Chain conditions, unbounded colorings and the *C*-sequence spectrum

Assaf Rinot Bar-Ilan University

23-September-2019 XV Luminy workshop in Set Theory Centre International de Rencontres Mathmatiques, Marseille

- 1. Knaster and friends I:
- 2. Knaster and friends II:
- 3. Knaster and friends III:

- 1. Knaster and friends I: Closed colorings and precalibers, *Algebra Universalis*, 79(4), Art. 90, 39 pp., 2018.
- 2. Knaster and friends II:
- 3. Knaster and friends III:

- 1. Knaster and friends I: Closed colorings and precalibers, *Algebra Universalis*, 79(4), Art. 90, 39 pp., 2018.
- 2. Knaster and friends II: The C-sequence number, to be submitted.
- 3. Knaster and friends III:

- 1. Knaster and friends I: Closed colorings and precalibers, *Algebra Universalis*, 79(4), Art. 90, 39 pp., 2018.
- 2. Knaster and friends II: The C-sequence number, to be submitted.
- 3. Knaster and friends III: Subadditive colorings and stationarily layered posets, *in preparation*.

 \blacktriangleright κ and λ denote infinite cardinals;

•
$$\operatorname{Reg}(\kappa) := \{ \theta < \kappa \mid \operatorname{cf}(\theta) = \theta \ge \aleph_0 \};$$

 \blacktriangleright κ and λ denote infinite cardinals;

•
$$\operatorname{Reg}(\kappa) := \{\theta < \kappa \mid \operatorname{cf}(\theta) = \theta \ge \aleph_0\};$$

• $E_{\geq \chi}^{\kappa} := \{\alpha < \kappa \mid \operatorname{cf}(\alpha) \ge \chi\}$ and

$$E_{>\chi}^{\stackrel{\leq \chi}{=}} := \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) > \chi \};$$

 \blacktriangleright κ and λ denote infinite cardinals;

κ and λ denote infinite cardinals;

•
$$\operatorname{Reg}(\kappa) := \{ \theta < \kappa \mid \operatorname{cf}(\theta) = \theta \ge \aleph_0 \};$$

•
$$E_{\geq\chi}^{\kappa} := \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) \geq \chi \}$$
 and
 $E_{>\chi}^{\kappa} := \{ \alpha < \kappa \mid \mathsf{cf}(\alpha) > \chi \};$

•
$$[A]^{\chi} := \{a \subseteq A \mid |a| = \chi\}$$
 and
 $[A]^{<\chi} := \{a \subseteq A \mid |a| < \chi\};$

For a, b, nonempty sets of ordinals, a < b means that sup(a) < min(b).</p>

Let $\mathbb{P} := \langle P, \leq \rangle$ denote a poset.

Definition

For a subset $X \subseteq P$, we write $\bigwedge X := \{z \in P \mid \forall x \in X (z \le x)\}$.

Let $\mathbb{P} := \langle P, \leq \rangle$ denote a poset.

Definition

For a subset $X \subseteq P$, we write $\bigwedge X := \{z \in P \mid \forall x \in X(z \le x)\}$. We say that $x, y \in P$ are compatible iff $\bigwedge \{x, y\} \neq \emptyset$.

Let $\mathbb{P} := \langle P, \leq \rangle$ denote a poset.

Definition

For a subset $X \subseteq P$, we write $\bigwedge X := \{z \in P \mid \forall x \in X(z \le x)\}$. We say that $x, y \in P$ are compatible iff $\bigwedge \{x, y\} \neq \emptyset$.

Definition

• \mathbb{P} satisfies the κ -cc iff $\forall A \in [P]^{\kappa} \exists X \in [A]^2 \ \bigwedge X \neq \emptyset$;

Let $\mathbb{P} := \langle P, \leq \rangle$ denote a poset.

Definition

For a subset $X \subseteq P$, we write $\bigwedge X := \{z \in P \mid \forall x \in X(z \le x)\}$. We say that $x, y \in P$ are compatible iff $\bigwedge \{x, y\} \neq \emptyset$.

Definition

- \mathbb{P} satisfies the κ -cc iff $\forall A \in [P]^{\kappa} \exists X \in [A]^2 \land X \neq \emptyset$;
- \mathbb{P} is κ -Knaster iff $\forall A \in [P]^{\kappa} \exists B \in [A]^{\kappa} \forall X \in [B]^2 \land X \neq \emptyset$;

Let $\mathbb{P} := \langle P, \leq \rangle$ denote a poset.

Definition

For a subset $X \subseteq P$, we write $\bigwedge X := \{z \in P \mid \forall x \in X(z \le x)\}$. We say that $x, y \in P$ are compatible iff $\bigwedge \{x, y\} \neq \emptyset$.

Definition

- \mathbb{P} satisfies the κ -cc iff $\forall A \in [P]^{\kappa} \exists X \in [A]^2 \land X \neq \emptyset$;
- \mathbb{P} is κ -Knaster iff $\forall A \in [P]^{\kappa} \exists B \in [A]^{\kappa} \forall X \in [B]^2 \land X \neq \emptyset$;
- \mathbb{P} has precaliber κ iff $\forall A \in [P]^{\kappa} \exists B \in [A]^{\kappa} \forall X \in [B]^{<\omega} \land X \neq \emptyset.$

Let $\mathbb{P} := \langle P, \leq \rangle$ denote a poset.

Definition

For a subset $X \subseteq P$, we write $\bigwedge X := \{z \in P \mid \forall x \in X(z \le x)\}$. We say that $x, y \in P$ are compatible iff $\bigwedge \{x, y\} \neq \emptyset$.

Definition

- \mathbb{P} satisfies the κ -cc iff $\forall A \in [P]^{\kappa} \exists X \in [A]^2 \ \bigwedge X \neq \emptyset$;
- \mathbb{P} is κ -Knaster iff $\forall A \in [P]^{\kappa} \exists B \in [A]^{\kappa} \forall X \in [B]^2 \land X \neq \emptyset$;
- \mathbb{P} has precaliber κ iff $\forall A \in [P]^{\kappa} \exists B \in [A]^{\kappa} \forall X \in [B]^{<\omega} \land X \neq \emptyset.$
- \mathbb{P} is κ -stationarily layered iff the following set is stationary: $\{Q \in [P]^{<\kappa} \mid \langle Q, \leq \rangle \text{ is a regular suborder of } \mathbb{P}\}.$

Given posets $\langle P_1, \leq_1 \rangle$, $\langle P_2, \leq_2 \rangle$, consider their product $\langle P_1 \times P_2, \trianglelefteq \rangle$, where $(x, y) \trianglelefteq (x', y')$ iff $x \leq_1 x'$ and $y \leq_2 y'$.

Given posets $\langle P_1, \leq_1 \rangle$, $\langle P_2, \leq_2 \rangle$, consider their product $\langle P_1 \times P_2, \trianglelefteq \rangle$, where $(x, y) \trianglelefteq (x', y')$ iff $x \leq_1 x'$ and $y \leq_2 y'$. (Longer products are defined analogously.)

Given posets $\langle P_1, \leq_1 \rangle$, $\langle P_2, \leq_2 \rangle$, consider their product $\langle P_1 \times P_2, \trianglelefteq \rangle$, where $(x, y) \trianglelefteq (x', y')$ iff $x \leq_1 x'$ and $y \leq_2 y'$. (Longer products are defined analogously.)

Question

Suppose that $\langle P_1, \leq_1 \rangle, \langle P_2, \leq_2 \rangle$ satisfy the κ -cc. Must their product satisfy the κ -cc?

Given posets $\langle P_1, \leq_1 \rangle$, $\langle P_2, \leq_2 \rangle$, consider their product $\langle P_1 \times P_2, \trianglelefteq \rangle$, where $(x, y) \trianglelefteq (x', y')$ iff $x \leq_1 x'$ and $y \leq_2 y'$. (Longer products are defined analogously.)

Question

Suppose that $\langle P_1, \leq_1 \rangle, \langle P_2, \leq_2 \rangle$ satisfy the κ -cc. Must their product satisfy the κ -cc?

Sufficient condition

If one of the posets is moreover κ -Knaster, then "yes".

Given posets $\langle P_1, \leq_1 \rangle$, $\langle P_2, \leq_2 \rangle$, consider their product $\langle P_1 \times P_2, \trianglelefteq \rangle$, where $(x, y) \trianglelefteq (x', y')$ iff $x \leq_1 x'$ and $y \leq_2 y'$. (Longer products are defined analogously.)

Question

Suppose that $\langle P_1, \leq_1 \rangle, \langle P_2, \leq_2 \rangle$ satisfy the κ -cc. Must their product satisfy the κ -cc?

Sufficient condition

If one of the posets is moreover κ -Knaster, then "yes".

Definition

Let C_{κ} denote the assertion that the product of any two κ -cc posets is again κ -cc.

Given posets $\langle P_1, \leq_1 \rangle$, $\langle P_2, \leq_2 \rangle$, consider their product $\langle P_1 \times P_2, \trianglelefteq \rangle$, where $(x, y) \trianglelefteq (x', y')$ iff $x \leq_1 x'$ and $y \leq_2 y'$. (Longer products are defined analogously.)

Question

Suppose that $\langle P_1, \leq_1 \rangle, \langle P_2, \leq_2 \rangle$ satisfy the κ -cc. Must their product satisfy the κ -cc?

Sufficient condition

If one of the posets is moreover κ -Knaster, then "yes".

Definition

Let C_{κ} denote the assertion that the product of any two κ -cc posets is again κ -cc.

Note: It suffices to consider squares C_{κ} iff \mathbb{P}^2 is κ -cc for every κ -cc poset \mathbb{P} .

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous. As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ -cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous. As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ -cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$. But *B* is *c*-homogeneous, and hence, for every $X \in [B]^2$, $\bigwedge X \neq \emptyset$, so that *B* is as sought.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous. As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ -cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$. But *B* is *c*-homogeneous, and hence, for every $X \in [B]^2$, $\bigwedge X \neq \emptyset$, so that *B* is as sought. \Box

Fact 2. C_{κ} holds for κ weakly compact.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous. As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ -cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$. But *B* is *c*-homogeneous, and hence, for every $X \in [B]^2$, $\bigwedge X \neq \emptyset$, so that *B* is as sought. \Box

Fact 2. C_{κ} holds for κ weakly compact.

 κ is weakly compact iff $\kappa > \aleph_0$ and for every $c : [\kappa]^2 \to 2$, there exists $B \in [\kappa]^{\kappa}$ which is homogeneous for c.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous. As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ -cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$. But *B* is *c*-homogeneous, and hence, for every $X \in [B]^2$, $\bigwedge X \neq \emptyset$, so that *B* is as sought. \Box

Fact 2. C_{κ} holds for κ weakly compact.

 κ is weakly compact iff $\kappa > \aleph_0$ and for every $c : [\kappa]^2 \to 2$, there exists $B \in [\kappa]^{\kappa}$ which is homogeneous for c.

Fact 3. C_{κ} holds for κ singular strong limit.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous. As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ -cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$. But *B* is *c*-homogeneous, and hence, for every $X \in [B]^2$, $\bigwedge X \neq \emptyset$, so that *B* is as sought. \Box

Fact 2. C_{κ} holds for κ weakly compact.

 κ is weakly compact iff $\kappa > \aleph_0$ and for every $c : [\kappa]^2 \to 2$, there exists $B \in [\kappa]^{\kappa}$ which is homogeneous for c.

Fact 3. C_{κ} holds for κ singular strong limit.

• Erdős and Tarski (1943): If κ is a singular cardinal and a poset \mathbb{P} satisfies the κ -cc, then \mathbb{P} satisfies the λ -cc for some $\lambda < \kappa$.

Fact 1. C_{κ} holds for $\kappa = \aleph_0$.

We moreover show that every κ -cc poset $\langle P, \leq \rangle$ is κ -Knaster. Given $A \in [P]^{\kappa}$, define a coloring $c : [A]^2 \to 2$ via c(x, y) = 1 iff $\bigwedge \{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in [A]^{\kappa}$ which is *c*-homogeneous. As $|B| = \kappa$ and $\langle P, \leq \rangle$ satisfies the κ -cc, there exists $X \in [B]^2$ with $\bigwedge X \neq \emptyset$. But *B* is *c*-homogeneous, and hence, for every $X \in [B]^2$, $\bigwedge X \neq \emptyset$, so that *B* is as sought. \Box

Fact 2. C_{κ} holds for κ weakly compact.

 κ is weakly compact iff $\kappa > \aleph_0$ and for every $c : [\kappa]^2 \to 2$, there exists $B \in [\kappa]^{\kappa}$ which is homogeneous for c.

Fact 3. C_{κ} holds for κ singular strong limit.

• Erdős and Tarski (1943): If κ is a singular cardinal and a poset \mathbb{P} satisfies the κ -cc, then \mathbb{P} satisfies the λ -cc for some $\lambda < \kappa$.

• Kurepa (1963): If \mathbb{P} satisfies the λ^+ -cc, then \mathbb{P}^2 satisfies the $(2^{\lambda})^+$ -cc.

The case $\kappa = \aleph_1$.

Question (Marczewski, 1947)

Is \mathcal{C}_{\aleph_1} (aka, "productivity of the *ccc*") true?

The case $\kappa = \aleph_1$.

Question (Marczewski, 1947)

Is \mathcal{C}_{\aleph_1} (aka, "productivity of the ccc") true?

Answers

► (Kurepa, 1952): C_{ℵ1} entails Souslin's hypothesis.

Question (Marczewski, 1947)

Is \mathcal{C}_{\aleph_1} (aka, "productivity of the ccc ") true?

Answers

- (Kurepa, 1952): C_{\aleph_1} entails Souslin's hypothesis.
- ▶ (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's) MA_{ℵ1} entails C_{ℵ1};

Question (Marczewski, 1947)

Is \mathcal{C}_{\aleph_1} (aka, "productivity of the ccc") true?

Answers

- (Kurepa, 1952): C_{\aleph_1} entails Souslin's hypothesis.
- ▶ (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's) MA_{ℵ1} entails C_{ℵ1};
- (Velickovic-Todorcevic, 1987) MA_{ℵ1} iff every ccc poset has precaliber ℵ₁;

Question (Marczewski, 1947)

Is \mathcal{C}_{\aleph_1} (aka, "productivity of the ccc") true?

Answers

- ▶ (Kurepa, 1952): C_{ℵ1} entails Souslin's hypothesis.
- (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's)
 MA_{ℵ1} entails C_{ℵ1};
- (Velickovic-Todorcevic, 1987) MA_{ℵ1} iff every ccc poset has precaliber ℵ₁;
- ► (Fleissner, 1978; Roitman, 1979): After adding random/Cohen real, C_{ℵ1} fails;
- ▶ (Galvin, 1980) after (Laver, unpublished): $\mathfrak{c} = \aleph_1$ refutes \mathcal{C}_{\aleph_1} .
- (Todorcevic, 1988): $\mathfrak{b} = \aleph_1$ refutes \mathcal{C}_{\aleph_1} .

Question (Marczewski, 1947)

Is \mathcal{C}_{\aleph_1} (aka, "productivity of the ccc") true?

Answers

- ► (Kurepa, 1952): C_{ℵ1} entails Souslin's hypothesis.
- (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's)
 MA_{ℵ1} entails C_{ℵ1};
- (Velickovic-Todorcevic, 1987) MA_{ℵ1} iff every ccc poset has precaliber ℵ₁;
- ► (Fleissner, 1978; Roitman, 1979): After adding random/Cohen real, C_{ℵ1} fails;
- ▶ (Galvin, 1980) after (Laver, unpublished): $\mathfrak{c} = \aleph_1$ refutes \mathcal{C}_{\aleph_1} .
- (Todorcevic, 1988): $\mathfrak{b} = \aleph_1$ refutes \mathcal{C}_{\aleph_1} .

Open problem

Is MA_{\aleph_1} equivalent to \mathcal{C}_{\aleph_1} ?

The case $\kappa > \aleph_1$. Counterexamples in ZFC

Theorem (Todorcevic, 1985)

$\mathcal{C}_{\mathsf{cf}(\beth_{\alpha+1})}$ fails for every limit ordinal α .

Moreover, if λ is a cardinal for which there exists a linear order of size 2^{λ} with a dense subset of size λ , then C_{κ} fails, for $\kappa = cf(2^{\lambda})$.

The case $\kappa > \aleph_1$. Counterexamples in ZFC

Theorem (Todorcevic, 1985)

 $C_{cf(\beth_{\alpha+1})}$ fails for every limit ordinal α . Moreover, if λ is a cardinal for which there exists a linear order of size 2^{λ} with a dense subset of size λ , then C_{κ} fails, for $\kappa = cf(2^{\lambda})$.

Theorem (Todorcevic, 1986)

 \mathcal{C}_{λ^+} fails whenever λ singular, and $\theta^{\mathsf{cf}(\lambda)} < \lambda$ for all $\theta < \lambda$.

Theorem (Todorcevic, 1989)

 \mathcal{C}_{λ^+} fails whenever λ singular, and $2^{\mathsf{cf}(\lambda)} < \lambda$.

Theorem (Shelah, 1994)

 \mathcal{C}_{λ^+} fails whenever λ singular.

Theorem (Shelah, 1990–1997)

 \mathcal{C}_{λ^+} fails whenever λ is a regular cardinal $\geq \aleph_1$. Specifically:

• [Sh:280]:
$$\lambda > 2^{\aleph_0}$$
;

 $\blacktriangleright \text{ [Sh:327]: } \lambda > \aleph_1;$

$$\blacktriangleright \text{ [Sh:572]: } \lambda = \aleph_1.$$

Theorem (Shelah, 1990–1997)

 \mathcal{C}_{λ^+} fails whenever λ is a regular cardinal $\geq \aleph_1$. Specifically:

• [Sh:280]:
$$\lambda > 2^{\aleph_0}$$
;

$$\blacktriangleright \quad [\mathsf{Sh}:327]: \ \lambda > \aleph_1;$$

$$\blacktriangleright \text{ [Sh:572]: } \lambda = \aleph_1.$$

Corollary

 \mathcal{C}_{κ} fails for every successor cardinal $\kappa > \aleph_1$.

Theorem (Shelah, 1990–1997)

 \mathcal{C}_{λ^+} fails whenever λ is a regular cardinal $\geq \aleph_1$. Specifically:

• [Sh:280]:
$$\lambda > 2^{\aleph_0}$$
;

$$\blacktriangleright \quad [\mathsf{Sh}:327]: \ \lambda > \aleph_1;$$

 $\blacktriangleright \text{ [Sh:572]: } \lambda = \aleph_1.$

Corollary

 \mathcal{C}_{κ} fails for every successor cardinal $\kappa > \aleph_1$.

Conjecture (Todorcevic, 1980's)

For all regular cardinal $\kappa > \aleph_1$, \mathcal{C}_{κ} iff κ is weakly compact.

Theorem (Shelah, 1990–1997)

 \mathcal{C}_{λ^+} fails whenever λ is a regular cardinal $\geq \aleph_1$. Specifically:

• [Sh:280]:
$$\lambda > 2^{\aleph_0}$$
;

$$\blacktriangleright \quad [Sh:327]: \ \lambda > \aleph_1;$$

 $\blacktriangleright \text{ [Sh:572]: } \lambda = \aleph_1.$

Corollary

 \mathcal{C}_{κ} fails for every successor cardinal $\kappa > \aleph_1$.

Conjecture (Todorcevic, 1980's)

For all regular cardinal $\kappa > \aleph_1$, \mathcal{C}_{κ} iff κ is weakly compact.

Theorem (2014)

For all regular cardinal $\kappa > \aleph_1$, C_{κ} entails (κ is weakly compact)^L.

Theorem (Shelah, 1990–1997)

 \mathcal{C}_{λ^+} fails whenever λ is a regular cardinal $\geq \aleph_1$. Specifically:

• [Sh:280]:
$$\lambda > 2^{\aleph_0}$$
;

$$\blacktriangleright \quad [\mathsf{Sh}:327]: \ \lambda > \aleph_1;$$

 $\blacktriangleright \text{ [Sh:572]: } \lambda = \aleph_1.$

Corollary

 \mathcal{C}_{κ} fails for every successor cardinal $\kappa > \aleph_1$.

Conjecture (Todorcevic, 1980's)

For all regular cardinal $\kappa > \aleph_1$, \mathcal{C}_{κ} iff κ is weakly compact.

Theorem (2014)

For all regular cardinal $\kappa > \aleph_1$, C_{κ} entails (κ is weakly compact)^{*L*}. In fact, C_{κ} entails $\neg \Box(\kappa)$ & every stationary subset of κ reflects.

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions involving longer products and stronger variations of the κ -cc.

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions. We mention three results:

Characterization theorem (Cox and Lücke, 2016)

For every regular uncountable cardinal κ :

 κ is weakly compact iff every $\kappa\text{-}cc$ poset is $\kappa\text{-}stationarily$ layered.

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions. We mention three results:

Characterization theorem (Cox and Lücke, 2016)

For every regular uncountable cardinal κ :

 κ is weakly compact iff every $\kappa\text{-}cc$ poset is $\kappa\text{-}stationarily$ layered.

Non-characterization theorem (Cox and Lücke, 2016)

Suppose κ is weakly compact. In some cofinality-preserving forcing extension:

For every $\theta < \kappa$, the class of κ -Knaster posets is closed under θ -support products, yet, κ is not weakly compact.

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions. We mention three results:

Characterization theorem (Cox and Lücke, 2016)

For every regular uncountable cardinal κ :

 κ is weakly compact iff every $\kappa\text{-}cc$ poset is $\kappa\text{-}stationarily$ layered.

Non-characterization theorem (Cox and Lücke, 2016)

Suppose κ is weakly compact. In some cofinality-preserving forcing extension:

For every $\theta < \kappa$, the class of κ -Knaster posets is closed under θ -support products, yet, κ is not weakly compact.

Theorem (Lambie-Hanson and Lücke, 2018)

Suppose $\theta < \kappa$ are infinite and regular. If the class of κ -Knaster posets is closed under θ -support products, then $\neg \Box(\kappa)$, so that (κ is weakly comapct)^L.

Hereafter, κ denotes a regular uncountable cardinal.

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c : [\kappa]^2 \rightarrow 2$ from which he derived a κ -cc poset whose square is not κ -cc.

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c : [\kappa]^2 \rightarrow 2$ from which he derived a κ -cc poset whose square is not κ -cc.

In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa = \aleph_2.$

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c : [\kappa]^2 \rightarrow 2$ from which he derived a κ -cc poset whose square is not κ -cc.

In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa = \aleph_2.$

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ -tree from which they derived a κ -Knaster poset whose infinite power is not κ -cc.

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c : [\kappa]^2 \rightarrow 2$ from which he derived a κ -cc poset whose square is not κ -cc.

In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa = \aleph_2.$

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ -tree from which they derived a κ -Knaster poset whose infinite power is not κ -cc.

They proved that such a tree exists, assuming $\Box(\kappa)$.

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c : [\kappa]^2 \rightarrow 2$ from which he derived a κ -cc poset whose square is not κ -cc.

In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa = \aleph_2.$

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ -tree from which they derived a κ -Knaster poset whose infinite power is not κ -cc.

They proved that such a tree exists, assuming $\Box(\kappa)$.

We would like to obtain the conclusions of Lambie-Hanson and Lücke from ZFC, e.g., getting a ZFC example of an \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc.

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c : [\kappa]^2 \rightarrow 2$ from which he derived a κ -cc poset whose square is not κ -cc.

In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa = \aleph_2.$

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ -tree from which they derived a κ -Knaster poset whose infinite power is not κ -cc. They proved that such a tree exists, assuming $\Box(\kappa)$.

We would like to obtain the conclusions of Lambie-Hanson and Lücke from ZFC, e.g., getting a ZFC example of an \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc.

For this, let us revisit Galvin's approach.

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

• $\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{(x,i) \mid x \in [\kappa]^{<\omega}, c^{*}[x]^2 \cap i = \emptyset\}.$$

From a coloring $c: [\kappa]^2 \to \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \cap i = \emptyset \}.$$

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and i = j.

From a coloring $c: [\kappa]^2 \to \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{ (x,i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \cap i = \emptyset \}.$$

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and i = j.

Key feature

- \mathbb{P}^2 fails to have the κ -cc;
- \mathbb{Q}^{θ} fails to have the κ -cc.

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \cap i = \emptyset \}.$$

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and i = j.

Key feature

- \mathbb{P}^2 fails to have the κ -cc, e.g., $\{\langle (\{\alpha\}, \mathbf{0}), (\{\alpha\}, \mathbf{1}) \rangle \mid \alpha < \kappa\}$.
- \mathbb{Q}^{θ} fails to have the κ -cc.

About \mathbb{P}^2 .

For $\alpha < \beta < \kappa$ and $i := c(\alpha, \beta)$, $(\{\alpha\}, 1-i)$ and $(\{\beta\}, 1-i)$ are incompatible in \mathbb{P} .

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{(x,i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \cap i = \emptyset\}.$$

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and i = j.

Key feature

- \mathbb{P}^2 fails to have the κ -cc, e.g., $\{\langle (\{\alpha\}, i) \mid i < 2 \rangle \mid \alpha < \kappa\}.$
- \mathbb{Q}^{θ} fails to have the κ -cc, e.g., $\{\langle (\{\alpha\}, i) \mid i < \theta \rangle \mid \alpha < \kappa\}$.

About \mathbb{P}^2 . For $\alpha < \beta < \kappa$ and $i := c(\alpha, \beta)$, $(\{\alpha\}, 1 - i)$ and $(\{\beta\}, 1 - i)$ are incompatible in \mathbb{P} .

About \mathbb{Q}^{θ} .

For $\alpha < \beta < \kappa$ and $i := c(\alpha, \beta)$, $(\{\alpha\}, i+1)$ and $(\{\beta\}, i+1)$ are incompatible in \mathbb{Q} .

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{ (x,i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \cap i = \emptyset \}.$$

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and i = j.

Key feature

- \mathbb{P}^2 fails to have the κ -cc;
- \mathbb{Q}^{θ} fails to have the κ -cc.

The heart of the matter is to construct *c* for which the corresponding \mathbb{P} be κ -cc, or \mathbb{Q}^{τ} be κ -Knaster for all $\tau < \theta$.

From a coloring $c : [\kappa]^2 \to \theta$ with $\theta \in \text{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{ (x,i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \cap i = \emptyset \}.$$

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and i = j.

Key feature

- \mathbb{P}^2 fails to have the κ -cc;
- \mathbb{Q}^{θ} fails to have the κ -cc.

The heart of the matter is to construct c for which the corresponding \mathbb{P} be κ -cc, or \mathbb{Q}^{τ} be κ -Knaster for all $\tau < \theta$.

By a simple reverse-engineering process, one arrives at a reformulation of these features in the language of the coloring c.

From a coloring $c: [\kappa]^2 \to \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

•
$$\mathbb{P} := \{ (x, i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \subseteq \{i\} \};$$

•
$$\mathbb{Q} := \{ (x,i) \mid x \in [\kappa]^{<\omega}, c"[x]^2 \cap i = \emptyset \}.$$

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and i = j.

Key feature

- \mathbb{P}^2 fails to have the κ -cc;
- \mathbb{Q}^{θ} fails to have the κ -cc.

The heart of the matter is to construct *c* for which the corresponding \mathbb{P} be κ -cc, or \mathbb{Q}^{τ} be κ -Knaster for all $\tau < \theta$.

By a simple reverse-engineering process, one arrives at a reformulation of these features in the language of the coloring c.

The poset \mathbb{P} was analyzed by Galvin, giving birth to $Pr_1(...)$. Today, we shall focus on the poset \mathbb{Q} .

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c^{*}[x]^2 \cap i = \emptyset\}$ is derived from $c : [\kappa]^2 \to \theta$. Assuming $\theta \in \text{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff it has precaliber κ iff c witnesses $U(\kappa, \theta)$:

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c^{*}[x]^2 \cap i = \emptyset\}$ is derived from $c : [\kappa]^2 \to \theta$. Assuming $\theta \in \text{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff it has precaliber κ iff c witnesses $U(\kappa, \theta)$:

Definition

 $U(\kappa, \theta)$ asserts that there exists a coloring $c : [\kappa]^2 \to \theta$ such that for every family $\mathcal{A} \subseteq [\kappa]^{<\omega}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c^{*}[x]^2 \cap i = \emptyset\}$ is derived from $c : [\kappa]^2 \to \theta$. Assuming $\theta \in \text{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff it has precaliber κ iff c witnesses $U(\kappa, \theta)$:

Definition

 $U(\kappa, \theta)$ asserts that there exists a coloring $c : [\kappa]^2 \to \theta$ such that for every family $\mathcal{A} \subseteq [\kappa]^{<\omega}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

There's also a χ -closed variation: $\{(x, i) \mid x \in [\kappa]^{<\chi}, c"[x]^2 \cap i = \emptyset\}$. For this, we need:

Suppose $\mathbb{Q} := \{(x, i) \mid x \in [\kappa]^{<\omega}, c^{*}[x]^{2} \cap i = \emptyset\}$ is derived from $c : [\kappa]^{2} \to \theta$. Assuming $\theta \in \text{Reg}(\kappa)$, \mathbb{Q} is κ -Knaster iff it has precaliber κ iff c witnesses $U(\kappa, \theta)$:

Definition

 $U(\kappa, \theta)$ asserts that there exists a coloring $c : [\kappa]^2 \to \theta$ such that for every family $\mathcal{A} \subseteq [\kappa]^{<\omega}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

There's also a χ -closed variation: $\{(x, i) \mid x \in [\kappa]^{<\chi}, c"[x]^2 \cap i = \emptyset\}$. For this, we need:

Definition

 $U(\kappa, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Note that $\Pr_1(\kappa, \kappa, \theta, \chi)$ entails $U(\kappa, 2, \theta, \chi)$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Proposition

Suppose $\chi, \theta \in \text{Reg}(\kappa)$ and that κ is $(\langle \chi \rangle)$ -inaccessible. For every coloring $c : [\kappa]^2 \to \theta$ witnessing $U(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Proposition

Suppose $\chi, \theta \in \text{Reg}(\kappa)$ and that κ is $(\langle \chi \rangle)$ -inaccessible. For every coloring $c : [\kappa]^2 \to \theta$ witnessing $U(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

•
$$\mathbb{Q}^{\theta}$$
 is not κ -cc;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Proposition

Suppose $\chi, \theta \in \text{Reg}(\kappa)$ and that κ is $(\langle \chi \rangle)$ -inaccessible. For every coloring $c : [\kappa]^2 \to \theta$ witnessing $U(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

$$\blacktriangleright \mathbb{Q}^{\theta}$$
 is not κ -cc;

• if
$$\mu = 2$$
, then \mathbb{Q}^{τ} is κ -cc for all $\tau < \min\{\chi, \theta\}$;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Proposition

Suppose $\chi, \theta \in \text{Reg}(\kappa)$ and that κ is $(\langle \chi \rangle)$ -inaccessible. For every coloring $c : [\kappa]^2 \to \theta$ witnessing $U(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

$$\blacktriangleright \mathbb{Q}^{\theta}$$
 is not κ -cc;

• if
$$\mu = 2$$
, then \mathbb{Q}^{τ} is κ -cc for all $\tau < \min\{\chi, \theta\}$;

• if $\mu = \kappa$, then \mathbb{Q}^{τ} has precaliber κ for all $\tau < \min\{\chi, \theta\}$;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Proposition

Suppose $\chi, \theta \in \text{Reg}(\kappa)$ and that κ is $(\langle \chi \rangle)$ -inaccessible. For every coloring $c : [\kappa]^2 \to \theta$ witnessing $U(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

$$\blacktriangleright \mathbb{Q}^{\theta}$$
 is not κ -cc;

• if
$$\mu = 2$$
, then \mathbb{Q}^{τ} is κ -cc for all $\tau < \min\{\chi, \theta\}$;

• if $\mu = \kappa$, then \mathbb{Q}^{τ} has precaliber κ for all $\tau < \min\{\chi, \theta\}$;

Q is well-met and χ-directed-closed with greatest lower bounds.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg U(\kappa, 2, \omega, 2)$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg U(\kappa, 2, \omega, 2)$.

Put differently, we ask whether the existence of a κ -Aronszajn tree gives rise to a coloring $c : [\kappa]^2 \to \omega$ with the property that $\sup(c \, {}^{"}[A]^2) = \omega$ for every $A \in [\kappa]^{\kappa}$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg U(\kappa, 2, \omega, 2)$.

Partial answer 1

The existence of a κ -Aronszajn tree with an ω -ascent path entails $U(\kappa, 2, \omega, \omega)$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg U(\kappa, 2, \omega, 2)$.

Partial answer 1

The existence of a κ -Aronszajn tree with an ω -ascent path entails $U(\kappa, 2, \omega, \omega)$.

Partial answer 2 (with Todorcevic)

The existence of a coherent κ -Aronszajn tree entails U(κ , 2, ω , ω) but not U(κ , κ , ω , ω).

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the second parameter

• $U(\kappa, 2, \theta, \chi)$ iff $U(\kappa, \omega, \theta, \chi)$;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the second parameter

- $U(\kappa, 2, \theta, \chi)$ iff $U(\kappa, \omega, \theta, \chi)$;
- Suppose $c \models U(\kappa, 2, \theta, \chi)$. If c is closed, then $c \models U(\kappa, \kappa, \theta, \chi)$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the second parameter

• $U(\kappa, 2, \theta, \chi)$ iff $U(\kappa, \omega, \theta, \chi)$;

Suppose
$$c \models U(\kappa, 2, \theta, \chi)$$
. If c is closed, then $c \models U(\kappa, \kappa, \theta, \chi)$.

Definition

 $c : [\kappa]^2 \to \theta$ is closed iff $\{\alpha < \beta \mid c(\alpha, \beta) \leq i\}$ is closed below β for all $\beta < \kappa$, $i < \theta$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the third parameter

• $U(\kappa, \kappa, \kappa, \kappa)$ holds;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the third parameter

- $U(\kappa, \kappa, \kappa, \kappa)$ holds;
- $U(\kappa, \mu, \theta, \chi)$ iff $U(\kappa, \mu, cf(\theta), \chi)$;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the third parameter

- $U(\kappa, \kappa, \kappa, \kappa)$ holds;
- $U(\kappa, \mu, \theta, \chi)$ iff $U(\kappa, \mu, cf(\theta), \chi)$;

Therefore, hereafter, we shall focus on $\theta \in \text{Reg}(\kappa)$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the third parameter

- ► U(κ, κ, κ, κ) holds;
- $U(\kappa, \mu, \theta, \chi)$ iff $U(\kappa, \mu, cf(\theta), \chi)$;
- Lack of monotonicity: If λ is the singular limit of strongly compact cardinals, then, for every θ ≤ λ, U(λ⁺, λ⁺, θ, λ) iff cf(θ) = cf(λ).

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the fourth parameter

• $U(\kappa, \kappa, \theta, 3)$ iff $U(\kappa, \kappa, \theta, \omega)$;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the fourth parameter

- $U(\kappa, \kappa, \theta, 3)$ iff $U(\kappa, \kappa, \theta, \omega)$;
- $U(\lambda^+, 2, \theta, 2)$ iff $U(\lambda^+, 2, \theta, cf(\lambda))$;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the fourth parameter

- $U(\kappa, \kappa, \theta, 3)$ iff $U(\kappa, \kappa, \theta, \omega)$;
- $U(\lambda^+, 2, \theta, 2)$ iff $U(\lambda^+, 2, \theta, cf(\lambda))$;

The above is optimal: If λ is the limit of strongly compact cardinals, $\theta \in \text{Reg}(\lambda)$ with $\theta \neq \text{cf}(\lambda)$, then $U(\lambda^+, 2, \theta, \chi)$ holds for $\chi := \text{cf}(\lambda)$, but fails for $\chi := \text{cf}(\lambda)^+$.

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the fourth parameter

- $U(\kappa, \kappa, \theta, 3)$ iff $U(\kappa, \kappa, \theta, \omega)$;
- $U(\lambda^+, 2, \theta, 2)$ iff $U(\lambda^+, 2, \theta, cf(\lambda))$;
- There are κ, θ and colorings $c, c \models U(\kappa, \kappa, \theta, 2)$, but $c \not\models U(\kappa, 2, \theta, 3)$;

Definition

 $U(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c : [\kappa]^2 \to \theta$ such that for every $\chi' < \chi$, every family $\mathcal{A} \subseteq [\kappa]^{\chi'}$ consisting of κ -many pairwise disjoint sets, and every $i < \theta$, there is $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) \ge i$ for every pair a < b from \mathcal{B} .

About the fourth parameter

- $U(\kappa, \kappa, \theta, 3)$ iff $U(\kappa, \kappa, \theta, \omega)$;
- $U(\lambda^+, 2, \theta, 2)$ iff $U(\lambda^+, 2, \theta, cf(\lambda))$;
- There are κ, θ and colorings $c, c \models U(\kappa, \kappa, \theta, 2)$, but $c \not\models U(\kappa, 2, \theta, 3)$;
- If there is a closed witness to U(λ⁺, λ⁺, θ, 2), then there is one for U(λ⁺, λ⁺, θ, cf(λ)).

Theorem

For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Theorem

For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

In case you wondered

The corresponding tree $\mathcal{T}(c) := \{c(\cdot, \gamma) \upharpoonright \beta \mid \beta \leq \gamma < \kappa\}$ may consistently be a special κ -Aronszajn tree, as well as an almost Souslin κ -Aronszajn tree.

Theorem

For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary

There exists an \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc.

Theorem

For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary

There exists an \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc.

More generally

Suppose that $\theta \leq \chi \leq \lambda$ are regular, with $\lambda^{<\chi} = \lambda$. Then there exists a χ -directed-closed poset \mathbb{Q} such that:

•
$$\mathbb{Q}^{\tau}$$
 has precaliber λ^+ for all $\tau < \theta$;

$$\blacktriangleright \mathbb{Q}^{\theta}$$
 is not λ^+ -cc.

Theorem

For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary

There exists an \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc. CH $\Rightarrow \exists \sigma$ -closed \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc.

Theorem

For every regular λ and $\theta \in \text{Reg}(\lambda^+)$, there is $c : [\lambda^+]^2 \to \theta$ witnessing $U(\lambda^+, \lambda^+, \theta, \lambda)$ which is moreover closed.

Corollary

There exists an \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc. CH $\Rightarrow \exists \sigma$ -closed \aleph_2 -Knaster poset whose ω^{th} -power is not \aleph_2 -cc.

Open problem

Does CH entail a σ -closed \aleph_2 -cc poset whose square is not \aleph_2 -cc?

Further findings (cont.)

Theorem

For every singular λ and $\theta \in \text{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $U(\lambda^+, \lambda^+, \theta, cf(\lambda))$:

2^λ = λ⁺;
Refl(< cf(λ), λ⁺) fails;
θ = ω or θ = cf(λ);
θ < ν < ν⁺ = cf(λ);
θ < cf(λ) and cf(NS_{cf(λ)}, ⊆) < λ.

Further findings (cont.)

Theorem

-)

For every singular λ and $\theta \in \text{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $U(\lambda^+, \lambda^+, \theta, cf(\lambda))$:

•
$$\theta < cf(\lambda)$$
 and $cf(NS_{cf(\lambda)}, \subseteq) < \lambda$.

Corollary

If the class of κ -Knaster posets is closed under ω powers, then κ is inaccessible.

Further findings (cont.)

Theorem

- 1

For every singular λ and $\theta \in \text{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $U(\lambda^+, \lambda^+, \theta, cf(\lambda))$:

•
$$\theta < cf(\lambda)$$
 and $cf(NS_{cf(\lambda)}, \subseteq) < \lambda$.

Theorem

For every $\theta, \chi \in \text{Reg}(\kappa)$, any of the following entails the existence of a closed witness to $U(\kappa, \kappa, \theta, \chi)$:

• $\Box(\kappa, <\omega)$ or $\Box^{\mathsf{ind}}(\kappa, \theta)$;

• \exists stationary $S \subseteq E_{\geq \chi}^{\kappa}$ with $S \cap \alpha$ nonstationary for $\alpha \in E_{>\omega}^{\kappa}$;

► ∃stationary
$$S \subseteq E_{\geq \chi}^{\kappa}$$
 with $S \cap \alpha$ nonstationary for all $\alpha \in \text{Reg}(\kappa)$, and κ is inacc.

A new cardinal invariant

The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ , the following are equivalent:

- 1. κ is weakly compact;
- 2. For every C-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

Recall

 $\langle C_{\beta} \mid \beta < \kappa \rangle$ is a *C*-sequence iff each C_{β} is closed subset of β with $\sup(C_{\beta}) = \sup(\beta)$.

The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ , the following are equivalent:

- 1. κ is weakly compact;
- 2. For every C-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, will see it is of interest for successor cardinals as well.

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ , the following are equivalent:

- 1. κ is weakly compact;
- 2. For every C-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, will see it is of interest for successor cardinals as well.

Definition (The C-sequence number of κ)

If κ is weakly compact, then let $\chi(\kappa) := 0$.

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ , the following are equivalent:

- 1. κ is weakly compact;
- 2. For every C-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, will see it is of interest for successor cardinals as well.

Definition (The C-sequence number of κ)

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ , the following are equivalent:

- 1. κ is weakly compact;
- 2. For every C-sequence $\langle C_{\beta} \mid \beta < \kappa \rangle$, there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ such that $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for every $\alpha < \kappa$.

Note that $\chi(\kappa)$ is well-defined. In fact, $\chi(\kappa) \leq \sup(\operatorname{Reg}(\kappa))$.

Definition (The C-sequence number of κ)

Todorcevic's analysis of *the number of steps* function readily establishes the following.

The C-sequence number and yoU U($\kappa, \kappa, \omega, \chi(\kappa)$) holds, as witnessed by the closed function ρ_2 . However, it is consistent that U($\kappa, \kappa, \omega, \chi$) holds with $\chi \gg \chi(\kappa)$.

Definition (The C-sequence number of κ)

Todorcevic's analysis of *the number of steps* function readily establishes the following.

The *C*-sequence number and yoU

 $U(\kappa,\kappa,\omega,\chi(\kappa))$ holds, as witnessed by the closed function ρ_2 .

However, it is consistent that $U(\kappa, \kappa, \omega, \chi)$ holds with $\chi \gg \chi(\kappa)$.

Corollary

If the class of κ -Knaster posets is closed under taking ω powers, then $\chi(\kappa) < \omega$.

Definition (The C-sequence number of κ)

Questions

- Is " $\chi(\kappa) < \omega$ " a large cardinal property?
- How about " $\chi(\kappa) < \sup(\operatorname{Reg}(\kappa))$ "?
- Could $\chi(\kappa)$ be singular?

Corollary

If the class of κ -Knaster posets is closed under taking ω powers, then $\chi(\kappa) < \omega$.

Definition (The C-sequence number of κ)

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$. Now, let $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$ be an arbitrary *C*-sequence.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$. Now, let $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$ be an arbitrary *C*-sequence. In $V^{\mathbb{S}}$, \vec{C} is a *C*-sequence over a weakly compact cardinal κ , and hence there is $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ with $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$. Now, let $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$ be an arbitrary *C*-sequence. In $V^{\mathbb{S}}$, \vec{C} is a *C*-sequence over a weakly compact cardinal κ , and hence there is $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ with $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$. Clearly, Δ is a club.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$. Now, let $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$ be an arbitrary *C*-sequence. In $V^{\mathbb{S}}$, \vec{C} is a *C*-sequence over a weakly compact cardinal κ , and hence there is $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ with $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$. Clearly, Δ is a club.

As S is κ -cc, there is a club $D \subseteq \kappa$ in V, with $D \subseteq \Delta$.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$. Now, let $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$ be an arbitrary *C*-sequence. In $V^{\mathbb{S}}$, \vec{C} is a *C*-sequence over a weakly compact cardinal κ , and hence there is $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ with $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$. Clearly, Δ is a club. As \mathbb{S} is κ -cc, there is a club $D \subseteq \kappa$ in *V*, with $D \subseteq \Delta$. Then $D \cap \alpha \subseteq C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$.

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ , one obtains a model V having a κ -Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa) = 1$.

Proof. The κ -Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$. Now, let $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$ be an arbitrary *C*-sequence. In $V^{\mathbb{S}}$, \vec{C} is a *C*-sequence over a weakly compact cardinal κ , and hence there is $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to \kappa$ with $\Delta \cap \alpha = C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$. Clearly, Δ is a club. As \mathbb{S} is κ -cc, there is a club $D \subseteq \kappa$ in *V*, with $D \subseteq \Delta$. Then $D \cap \alpha \subseteq C_{b(\alpha)} \cap \alpha$ for each $\alpha < \kappa$.

Theorem

Suppose $\chi(\kappa) = 0$. For every $\theta \in \text{Reg}(\kappa^+)$, there is a cofinality-preserving forcing extension in which κ remains strongly inaccessible, and $\chi(\kappa) = \theta$.

Increasing the C-sequence number (cont.)

Observation $cf(\lambda) \le \chi(\lambda^+) \le \lambda.$

¹The latter assumes the consistency of a supercompact.

Increasing the C-sequence number (cont.)

 $\begin{array}{l} \text{Observation} \\ \mathsf{cf}(\lambda) \leq \chi(\lambda^+) \leq \lambda. \end{array}$

Theorem If λ is a singular limit of supercompacts, then $\chi(\lambda^+) = cf(\lambda)$.

Theorem

If λ is a singular limit of supercompacts, and $\theta \in \text{Reg}(\lambda) \setminus \text{cf}(\lambda)$, then, in some cofinality-preserving forcing extension, $\chi(\lambda^+) = \theta$.

¹The latter assumes the consistency of a supercompact.

Increasing the C-sequence number (cont.)

 $\begin{array}{l} \text{Observation} \\ \mathsf{cf}(\lambda) \leq \chi(\lambda^+) \leq \lambda. \end{array}$

Theorem If λ is a singular limit of supercompacts, then $\chi(\lambda^+) = cf(\lambda)$.

Theorem

If λ is a singular limit of supercompacts, and $\theta \in \text{Reg}(\lambda) \setminus \text{cf}(\lambda)$, then, in some cofinality-preserving forcing extension, $\chi(\lambda^+) = \theta$.

$$\chi(leph_{\omega+1})=leph_{\omega}$$
 is consistent, and so is $\chi(leph_{\omega+1})=\omega^{.1}$

¹The latter assumes the consistency of a supercompact.

Theorem

1. Refl($<\omega, E^{\kappa}_{>\chi(\kappa)}$);

- 1. Refl($<\omega, E_{>\chi(\kappa)}^{\kappa}$);
- 2. If $\chi(\kappa) < \omega$, then $\chi(\kappa) \in \{0,1\}$;

- 1. Refl($<\omega, E_{>\chi(\kappa)}^{\kappa}$);
- 2. If $\chi(\kappa) < \omega$, then $\chi(\kappa) \in \{0,1\}$;
- 3. If κ is inaccessible and $\chi(\kappa) < \kappa$, then κ is ω -Mahlo;

- 1. Refl($<\omega, E_{>\chi(\kappa)}^{\kappa}$);
- 2. If $\chi(\kappa) < \omega$, then $\chi(\kappa) \in \{0,1\}$;
- 3. If κ is inaccessible and $\chi(\kappa) < \kappa$, then κ is ω -Mahlo;
- 4. If $\chi(\kappa) = 1$, then $\Box(\kappa, <\mu)$ fails for all $\mu < \kappa$;

- 1. Refl($<\omega, E_{>\chi(\kappa)}^{\kappa}$);
- 2. If $\chi(\kappa) < \omega$, then $\chi(\kappa) \in \{0,1\}$;
- 3. If κ is inaccessible and $\chi(\kappa) < \kappa$, then κ is ω -Mahlo;
- 4. If $\chi(\kappa) = 1$, then $\Box(\kappa, <\mu)$ fails for all $\mu < \kappa$;
- If χ(κ) = 1, then, for every sequence (S_i | i < κ) of stationary subsets of κ, there exists an inaccessible β < κ such that S_i ∩ β is stationary in β for all i < β.

Theorem

- 1. Refl($<\omega, E_{>\chi(\kappa)}^{\kappa}$);
- 2. If $\chi(\kappa) < \omega$, then $\chi(\kappa) \in \{0,1\}$;
- 3. If κ is inaccessible and $\chi(\kappa) < \kappa$, then κ is ω -Mahlo;
- 4. If $\chi(\kappa) = 1$, then $\Box(\kappa, <\mu)$ fails for all $\mu < \kappa$;
- If χ(κ) = 1, then, for every sequence (S_i | i < κ) of stationary subsets of κ, there exists an inaccessible β < κ such that S_i ∩ β is stationary in β for all i < β.

Corollary

- In L, either $\chi(\kappa) = 0$ or $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa))$;
- $\Box(\kappa, <\omega)$ entails $\chi(\kappa) = \sup(\operatorname{Reg}(\kappa));$

• If
$$\chi(\kappa) = 1$$
, then κ is greatly Mahlo.

Theorem

- 1. Refl($<\omega, E_{>\chi(\kappa)}^{\kappa}$);
- 2. If $\chi(\kappa) < \omega$, then $\chi(\kappa) \in \{0,1\}$;
- 3. If κ is inaccessible and $\chi(\kappa) < \kappa$, then κ is ω -Mahlo;
- 4. If $\chi(\kappa) = 1$, then $\Box(\kappa, <\mu)$ fails for all $\mu < \kappa$;
- If χ(κ) = 1, then, for every sequence (S_i | i < κ) of stationary subsets of κ, there exists an inaccessible β < κ such that S_i ∩ β is stationary in β for all i < β.

Corollary

If the class of κ -Knaster posets is closed under ω powers, then κ is greatly Mahlo.

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

 $\mathsf{Cspec}(\kappa) := \{\chi(\vec{C}) \mid \vec{C} \text{ is a } C \text{-sequence over } \kappa\} \setminus \omega.$

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

 $\mathsf{Cspec}(\kappa) := \{\chi(\vec{C}) \mid \vec{C} \text{ is a } C \text{-sequence over } \kappa\} \setminus \omega.$

Theorem

1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa) = \max(\operatorname{Cspec}(\kappa))$;

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

 $\mathsf{Cspec}(\kappa) := \{\chi(\vec{C}) \mid \vec{C} \text{ is a } C \text{-sequence over } \kappa\} \setminus \omega.$

- 1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa) = \max(\operatorname{Cspec}(\kappa))$;
- 2. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\min(\operatorname{Cspec}(\kappa)) = \omega$;

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

 $\mathsf{Cspec}(\kappa) := \{\chi(\vec{C}) \mid \vec{C} \text{ is a } C \text{-sequence over } \kappa\} \setminus \omega.$

- 1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa) = \max(\operatorname{Cspec}(\kappa))$;
- 2. If $Cspec(\kappa) \neq \emptyset$, then $min(Cspec(\kappa)) = \omega$;
- 3. $\chi \in \mathsf{Cspec}(\kappa) \implies \mathsf{cf}(\chi) \in \mathsf{Cspec}(\kappa)$,

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

 $\mathsf{Cspec}(\kappa) := \{\chi(\vec{C}) \mid \vec{C} \text{ is a } C \text{-sequence over } \kappa\} \setminus \omega.$

- 1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa) = \max(\operatorname{Cspec}(\kappa))$;
- 2. If $Cspec(\kappa) \neq \emptyset$, then $min(Cspec(\kappa)) = \omega$;
- 3. $\chi \in \operatorname{Cspec}(\kappa) \implies \operatorname{cf}(\chi) \in \operatorname{Cspec}(\kappa)$, but not \Leftarrow .

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

 $\mathsf{Cspec}(\kappa) := \{\chi(\vec{C}) \mid \vec{C} \text{ is a } C \text{-sequence over } \kappa\} \setminus \omega.$

Theorem

- 1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa) = \max(\operatorname{Cspec}(\kappa))$;
- 2. If $Cspec(\kappa) \neq \emptyset$, then $min(Cspec(\kappa)) = \omega$;
- 3. $\chi \in \operatorname{Cspec}(\kappa) \implies \operatorname{cf}(\chi) \in \operatorname{Cspec}(\kappa)$, but not \Leftarrow .

Open problem

Is $Cspec(\kappa)$ an interval? Is it a closed set?

Definition

For a *C*-sequence $\vec{C} = \langle C_{\beta} \mid \beta < \kappa \rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in [\kappa]^{\kappa}$ and $b : \kappa \to [\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha < \kappa$.

Definition

 $\mathsf{Cspec}(\kappa) := \{\chi(\vec{C}) \mid \vec{C} \text{ is a } C \text{-sequence over } \kappa\} \setminus \omega.$

Theorem

- 1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa) = \max(\operatorname{Cspec}(\kappa))$;
- 2. If $Cspec(\kappa) \neq \emptyset$, then $min(Cspec(\kappa)) = \omega$;
- 3. $\chi \in \operatorname{Cspec}(\kappa) \implies \operatorname{cf}(\chi) \in \operatorname{Cspec}(\kappa)$, but not \Leftarrow .

Open problem

Is $Cspec(\kappa)$ an interval? Is it a closed set? Is every limit uncountable cardinal in $Cspec(\kappa)$ an accumulation point of $Cspec(\kappa)$?

Unexpected equivalency

Unexpected equivalency

Theorem

For every $\theta \in \text{Reg}(\kappa)$, the following are equivalent:

- $\theta \in \operatorname{Cspec}(\kappa)$;
- There exists a closed witness to $U(\kappa, \kappa, \theta, \theta)$.

The forward implication works for θ singular; the backward does not.

Unexpected equivalency

Theorem

For every $\theta \in \text{Reg}(\kappa)$, the following are equivalent:

- $\theta \in \operatorname{Cspec}(\kappa)$;
- There exists a closed witness to $U(\kappa, \kappa, \theta, \theta)$.

Corollary

- If κ is a successor of a regular, then $\operatorname{Reg}(\kappa) \subseteq \operatorname{Cspec}(\kappa)$;
- If κ is a non-Mahlo inaccessible, then $\operatorname{Reg}(\kappa) \subseteq \operatorname{Cspec}(\kappa)$;
- If $\Box(\kappa, <\omega)$ holds, then $\operatorname{Reg}(\kappa) \subseteq \operatorname{Cspec}(\kappa)$;
- If $E_{\geq\chi}^{\kappa}$ admits a non-reflecting stationary subset, then $\operatorname{Reg}(\chi^+) \subseteq \operatorname{Cspec}(\kappa)$.

Conjectures

Conjectures

- 1. If $\chi(\kappa) = 1$, then, in some set-forcing extension, $\chi(\kappa) = 0$.
- 2. If $\chi(\kappa) = 1$, then, there exists a coherent κ -Aronszajn tree.
- 3. If κ is inaccessible and $1 < \chi(\kappa) < \kappa$, then there exists a κ -Aronszajn tree with a $\chi(\kappa)$ -ascent path.
- 4. Any U(κ,κ,\ldots) may be witnessed by a closed coloring.
- 5. If $\chi(\kappa)$ is singular, then $cf(\chi(\kappa)) = cf(sup(Reg(\kappa)))$.
- 6. $\operatorname{Reg}(\operatorname{cf}(\lambda)^+) \subseteq \operatorname{Cspec}(\lambda^+)$ for every singular λ .
- 7. For all $\theta, \chi \in \text{Cspec}(\kappa)$, $U(\kappa, \kappa, \theta, \chi)$ holds.

Thank you for your attention!

