Chain conditions, unbounded colorings
and the C-sequence spectrum

Thanks foc
}n(reJudn, me Jtrs the [east
to minimalism | could do

Moose Alloin

Assaf Rinot
Bar-llan University

23-September-2019
XV Luminy workshop in Set Theory
Centre International de Rencontres Mathmatiques, Marseille



Bibliography

Most results are taken from the following joint papers with Chris
Lambie-Hanson:

1. Knaster and friends I:
2. Knaster and friends IlI:

3. Knaster and friends IllI:

2/34



Bibliography

Most results are taken from the following joint papers with Chris
Lambie-Hanson:

1. Knaster and friends I: Closed colorings and precalibers,
Algebra Universalis, 79(4), Art. 90, 39 pp., 2018.

2. Knaster and friends IlI:

3. Knaster and friends IllI:

2/34



Bibliography

Most results are taken from the following joint papers with Chris
Lambie-Hanson:

1. Knaster and friends I: Closed colorings and precalibers,
Algebra Universalis, 79(4), Art. 90, 39 pp., 2018.

2. Knaster and friends Il: The C-sequence number, to be
submitted.

3. Knaster and friends IlI:

2/34



Bibliography

Most results are taken from the following joint papers with Chris
Lambie-Hanson:

1. Knaster and friends I: Closed colorings and precalibers,
Algebra Universalis, 79(4), Art. 90, 39 pp., 2018.

2. Knaster and friends Il: The C-sequence number, to be
submitted.

3. Knaster and friends Ill: Subadditive colorings and
stationarily layered posets, in preparation.

2/34



Conventions

» k and A denote infinite cardinals;
» Reg(k) :={0 <k |cf(f) =60 >No};

3/34



Conventions

» k and A denote infinite cardinals;
» Reg(k) :={0 <k |cf(f) =60 >No};
> EL ={a <k |cf(a) > x} and

EL, i={a <k |cf(a) > x};

3/34



Conventions

» k and A denote infinite cardinals;

» Reg(k) :={0 <k |cf(f) =60 >No};

> EL ={a <k |cf(a) > x} and
EL, i={a <k |cf(a) > x};

> [AX:={aC A||a] = x} and
[A]*:={a C A|la] <x}

3/34



Conventions

v

k and X\ denote infinite cardinals;
Reg(k) :={0 < k| cf(8) =0 > No};
Ef :={a <k|cf(a) > x} and
EL, i={a <k |cf(a) > x};

[A]x = {a C A |a] = x} and
[Al*X:={aC A||a] < x};

For a, b, nonempty sets of ordinals,
a < b means that sup(a) < min(b).
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For a subset X C P, we write AX :={z€ P|Vx e X(z<x)}.
We say that x,y € P are compatible iff A{x,y} # 0.

Definition
o P satisfies the s-cc iff VA € [P]® 3X € [A]2 AX # 0;
o Pis x-Knaster iff VA € [P]* 3B € [A]" VX € [B]> AX # 0;
e P has precaliber & iff
VA e [P]" 3B € [A]" VX € [B]=¥ A X #0.

P is k-stationarily layered iff the following set is stationary:
{Q € [P]<" | (Q, <) is a regular suborder of P}.
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(PLx P, <), where (x,y) (X, y) iff x <3 x" and y <5 y".
(Longer products are defined analogously.)

Question

Suppose that (P, <1), (P>, <») satisfy the x-cc.
Must their product satisfy the x-cc?

Sufficient condition
If one of the posets is moreover k-Knaster, then “yes".

Definition
Let C, denote the assertion that the product of any two x-cc
posets is again k-cc.

Note: It suffices to consider squares

C,. iff P2 is k-cc for every k-cc poset P.

6/34



Basic facts

g

iness ist
Pl . iy 3,




Basic facts

Fact 1. C, holds for k = N,.

8/34



Basic facts

Fact 1. C, holds for k = N,.
We moreover show that every k-cc poset (P, <) is k-Knaster.

8/34



Basic facts

Fact 1. C, holds for k = N,.
We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = L iff

Nx y} #0.

8/34



Basic facts

Fact 1. C, holds for k = N.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = L iff
A{x,y} # 0. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous.

8/34



Basic facts

Fact 1. C, holds for k = Ng.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = L iff
A{x,y} # 0. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous. As |B| = k and (P, <) satisfies the k-cc, there
exists X € [B]? with A X # 0.

8/34



Basic facts

Fact 1. C, holds for k = Ng.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = L iff
A{x,y} # 0. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous. As |B| = k and (P, <) satisfies the k-cc, there
exists X € [B]? with A X # 0. But B is c-homogeneous, and
hence, for every X € [B]?, A\ X # (), so that B is as sought. O

8/34



Basic facts

Fact 1. C,; holds for kK = Ny.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = 1 iff
A{x,y} # 0. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous. As |B| = k and (P, <) satisfies the k-cc, there
exists X € [B]? with A X # 0. But B is c-homogeneous, and
hence, for every X € [B]?, A\ X # (), so that B is as sought. O

Fact 2. C, holds for x weakly compact.

8/34



Basic facts

Fact 1. C,; holds for kK = Ny.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = L iff
A{x,y} # (. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous. As |B| = k and (P, <) satisfies the k-cc, there
exists X € [B]? with A X # 0. But B is c-homogeneous, and
hence, for every X € [B]?, A\ X # (), so that B is as sought. O

Fact 2. C, holds for x weakly compact.

K is weakly compact iff k > Rq and for every ¢ : [k]? — 2, there
exists B € [k]" which is homogeneous for c. O

8/34



Basic facts

Fact 1. C,; holds for kK = Ny.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = 1 iff
A{x,y} # 0. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous. As |B| = k and (P, <) satisfies the k-cc, there
exists X € [B]? with A X # 0. But B is c-homogeneous, and
hence, for every X € [B]?, A\ X # (), so that B is as sought. O

Fact 2. C, holds for k weakly compact.

K is weakly compact iff kK > Ng and for every c : [k]? — 2, there
exists B € [k]" which is homogeneous for c. O

Fact 3. C, holds for x singular strong limit.

8/34



Basic facts

Fact 1. C,; holds for kK = Ny.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = L iff
A{x,y} # 0. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous. As |B| = k and (P, <) satisfies the k-cc, there
exists X € [B]? with A X # 0. But B is c-homogeneous, and
hence, for every X € [B]?, A\ X # (), so that B is as sought. O

Fact 2. C, holds for k weakly compact.

K is weakly compact iff kK > Ng and for every c : [k]? — 2, there
exists B € [k]" which is homogeneous for c. O
Fact 3. C, holds for x singular strong limit.

e Erdds and Tarski (1943): If  is a singular cardinal and a poset P
satisfies the k-cc, then P satisfies the \-cc for some )\ < k.

8/34



Basic facts

Fact 1. C,; holds for kK = Ny.

We moreover show that every k-cc poset (P, <) is k-Knaster.
Given A € [P]*, define a coloring c : [A]> — 2 via c(x,y) = L iff
A{x,y} # 0. By Ramsey's theorem, there exists B € [A]" which is
c-homogeneous. As |B| = k and (P, <) satisfies the k-cc, there
exists X € [B]? with A X # 0. But B is c-homogeneous, and
hence, for every X € [B]?, A\ X # (), so that B is as sought. O

Fact 2. C, holds for k weakly compact.

K is weakly compact iff kK > Ng and for every c : [k]? — 2, there
exists B € [k]" which is homogeneous for c. O
Fact 3. C, holds for x singular strong limit.

e Erdds and Tarski (1943): If  is a singular cardinal and a poset P
satisfies the k-cc, then P satisfies the \-cc for some )\ < k.

e Kurepa (1963): If P satisfies the A*-cc, then P? satisfies the
(22)F-cc. O
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precaliber Nq;

» (Fleissner, 1978; Roitman, 1979): After adding
random/Cohen real, Cy, fails;

A\ 2 /

(Todorcevic, 1988): b = Ry refutes Cy,.

Open problem
Is MAy, equivalent to Cy,?

(Galvin, 1980) after (Laver, unpublished): ¢ = X; refutes Cy,.
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The case k > N;. Counterexamples in ZFC

Theorem (Todorcevic, 1985)

Cef(2,.4,) fails for every limit ordinal a.
Moreover, if A is a cardinal for which there exists a linear order of
size 2* with a dense subset of size ), then C, fails, for k = cf(2A).

Theorem (Todorcevic, 1986)
Cy+ fails whenever X singular, and 0<F(*) < X for all 6 < .

Theorem (Todorcevic, 1989)
Cy+ fails whenever X singular, and 2¢F(%) < X,

Theorem (Shelah, 1994)

Cy+ fails whenever X singular.
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Cy+ fails whenever )\ is a regular cardinal > N;. Specifically:
> [Sh:280]: A > 2%o;
> [Sh:327]: A > Ny;
» [Sh:572]: A = Ny.

Corollary

C, fails for every successor cardinal k > Nj.

Conjecture (Todorcevic, 1980's)

For all regular cardinal k > Wy, Cy iff x is weakly compact.

Theorem (2014)

For all regular cardinal s > Ry, C, entails (k is weakly compact)*.
In fact, C,; entails —=[J(x) & every stationary subset of x reflects.
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Characterization theorem (Cox and Liicke, 2016)

For every regular uncountable cardinal k:

Kk is weakly compact iff every k-cc poset is k-stationarily layered.
Non-characterization theorem (Cox and Liicke, 2016)

Suppose k is weakly compact. In some cofinality-preserving forcing
extension:

For every 0 < k, the class of k-Knaster posets is closed under
0-support products, yet, k is not weakly compact.

Theorem (Lambie-Hanson and Liicke, 2018)

Suppose 0 < k are infinite and regular.
If the class of k-Knaster posets is closed under 0-support products,
then —[J(k), so that (x is weakly comapct)*.
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They proved that such a tree exists, assuming [J(k).

We would like to obtain the conclusions of Lambie-Hanson and
Liicke from ZFC, e.g., getting a ZFC example of an Ny-Knaster
poset whose wt-power is not Rp-cc.

For this, let us revisit Galvin's approach.
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o P:={(x,i) | x € [K]<¥, c"[x]2 C {i}};
e Q:={(x,i) | x €[k c"[x]>?Ni=0}

Ordering: (x, i) extends (y,j) iff x D y and i = j.

Key feature
e P2 fails to have the k-cc, e.g., {{({a},i)|i<2)|a <k}
e QY fails to have the k-cc, e.g., {{({a},i)|i<8)|a <k}

About P2,

Fora < f < kandi:=c(a,fB), ({a},1—1i)and ({8},1—1) are
incompatible in P. []
About QF.

Fora < p <k andi:=c(a,p), ({a},i+1)and ({8},i+1) are
incompatible in Q. O
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e Q:={(x,i) | x €[k c"[x]>?Ni=0}
Ordering: (x, i) extends (y,j) iff x O y and i =.
Key feature

e P2 fajls to have the k-cc:

e QY fails to have the k-cc.

The heart of the matter is to construct ¢ for which the corresponding
P be k-cc, or Q7 be k-Knaster for all 7 < 6.

By a simple reverse-engineering process, one arrives at a reformula-
tion of these features in the language of the coloring c.

The poset PP was analyzed by Galvin, giving birth to Pry(...).
Today, we shall focus on the poset Q.
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Unbounded functions

Suppose Q = {(x,i) | x € [5]<¥,c"“[x]* N i = 0} is derived from
c : [k]> — 6. Assuming 0 € Reg(k), Q is x-Knaster iff it has
precaliber « iff ¢ witnesses U(k, 6):
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U(k, 0) asserts that there exists a coloring c : [k]?> — 6 such that
for every family A C []<“ consisting of k-many pairwise disjoint
sets, and every i < 6, there is B € [A]" such that

min(c[a X b]) > i for every pair a < b from B.
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Unbounded functions

Suppose Q = {(x,i) | x € [5]<¥,c"“[x]* N i = 0} is derived from
c : [k]> — 6. Assuming 0 € Reg(k), Q is x-Knaster iff it has
precaliber « iff ¢ witnesses U(k, 6):

Definition

U(k, 0) asserts that there exists a coloring c : [k]?> — 6 such that
for every family A C []<“ consisting of k-many pairwise disjoint
sets, and every i < 6, there is B € [A]" such that

min(c[a X b]) > i for every pair a < b from B.

There's also a x-closed variation: {(x, ) | x € [k]<X, c“[x]*Ni = 0}.
For this, we need:

Definition

U(k, 8, x) asserts there is a coloring ¢ : [k]?> — 6 such that for
every X' < x, every family A C [s]X" consisting of x-many pairwise
disjoint sets, and every i < 6, there is B € [A]" such that

min(c[a x b]) > i for every pair a < b from 5.
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The coloring axiom

Definition

U(k, 1, 0, x) asserts there is a coloring c : [k]?> — 6 such that for
every x' < x, every family A C [s]X" consisting of x-many pairwise
disjoint sets, and every i < 0, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

Note that Pri(k, &, 0, x) entails U(k, 2,0, x).
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Suppose x, 0 € Reg(k) and that k is (<x)-inaccessible.
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The coloring axiom

Definition

U(k, 1, 0, x) asserts there is a coloring c : [k]?> — 6 such that for
every x' < x, every family A C [s]X" consisting of x-many pairwise
disjoint sets, and every i < 0, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

Proposition

Suppose x, 0 € Reg(k) and that k is (<x)-inaccessible.
For every coloring c : [k]?> — 6 witnessing U(k, 11,0, x),
the corresponding poset Q satisfies the following:

» QY is not k-cc;
» if u =2, then Q7 is k-cc for all T < min{x, 0},
» if u =K, then Q" has precaliber k for all T < min{x, 0},

» Q is well-met and x-directed-closed with greatest lower
bounds.
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The coloring axiom

Definition

U(k, 1, 0, x) asserts there is a coloring c : [k]?> — 6 such that for
every x' < x, every family A C [s]X" consisting of x-many pairwise
disjoint sets, and every i < 0, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

Conjecture
For k regular uncountable,  is weakly compact iff = U(k, 2,w, 2).
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The coloring axiom

Definition

U(k, 1, 0, x) asserts there is a coloring c : [k]?> — 6 such that for
every x' < x, every family A C [s]X" consisting of x-many pairwise
disjoint sets, and every i < 0, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

Conjecture
For k regular uncountable,  is weakly compact iff = U(k, 2,w, 2).

Put differently, we ask whether the existence of a k-Aronszajn tree
gives rise to a coloring ¢ : [k]2 — w with the property that
sup(c“[A]?) = w for every A € [k]".
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The coloring axiom

Definition

U(k, 1, 0, x) asserts there is a coloring c : [k]?> — 6 such that for
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min(c[a x b]) > i for every pair a < b from B.
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Partial answer 1
The existence of a k-Aronszajn tree with an w-ascent path entails
U(k,2,w,w).
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Definition

U(k, 1, 0, x) asserts there is a coloring c : [k]?> — 6 such that for
every x' < x, every family A C [s]X" consisting of x-many pairwise
disjoint sets, and every i < 0, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

Conjecture
For k regular uncountable,  is weakly compact iff = U(k, 2,w, 2).

Partial answer 1

The existence of a k-Aronszajn tree with an w-ascent path entails
U(k,2,w,w).

Partial answer 2 (with Todorcevic)

The existence of a coherent k-Aronszajn tree entails U(k, 2, w, w)

but not U(k, K, w,w).
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Inspecting the parameters

Definition

U(k, i, 0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for
every X' < x, every family A C [s]X" consisting of x-many pairwise
disjoint sets, and every i < 6, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from 5.

About the second parameter
> U(k,2,0,x) iff U(k,w, 0, x);
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Inspecting the parameters

Definition

U(k, 11,0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for
every x/ < x, every family A C [s]X" consisting of k-many pairwise
disjoint sets, and every i < 6, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

About the second parameter
> U(k,2,0,x) iff U(k,w, 0, x);
» Suppose ¢ = U(k,2,0,x). If cis closed, then
¢ = U(k, &, 0, x).

Definition
c: [k]> — 0 is closed iff {a < 8| c(e, ) < i} is closed below j3
forall B <k, i<@.
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Inspecting the parameters

Definition

U(k, 11,0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for
every x' < x, every family A C [s]X" consisting of k-many pairwise
disjoint sets, and every i < 6, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

About the third parameter
» U(k, K, k, k) holds;
> U(K‘v L, 97 X) iff U(K” Hy Cf(e)’ X);

Therefore, hereafter, we shall focus on 6 € Reg(k).
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Inspecting the parameters

Definition

U(k, 11,0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for
every x/ < x, every family A C [s]X" consisting of k-many pairwise
disjoint sets, and every i < 6, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

About the third parameter
» U(k, K, k, k) holds;
> U(k, p, 0, x) iff U(k, u, cf(0), x);
» Lack of monotonicity: If A is the singular limit of strongly

compact cardinals, then, for every 6 < A,
U, AT, 0, )) iff cf(0) = cf(N).
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Inspecting the parameters

Definition

U(k, 11,0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for
every x/ < x, every family A C [s]X" consisting of k-many pairwise
disjoint sets, and every i < 6, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

About the fourth parameter
» U(k, k,0,3) iff U(k, k,0,w);
> U(NT,2,0,2) iff UNT,2,0,cf(N));
The above is optimal: If A is the limit of strongly compact cardinals,

0 € Reg(\) with 6 = cf()), then U(A, 2,6, x) holds for y := cf()\),
but fails for y := cf(\)".
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Inspecting the parameters

Definition

U(k, 11,0, x) asserts there is a coloring ¢ : [k]?> — 6 such that for
every x/ < x, every family A C [s]X" consisting of k-many pairwise
disjoint sets, and every i < 6, there is B € [A]* such that

min(c[a x b]) > i for every pair a < b from B.

About the fourth parameter
» U(k, k,0,3) iff U(k, k,0,w);
> U(NT,2,0,2) iff UNT,2,0,cf(N));
» There are «, 6 and colorings ¢, ¢ = U(k, k,0,2), but
c [~ U(k,2,0,3);
» If there is a closed witness to U(AT, AT, 6,2), then there is
one for U(AT, AT, 60, cf(N)).
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Further findings

Theorem
For every regular \ and 6 € Reg(\*), there is ¢ : [A\]?> — 6
witnessing U(AT, A*, 0, \) which is moreover closed.
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Further findings

Theorem
For every regular \ and 6 € Reg(\*), there is ¢ : [A\]?> — 6
witnessing U(AT, A*, 0, \) which is moreover closed.

In case you wondered

The corresponding tree T (c) :={c(-,7) | B| B <y < Kk} may
consistently be a special k-Aronszajn tree, as well as an
almost Souslin k-Aronszajn tree.
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witnessing U(AT, A*, 0, \) which is moreover closed.

Corollary

There exists an Ro-Knaster poset whose wtf-power is not Ro-cc.
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Theorem
For every regular \ and 6 € Reg(\*), there is ¢ : [A\]?> — 6
witnessing U(AT, A*, 0, \) which is moreover closed.

Corollary

There exists an Ro-Knaster poset whose wtf-power is not Ro-cc.

More generally

Suppose that 0 < x < X are regular, with A<X = \.
Then there exists a x-directed-closed poset Q such that:

» Q7 has precaliber \* for all T < 0;
> QY is not \t-cc.
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Further findings

Theorem

For every regular \ and 6 € Reg(\*), there is ¢ : [A\]?> — 6
witnessing U(AT, A*, 0, \) which is moreover closed.

Corollary

There exists an Ro-Knaster poset whose wtf-power is not Ro-cc.
CH = Jo-closed Ro-Knaster poset whose w!-power is not Ro-cc.

Open problem

Does CH entail a o-closed Ny-cc poset whose square is not Np-cc?
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Further findings (cont.)

Theorem
For every singular A and 6 € Reg()\), any of the following entail
the existence of a closed witness to UAT, AT, 0, cf()\)):

> 2N — )\—i-'.

Refl(< cf(X), AT) fails;
0 =w or§ =cf(\),

0 <v<vt=cf(\),

>
>
>
> 6§ < cf(A) and cf(NSgf(n), C) < A

22/34



Further findings (cont.)

Theorem
For every singular A and 6 € Reg()\), any of the following entail
the existence of a closed witness to U(AT, AT, 0, cf(N\)):

> 2/\ — )\-l-'.

> Refl(<cf(N), A1) fails,

» 0 =w orf =cf(N),

> 0 <v<vt=cf());

> 6§ < cf(A) and cf(NSgf(n), C) < A
Corollary

If the class of k-Knaster posets is closed under w powers,
then k is inaccessible.
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Further findings (cont.)

Theorem
For every singular A and 6 € Reg()\), any of the following entail
the existence of a closed witness to UAT, AT, 0, cf()\)):

b 2N = )\t

> Refl(<cf(N), A1) fails,

» 0 =w orf =cf(N),

> 0 <v<vt=cf(\),

> 6§ < cf(A) and cf(NSgf(n), C) < A
Theorem

For every 6, x € Reg(k), any of the following entails the existence
of a closed witness to U(k, k, 0, x):

> O(k, <w) or OM(k,0);
» dstationary S C E’gx with S N« nonstationary for o € EZ ;

> dstationary S C EX, with 5N« nonstationary for all

a € Reg(k), and & is inacc.
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A new cardinal invariant
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The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal x, the following are
equivalent:
1. k is weakly compact;

2. For every C-sequence (Cs | B < k), there exist A € [k]" and
b: K — £k such that AN a = Cyy) Na for every a < k.

Recall

(Cs | B < k) is a C-sequence iff each Cg is closed subset of 5 with
sup(Cs) = sup(5).
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2. For every C-sequence (Cs | B < k), there exist A € [k]" and
b: K — £k such that AN a = Cyy) Na for every a < k.

The cardinal invariant that we introduce suggests a way to measure
how far an inaccessible cardinal k is from being weakly compact,
though, will see it is of interest for successor cardinals as well.
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The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal x, the following are
equivalent:
1. k is weakly compact;
2. For every C-sequence (Cs | B < k), there exist A € [k]" and
b: K — £k such that AN a = Cyy) Na for every a < k.

The cardinal invariant that we introduce suggests a way to measure
how far an inaccessible cardinal k is from being weakly compact,
though, will see it is of interest for successor cardinals as well.

Definition (The C-sequence number of k)
If k is weakly compact, then let x(k) := 0.
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For every strongly inaccessible cardinal x, the following are
equivalent:
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2. For every C-sequence (Cs | B < k), there exist A € [k]" and
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though, will see it is of interest for successor cardinals as well.

Definition (The C-sequence number of k)
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The C-sequence number

Theorem (Todorcevic, 1987)
For every strongly inaccessible cardinal x, the following are

equivalent:
1. k is weakly compact;

2. For every C-sequence (Cs | B < k), there exist A € [k]" and
b: K — £k such that AN a = Cyy) Na for every a < k.

Note that x(k) is well-defined. In fact, x(x) < sup(Reg(k)).

Definition (The C-sequence number of k)

If k is weakly compact, then let x(k) := 0.

Otherwise, let x (k) denote the least x < k such that, for every
C-sequence (Cg | 5 < k), there exist A € [k]* and b : k — [K]X
with AN a € Ugep(a) Cp for all o < k.
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The C-sequence number

Todorcevic's analysis of the number of steps function readily estab-
lishes the following.

The C-sequence number and yoU

U(k, k,w, x(K)) holds, as witnessed by the closed function ps.

However, it is consistent that U(k, k,w, x) holds with x > x(k).

Definition (The C-sequence number of k)

If k is weakly compact, then let x(k) := 0.

Otherwise, let x (k) denote the least x < k such that, for every
C-sequence (Cs | B < k), there exist A € [k]" and b: k — [K]X
with AN a € Ugep(a) Cp for all o < k.
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lishes the following.

The C-sequence number and yoU

U(k, k,w, x(K)) holds, as witnessed by the closed function ps.

However, it is consistent that U(k, k,w, x) holds with x > x(k).

Corollary

If the class of k-Knaster posets is closed under taking w powers,
then x(k) < w.

Definition (The C-sequence number of k)

If k is weakly compact, then let x(k) := 0.
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The C-sequence number

Questions
e Is “y(k) < w" a large cardinal property?
e How about “x(k) < sup(Reg(k))"?
e Could x(k) be singular?

Corollary

If the class of k-Knaster posets is closed under taking w powers,
then x(k) < w.

Definition (The C-sequence number of k)

If k is weakly compact, then let x(k) := 0.

Otherwise, let x (k) denote the least x < k such that, for every
C-sequence (Cg | 5 < k), there exist A € [k]* and b : k — [K]X
with AN a € Ugep(a) Cp for all o < k.
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Increasing the C-sequence number
Kunen (1978) showed that by forcing over a model with a weakly
compact cardinal x, one obtains a model V' having a k-Souslin tree
S such that V® |= & is weakly compact.
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Kunen (1978) showed that by forcing over a model with a weakly
compact cardinal x, one obtains a model V' having a k-Souslin tree
S such that V® |= & is weakly compact.
Proposition
In Kunen'’s model, x(r) = 1.
Proof. The k-Souslin tree witnesses that x is not weakly compact,
so x(k) # 0.
Now, let C = (Cs | B < k) be an arbitrary C-sequence.
In VS, Cis a C-sequence over a weakly compact cardinal k, and
hence there is A € [s]™ and b: k — k with AN a = Cyq) Na for
each a < k. Clearly, A is a club.
As S is k-cc, thereis a club D C k in V, with D C A.
Then DNa C Cpo) Na for each a < k. g

Theorem

Suppose x(k) = 0. For every 0 € Reg(k™), there is a
cofinality-preserving forcing extension in which k remains strongly
inaccessible, and x (k) = 6. 25 /34



Increasing the C-sequence number (cont.)

Observation
cf(\) < x(A1) < A

1The latter assumes the consistency of a supercompact.
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Increasing the C-sequence number (cont.)

Observation
cf(\) < x(A1) < A

Theorem
If X is a singular limit of supercompacts, then x(AT) = cf(}\).

Theorem
If X is a singular limit of supercompacts, and 6 € Reg(\) \ cf()),
then, in some cofinality-preserving forcing extension, x(AT) = 6.

Theorem

X(Ryr1) = Ry, is consistent, and so is x(Ry11) = w.!

1The latter assumes the consistency of a supercompact.
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How large

Theorem

1. Refl(<w, EX )
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How large

Theorem

1.

AN A

Refl(<w, E';X(H));

If x(k) < w, then x(r) € {0,1};

If k is inaccessible and x(k) < K, then k is w-Mahlo;
If x(k) =1, then O(k, <p) fails for all 1 < k;

If x(k) = 1, then, for every sequence (S; | i < k) of stationary
subsets of k, there exists an inaccessible 3 < k such that
Si N B is stationary in B for all i < (.
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How large

Theorem
1. Refl(<w, E';X(H));
2. If x(k) < w, then x(x) € {0,1};
3. If k is inaccessible and x(k) < k, then k is w-Mahlo;
4. If x(k) = 1, then O(k, <u) fails for all i < k;
5. If x(k) =1, then, for every sequence (S; | i < k) of stationary
subsets of k, there exists an inaccessible 3 < k such that
Si N B is stationary in B for all i < (.
Corollary

» In L, either x(k) = 0 or x(r) = sup(Reg(k)),
» [(k, <w) entails x(r) = sup(Reg(k));
» If x(k) =1, then k is greatly Mahlo.

28 /34



How large

Theorem

1.

Refl(<w, E';X(H));

2. If x(k) < w, then x(x) € {0,1};
3. If k is inaccessible and x(k) < k, then k is w-Mahlo;
4. If x(k) =1, then O(k, <p) fails for all p < k;
5. If x(k) =1, then, for every sequence (S; | i < k) of stationary
subsets of k, there exists an inaccessible 3 < k such that
Si N B is stationary in 8 for all i < 3.
Corollary

If the class of k-Knaster posets is closed under w powers,
then k is greatly Mahlo.
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The C-sequence spectrum

Definition . .
For a C-sequence C = (Cg | B < k), let x(C) denote the least
cardinal x < k such that there exist A € [k]" and b : k — [r]X

with AN a € Ugep(q) Cp for every a < k.
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The C-sequence spectrum
Definition . .
For a C-sequence C = (Cg | B < k), let x(C) denote the least
cardinal x < k such that there exist A € [k]" and b : k — [r]X
with AN a € Ugep(q) Cp for every a < k.
Definition
Cspec(k) := {x(C) | C is a C-sequence over k} \ w.
Theorem

1. If Cspec(k) #
2. If Cspec(k) #
3. x € Cspec(k) = cf(x) € Cspec(k), but not <.

0, then x(x) = max(Cspec(kx));
(), then min(Cspec(k)) = w;

Open problem

Is Cspec(k) an interval? Is it a closed set?
Is every limit uncountable cardinal in Cspec(x) an accumulation
point of Cspec(k)?
30/34
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Unexpected equivalency

Theorem

For every 6 € Reg(k), the following are equivalent:
e 0 € Cspec(k),
e There exists a closed witness to U(k, K, 0, 0).

The forward implication works for @ singular; the backward does not.
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Unexpected equivalency

Theorem

For every 6 € Reg(k), the following are equivalent:
e 0 € Cspec(k),
e There exists a closed witness to U(k, K, 0, 0).

Corollary
e If K is a successor of a regular, then Reg(r) C Cspec(k);
e If k is a non-Mahlo inaccessible, then Reg(r) C Cspec(k);
e If0(k,<w) holds, then Reg(x) C Cspec(k);

o If EZ, admits a non-reflecting stationary subset, then
Reg(x") C Cspec().
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Conjectures

YOU GET A CONJECTURE!

AND YOU GET A
CONJECTURE!

EVERBODY GETS A CONJECTURE!




Conjectures

1. If x(k) =1, then, in some set-forcing extension, x(x) = 0.

2. If x(k) =1, then, there exists a coherent k-Aronszajn tree.

w

N o o s

If k is inaccessible and 1 < x(k) < &, then there exists a
k-Aronszajn tree with a x(x)-ascent path.

Any U(k, K, ...) may be witnessed by a closed coloring.
If x(k) is singular, then cf(x(x)) = cf(sup(Reg(x))).
Reg(cf(A\)™) C Cspec(AT) for every singular .

For all 6, x € Cspec(k), U(k, x, 8, x) holds.
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Thank you for your attention!
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