij (local matrix associated to domain j)

Solve Gen EVP, Zij = span
{
uijk | λijk <

1
τ

}
Find (uijk , λijk ) ∈ Rnij × R
Rij ÃijR

>
ij uijk = λijkDijAijDijuijk

M−1
Ai ,MAS = ViA

−1
i+1V

T
i +

∑Ni
j=1 R

>
ij A
−1
ij Rij

Let Si =
⊕Ni

j=1 DijR
>
ij Zij , Si = span (Vi ), Ai+1 = V T

i AiVi , Ai+1 ∈ Rni+1×ni+1

end for end for
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Definition of local SPSD matrices at each level

For each level i + 1 = 2 : L, Ni+1 = Ni/d , coarse grid matrix Ai+1

� Let Ãi,j , j = 1, . . . ,Ni be local SPSD splittings of Ai , that is

u>
Ni∑

j=1

Ãi,ju ≤ kiu
>Aiu ∀u ∈ Rni ,

� Let Gi,1, . . . ,Gi,Ni+1 be a set of superdomains at level i associated with
the partitioning at level i + 1.

� The matrices Ãi+1,j , j = 1, . . . ,Ni+1, defined as:

Ãi+1,j =
∑

k∈Gi,j

V>i Ãi,kVi (7)

are local SPSD splittings of Ai+1, that is

Ri+1,j,∆Ãi+1,j = 0, that is Pj ÃjP>j =

(
Ãj
I ,Γ 0

0 0

)

u>
Ni+1∑

j=1

Ãi+1,ju ≤ ki+1u
>Ai+1u ∀u ∈ Rni ,
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Construction of coarse space

� Correspondence between the columns of Vi (on the left) and the rows
and columns of Ai+1 (on the right).

� No overlapping in Vi is possible through a nonoverlapping partition of
unity.
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level i = 1 : logd N1 as

M−1
Ai ,MAS = ViA

−1
i+1V

T
i +

Ni∑

j=1

R>ij A
−1
ij Rij

then M−1
MAS = M−1

A1,MAS and,

κ(M−1
Ai ,MASAi ) ≤ (kic + 1) (2 + (2kic + 1)kiτ) ,

where kic = number of distinct colours to colour the graph of Ai ,
ki = max number of domains that share a common vertex at level i .

� ki ≤ k1 for i = 2 : L
� If Neumann matrices are used at the first level, k1 is bounded by the

maximum number of subdomains at level 1 that share an unknown.
� kic is the minimum number of colors required to colour the graph of Ai

� Constants independent of N1, number of subdomains at level 1
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Efficiency of multilevel AS

Communication efficiency

� Construction of M−1
MAS preconditioner requires O(logd N1) messages.

� Application of M−1
MAS preconditioner requires O((log2 N1)logd N1 ) messages

per iteration.
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Difusion and linear elasticity test cases

� Heterogeneous difusion problem, FreeFem++ using P2 FE in 3D and P4 in 2D.

−∇ · (κ(x)∇u) = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

where

κ(x) =

{
105([9y ]), if [9x] ≡ [9y ] ≡ 0(mod2),
1, otherwise.

� Heterogeneous linear elasticity problem, FreeFem++ using P2 FE in 3D and P3 in 2D.

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN ,

� Young’s modulus E and Poisson’s ratio ν,
(E1, ν1) = (2 · 1011, 0.25), and
(E2, ν2) = (107, 0.45).
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Difusion 2D and 3D with 2, 048 domains

� Number of outer
iterations: 32

� Dimensions of A2:
n2 = 25×2, 048 = 51, 200
A3: n3 = 20× N2

Difusion 2D, 441x106 unknowns

2-level Geneo 3-level Geneo
N2 CS Solve CS Solve Inner it.

4 2.4 11.9 6.5 27.4 14
16 1.8 11.3 3.6 15.4 15
64 1.9 12.1 3.0 16.7 14

256 2.4 18.4 2.8 13.9 13

� Number of outer
iterations: 19

� Dimensions of A2:
n2 = 25×2, 048 = 51, 200
A3: n3 = 20× N2

Difusion 3D, 784x106 unknowns

2-level Geneo 3-level Geneo
N2 CS Solve CS Solve Inner it.

4 7.0 20.9 16.9 43.6 17
16 5.0 19.8 7.7 26.7 17
64 5.1 20.1 5.8 32.7 15

256 5.2 24.1 5.3 22.6 14

2-level Geneo, CS: time needed to assemble and factor A2 on N2 procs, once V1 was
computed

3-level Geneo, CS: time to assemble local subdomain matrices {A2,j}j=1:N2
, level 2 local

SPSD matrices, solve GenEVP concurrently, assemble and factor A3 on one proc.
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Elasticity 2D and 3D with 2, 048 domains

� Number of outer
iterations: 73

� Dimensions of A2: n2 =
50× 2, 048 = 1.02 · 105

A3: n3 = 20× N2

Elasticity 2D, 441x106 unknowns

2-level Geneo 3-level Geneo
N2 CS Solve CS Solve Inner it.

4 4.8 52.7 22.5 179.3 31
16 3.9 50.3 9.3 124.9 57
64 4.0 53.1 7.2 71.5 34

256 4.8 63.2 6.8 71.2 44

� Number of outer
iterations: 45

� Dimensions of A2:
n2 = 25×2, 048 = 51, 200
A3: n3 = 20× N2

Elasticity 3D, 784x106 unknowns

2-level Geneo 3-level Geneo
N2 CS Solve CS Solve Inner it.

4 28.5 46.9 78.9 296.7 23
16 17.3 35.4 24.5 124.5 23
64 15.0 33.2 15.4 62.2 21

256 13.6 40.7 10.6 50.7 23

2-level Geneo, CS: time needed to assemble and factor A2 on N2 procs, once V1 was
computed

3-level Geneo, CS: time to assemble local subdomain matrices {A2,j}j=1:N2
, level 2 local

SPSD matrices, solve GenEVP concurrently, assemble and factor A3 on one proc.
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Parallel performance for linear elasticity

� Machine: IRENE (Genci), Intel Skylake 8168,
2,7 GHz, 24 cores each

� Stopping criterion: 10−5

� Young’s modulus E and Poisson’s ratio ν take
two values, (E1, ν1) = (2 · 1011, 0.35), and

(E2, ν2) = (107, 0.45)

Linear elasticity, 121x106 unknowns, PETSc versus GenEO HPDDM

PETSc GAMG HPDDM
# P PCSetUp KSPSolve Total Deflation Domain Coarse Solve Total

subspace factor matrix

1,024 39.9 85.7 125.7 185.8 26.8 3.0 62.0 277.7
2,048 42.1 21.2 63.3 76.1 8.5 4.2 28.5 117.3
4,096 95.1 182.8 277.9 32.0 3.6 8.5 18.1 62.4
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A robust multilevel additive Schwarz preconditioner Extension to multilevel methods

Parallel performance for linear elasticity (contd)

� Machine: IRENE (Genci), Intel Skylake 8168,
2,7 GHz, 24 cores each

� Stopping criterion: 10−5 (10−2 for 2nd level)

� Young’s modulus E and Poisson’s ratio ν take
two values, (E1, ν1) = (2 · 1011, 0.35), and

(E2, ν2) = (107, 0.45)

Linear elasticity, 616 · 106 unknowns, GenEO versus GenEO multilevel

# P Deflation Domain Coarse Solve Total # iter
subspace factor matrix

GenEO
8192 113.3 11.9 27.5 52.0 152.8 53

GenEO multilevel
8192 113.3 11.9 13.2 52.0 138.5 53

.
A2 of dimension 328 · 103 × 328 · 103, 40 vectors per subdomain, 10−2 tolerance.
A3 of dimension 5120× 5120, 128 procs

MUMPS for factoring subdomains, Arpack, Pardiso for coarse grids.
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Enlarged Krylov methods

Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

� Partition the matrix into N domains

� Split the residual r0 into t vectors corresponding to the N domains,

r0 R
e
0

� Generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{Re
0 ,AR

e
0 ,A

2Re
0 , ...,A

k−1Re
0}

Kk(A, r0) ⊂ Kt,k(A, r0)

� Search for the solution of the system Ax = b in Kt,k(A, r0)
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Enlarged Krylov methods

Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 +Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

� At each iteration, the new approximate solution xk is found by
minimizing φ(x) = 1

2 (x tAx)− btx over x0 +Kt,k :

φ(xk) = min{φ(x),∀x ∈ x0 +Kt,k(A, r0)}

� Can be seen as a particular case of a block Krylov method
� AX = S(b), such that S(b)ones(t, 1) = b;Re

0 = AX0 − S(b)
� Orthogonality condition involves the block residual Rk ⊥ Kt,k
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Enlarged Krylov methods

Related work

� Block Krylov methods [O’Leary, 1980]: solve systems with multiple rhs

AX = B,

by searching for an approximate solution Xk ∈ X0 +K�
k (A,R0),

K�
k (A,R0) = block − span{R0,AR0,A

2R0, ...,A
k−1R0}.

� coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses

� BRRHS-CG [Nikishin and Yeremin, 1995]: use a block method with t-1
random right hand sides

� Multiple preconditioners
� GMRES with multiple preconditioners [Greif, Rees, Szyld, 2011]
� AMPFETI [Rixen, 97], [Gosselet et al, 2015]

� And to reduce communication: s-step methods, pipelined methods
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Enlarged Krylov methods

Convergence analysis

Given

� A is an SPD matrix, x∗ is the solution of Ax = b

� ||x∗ − xk ||A is the k th error of CG, e0 = x∗ − x0

� ||x∗ − xk ||A is the k th error of ECG

Result

CG ECG

||x∗ − xk ||A ≤ 2||e0||A
(√

κ− 1√
κ+ 1

)k

where κ = λmax (A)
λmin(A)

||x∗ − xk ||A ≤ 2||ê0||A
(√

κt − 1
√
κt + 1

)k

where κt = λmax (A)
λt (A) , ê0 ≡ E0(Φ>1 E0)−1

( 0
...
0
1

)
, Φ1

denotes the t eigenvectors associated to the smallest

eigenvalues, and E0 is the initial enlarged error.

From here on, results on enlarged CG obtained with O. Tissot
[Grigori and Tissot, 2019].

39 of 49



Enlarged Krylov methods

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 1 Classical CG

1: p1 = r0(r>0 Ar0)−1/2

2: while ||rk−1||2 > ε||b||2 do

3: αk = p>k rk−1

4: xk = xk−1 + pkαk

5: rk = rk−1 − Apkαk

6: zk+1 = rk − pk (p>k Ark )

7: pk+1 = zk+1(z>k+1Azk+1)−1/2

8: end while

Cost per iteration
# flops = O( n

P ) ← BLAS 1 & 2
# words = O(1)
# messages = O(1) from SpMV +
O(logP) from dot prod + norm

Algorithm 2 ECG

1: P1 = Re
0 (Re

0
>ARe

0 )−1/2

2: while ||
∑>

i=1 R
(i)
k ||2 < ε||b||2 do

3: αk = P>k Rk−1 . t × t matrix
4: Xk = Xk−1 + Pkαk

5: Rk = Rk−1 − APkαk

6: Zk+1 = APk − Pk (P>k AAPk ) −
Pk−1(P>k−1AAPk )

7: Pk+1 = Zk+1(Z>k+1AZk+1)−1/2

8: end while
9: x =

∑>
i=1 X

(i)
k

Cost per iteration

# flops = O( nt2

P ) ← BLAS 3
# words = O(t2) ← Fit in the buffer
# messages = O(1) from SpMV +
O(logP) from A-ortho
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Enlarged Krylov methods

Construction of the search directions Pk+1

1 Construct Zk+1 s.t. Z>k+1APi = 0, ∀i ≤ k by using:

1.a Orthomin as in block CG [OLeary, 1980] and original CG
method [Hestenes and Stiefel, 1952]:

Zk+1 = Rk − Pk(P>k ARk)

1.b or Orthodir as in ECG [Grigori et al., 2016], based on Lanczos formula
[Ashby et al., 1990]:

Zk+1 = APk − Pk(P>k AAPk)− Pk−1(P>k−1AAPk)

2 A-orthonormalize Pk+1, using e.g. A Cholesky QR:

Pk+1 = Zk+1(Z>k+1AZk+1)−1/2

Orthomin (Omin) Orthodir (Odir)
→ Cheaper
→ In practice breakdowns

→ More expensive
→ In practice no breakdowns
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Enlarged Krylov methods

Test cases

� 3 of 5 largest SPD matrices of Tim Davis’ collection
� Heterogeneous linear elasticity problem discretized with FreeFem++

using P1 FE

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN ,

� u ∈ Rd is the unknown displacement field, f is
some body force.

� Young’s modulus E and Poisson’s ratio ν,
(E1, ν1) = (2 · 1011, 0.25), and
(E2, ν2) = (107, 0.45).

Name Size Nonzeros Problem

Hook 1498 1,498,023 59,374,451 Structural problem
Flan 1565 1,564,794 117,406,044 Structural problem
Queen 4147 4,147,110 316,548,962 Structural problem

Ela 4 4,615,683 165,388,197 Linear elasticity
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Enlarged Krylov methods

Enlarged CG: dynamic reduction of search directions

0 50 100 150 200 250
Iteration

10
1

10
0

10
2

10
4

10
5 (+1)(+2)(+2)(+2)

Flan_1565, # procs = 56
8
12
16
20

4

8

12

16

20

Figure : solid line: normalized residual (scale on the left),
dashed line: number of search directions (scale on the
right)

→ Reduction occurs when the convergence has started
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Enlarged Krylov methods

Strong scalability

� Run on Kebnekaise, Ume̊a University (Sweden) cluster, 432 nodes with
Broadwell processors (28 cores per node)

� Compiled with Intel Suite 18

� PETSc 3.7.6 (linked with the MKL)

� Pure MPI (no threading)

� Stopping criterion tolerance is set to 10−5 (PETSc default value)

� Block diagonal preconditioner, number blocks equals number of MPI
processes
� Cholesky factorization on the block with MKL-PARDISO solver
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Enlarged Krylov methods

Strong scalability
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Conclusions

Conclusions

Most of the methods discussed available in libraries:
� Multilevel Additive Schwarz

� available in HPDDM as multilevel Geneo (P. Jolivet)
� code for reproducing the results available at

https://github.com/prj-/aldaas2019multi

� Krylov subspace methods:
preAlps library https://github.com/NLAFET/preAlps:
� Enlarged CG: Reverse Communication Interface
� Enlarged GMRES will be available as well

Acknowledgements
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Conclusions

Prospects for the future

� Multilevel Additive Schwarz
� from theory to practice, find an efficient local algebraic splitting that allows

to solve the Gen. EVP locally on each processor

Collaborators: S. Cayrols, H. Al Daas, P. Jolivet, S. Moufawad, F. Nataf, P.
H. Tournier, O. Tissot.
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