Chain conditions, unbounded colorings and the C-sequence spectrum

> Assaf Rinot
> Bar-llan University
> 23-September-2019
> XV Luminy workshop in Set Theory

Centre International de Rencontres Mathmatiques, Marseille

Bibliography

Most results are taken from the following joint papers with Chris Lambie-Hanson:

1. Knaster and friends I:
2. Knaster and friends II:
3. Knaster and friends III:

Bibliography

Most results are taken from the following joint papers with Chris Lambie-Hanson:

1. Knaster and friends I: Closed colorings and precalibers, Algebra Universalis, 79(4), Art. 90, 39 pp., 2018.
2. Knaster and friends II:
3. Knaster and friends III:

Bibliography

Most results are taken from the following joint papers with Chris Lambie-Hanson:

1. Knaster and friends I: Closed colorings and precalibers, Algebra Universalis, 79(4), Art. 90, 39 pp., 2018.
2. Knaster and friends II: The C-sequence number, to be submitted.
3. Knaster and friends III:

Bibliography

Most results are taken from the following joint papers with Chris Lambie-Hanson:

1. Knaster and friends I : Closed colorings and precalibers, Algebra Universalis, 79(4), Art. 90, 39 pp., 2018.
2. Knaster and friends II: The C-sequence number, to be submitted.
3. Knaster and friends III: Subadditive colorings and stationarily layered posets, in preparation.

Conventions

- κ and λ denote infinite cardinals;
- $\operatorname{Reg}(\kappa):=\left\{\theta<\kappa \mid \operatorname{cf}(\theta)=\theta \geq \aleph_{0}\right\} ;$

Conventions

- κ and λ denote infinite cardinals;
- $\operatorname{Reg}(\kappa):=\left\{\theta<\kappa \mid \operatorname{cf}(\theta)=\theta \geq \aleph_{0}\right\}$;
- $E_{\geq \chi}^{\kappa}:=\{\alpha<\kappa \mid \operatorname{cf}(\alpha) \geq \chi\}$ and $E_{>\chi}^{\bar{\kappa}} \chi:=\{\alpha<\kappa \mid \operatorname{cf}(\alpha)>\chi\} ;$

Conventions

- κ and λ denote infinite cardinals;
- $\operatorname{Reg}(\kappa):=\left\{\theta<\kappa \mid \operatorname{cf}(\theta)=\theta \geq \aleph_{0}\right\}$;
- $E_{\geq \chi}^{\kappa}:=\{\alpha<\kappa \mid \operatorname{cf}(\alpha) \geq \chi\}$ and $E_{>\chi}^{\bar{\kappa}}:=\{\alpha<\kappa \mid \operatorname{cf}(\alpha)>\chi\} ;$
- $[A]^{\chi}:=\{a \subseteq A| | a \mid=\chi\}$ and $[A]^{<\chi}:=\{a \subseteq A| | a \mid<\chi\} ;$

Conventions

- κ and λ denote infinite cardinals;
- $\operatorname{Reg}(\kappa):=\left\{\theta<\kappa \mid \operatorname{cf}(\theta)=\theta \geq \aleph_{0}\right\}$;
- $E_{\geq \chi}^{\kappa}:=\{\alpha<\kappa \mid \operatorname{cf}(\alpha) \geq \chi\}$ and $E_{>\chi}^{\kappa} \chi:=\{\alpha<\kappa \mid \operatorname{cf}(\alpha)>\chi\} ;$
- $[A]^{\chi}:=\{a \subseteq A| | a \mid=\chi\}$ and $[A]^{<\chi}:=\{a \subseteq A| | a \mid<\chi\} ;$
- For a, b, nonempty sets of ordinals, $a<b$ means that $\sup (a)<\min (b)$.

Chain conditions

Chain conditions

Let $\mathbb{P}:=\langle P, \leq\rangle$ denote a poset.
Definition
For a subset $X \subseteq P$, we write $\bigwedge X:=\{z \in P \mid \forall x \in X(z \leq x)\}$.

Chain conditions

Let $\mathbb{P}:=\langle P, \leq\rangle$ denote a poset.
Definition
For a subset $X \subseteq P$, we write $\bigwedge X:=\{z \in P \mid \forall x \in X(z \leq x)\}$. We say that $x, y \in P$ are compatible iff $\bigwedge\{x, y\} \neq \emptyset$.

Chain conditions

Let $\mathbb{P}:=\langle P, \leq\rangle$ denote a poset.
Definition
For a subset $X \subseteq P$, we write $\bigwedge X:=\{z \in P \mid \forall x \in X(z \leq x)\}$.
We say that $x, y \in P$ are compatible iff $\bigwedge\{x, y\} \neq \emptyset$.
Definition

- \mathbb{P} satisfies the κ-cc iff $\forall A \in[P]^{\kappa} \exists X \in[A]^{2} \bigwedge X \neq \emptyset$;

Chain conditions

Let $\mathbb{P}:=\langle P, \leq\rangle$ denote a poset.
Definition
For a subset $X \subseteq P$, we write $\bigwedge X:=\{z \in P \mid \forall x \in X(z \leq x)\}$.
We say that $x, y \in P$ are compatible iff $\bigwedge\{x, y\} \neq \emptyset$.
Definition

- \mathbb{P} satisfies the κ-cc iff $\forall A \in[P]^{\kappa} \exists X \in[A]^{2} \bigwedge X \neq \emptyset$;
- \mathbb{P} is κ-Knaster iff $\forall A \in[P]^{\kappa} \exists B \in[A]^{\kappa} \forall X \in[B]^{2} \bigwedge X \neq \emptyset$;

Chain conditions

Let $\mathbb{P}:=\langle P, \leq\rangle$ denote a poset.
Definition
For a subset $X \subseteq P$, we write $\bigwedge X:=\{z \in P \mid \forall x \in X(z \leq x)\}$.
We say that $x, y \in P$ are compatible iff $\bigwedge\{x, y\} \neq \emptyset$.
Definition

- \mathbb{P} satisfies the κ-cc iff $\forall A \in[P]^{\kappa} \exists X \in[A]^{2} \bigwedge X \neq \emptyset$;
- \mathbb{P} is κ-Knaster iff $\forall A \in[P]^{\kappa} \exists B \in[A]^{\kappa} \forall X \in[B]^{2} \bigwedge X \neq \emptyset$;
- \mathbb{P} has precaliber κ iff
$\forall A \in[P]^{\kappa} \exists B \in[A]^{\kappa} \forall X \in[B]^{<\omega} \wedge X \neq \emptyset$.

Chain conditions

Let $\mathbb{P}:=\langle P, \leq\rangle$ denote a poset.
Definition
For a subset $X \subseteq P$, we write $\bigwedge X:=\{z \in P \mid \forall x \in X(z \leq x)\}$.
We say that $x, y \in P$ are compatible iff $\bigwedge\{x, y\} \neq \emptyset$.
Definition

- \mathbb{P} satisfies the κ-cc iff $\forall A \in[P]^{\kappa} \exists X \in[A]^{2} \bigwedge X \neq \emptyset$;
- \mathbb{P} is κ-Knaster iff $\forall A \in[P]^{\kappa} \exists B \in[A]^{\kappa} \forall X \in[B]^{2} \wedge X \neq \emptyset$;
- \mathbb{P} has precaliber κ iff $\forall A \in[P]^{\kappa} \exists B \in[A]^{\kappa} \forall X \in[B]^{<\omega} \wedge X \neq \emptyset$.
- \mathbb{P} is κ-stationarily layered iff the following set is stationary: $\left\{Q \in[P]^{<\kappa} \mid\langle Q, \leq\rangle\right.$ is a regular suborder of $\left.\mathbb{P}\right\}$.

The product order (aka, coordinatewise order)

Given posets $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$, consider their product $\left\langle P_{1} \times P_{2}, \unlhd\right\rangle$, where $(x, y) \unlhd\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq_{1} x^{\prime}$ and $y \leq_{2} y^{\prime}$.

The product order (aka, coordinatewise order)

Given posets $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$, consider their product $\left\langle P_{1} \times P_{2}, \unlhd\right\rangle$, where $(x, y) \unlhd\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq_{1} x^{\prime}$ and $y \leq_{2} y^{\prime}$. (Longer products are defined analogously.)

The product order (aka, coordinatewise order)

Given posets $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$, consider their product $\left\langle P_{1} \times P_{2}, \unlhd\right\rangle$, where $(x, y) \unlhd\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq_{1} x^{\prime}$ and $y \leq_{2} y^{\prime}$. (Longer products are defined analogously.)
Question
Suppose that $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$ satisfy the κ-cc. Must their product satisfy the κ-cc?

The product order (aka, coordinatewise order)

Given posets $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$, consider their product $\left\langle P_{1} \times P_{2}, \unlhd\right\rangle$, where $(x, y) \unlhd\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq_{1} x^{\prime}$ and $y \leq_{2} y^{\prime}$. (Longer products are defined analogously.)
Question
Suppose that $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$ satisfy the κ-cc. Must their product satisfy the κ-cc?

Sufficient condition

If one of the posets is moreover κ-Knaster, then "yes".

The product order (aka, coordinatewise order)

Given posets $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$, consider their product $\left\langle P_{1} \times P_{2}, \unlhd\right\rangle$, where $(x, y) \unlhd\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq_{1} x^{\prime}$ and $y \leq_{2} y^{\prime}$. (Longer products are defined analogously.)
Question
Suppose that $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$ satisfy the κ-cc. Must their product satisfy the κ-cc?

Sufficient condition

If one of the posets is moreover κ-Knaster, then "yes".

Definition

Let \mathcal{C}_{κ} denote the assertion that the product of any two κ-cc posets is again κ-cc.

The product order (aka, coordinatewise order)

Given posets $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$, consider their product $\left\langle P_{1} \times P_{2}, \unlhd\right\rangle$, where $(x, y) \unlhd\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq_{1} x^{\prime}$ and $y \leq_{2} y^{\prime}$. (Longer products are defined analogously.)
Question
Suppose that $\left\langle P_{1}, \leq_{1}\right\rangle,\left\langle P_{2}, \leq_{2}\right\rangle$ satisfy the κ-cc. Must their product satisfy the κ-cc?

Sufficient condition
If one of the posets is moreover κ-Knaster, then "yes".

Definition

Let \mathcal{C}_{κ} denote the assertion that the product of any two κ-cc posets is again κ-cc.

Note: It suffices to consider squares
\mathcal{C}_{κ} iff \mathbb{P}^{2} is κ-cc for every κ-cc poset \mathbb{P}.

Basic facts

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous. As $|B|=\kappa$ and $\langle P, \leq\rangle$ satisfies the κ-cc, there exists $X \in[B]^{2}$ with $\bigwedge X \neq \emptyset$.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous. As $|B|=\kappa$ and $\langle P, \leq\rangle$ satisfies the κ-cc, there exists $X \in[B]^{2}$ with $\bigwedge X \neq \emptyset$. But B is c-homogeneous, and hence, for every $X \in[B]^{2}, \bigwedge X \neq \emptyset$, so that B is as sought.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous. As $|B|=\kappa$ and $\langle P, \leq\rangle$ satisfies the κ-cc, there exists $X \in[B]^{2}$ with $\bigwedge X \neq \emptyset$. But B is c-homogeneous, and hence, for every $X \in[B]^{2}, \wedge X \neq \emptyset$, so that B is as sought.
Fact $2 . \mathcal{C}_{\kappa}$ holds for κ weakly compact.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous. As $|B|=\kappa$ and $\langle P, \leq\rangle$ satisfies the κ-cc, there exists $X \in[B]^{2}$ with $\bigwedge X \neq \emptyset$. But B is c-homogeneous, and hence, for every $X \in[B]^{2}, \wedge X \neq \emptyset$, so that B is as sought.
Fact 2. \mathcal{C}_{κ} holds for κ weakly compact.
κ is weakly compact iff $\kappa>\aleph_{0}$ and for every $c:[\kappa]^{2} \rightarrow 2$, there exists $B \in[\kappa]^{\kappa}$ which is homogeneous for c.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous. As $|B|=\kappa$ and $\langle P, \leq\rangle$ satisfies the κ-cc, there exists $X \in[B]^{2}$ with $\bigwedge X \neq \emptyset$. But B is c-homogeneous, and hence, for every $X \in[B]^{2}, \wedge X \neq \emptyset$, so that B is as sought.
Fact $2 . \mathcal{C}_{\kappa}$ holds for κ weakly compact.
κ is weakly compact iff $\kappa>\aleph_{0}$ and for every $c:[\kappa]^{2} \rightarrow 2$, there exists $B \in[\kappa]^{\kappa}$ which is homogeneous for c.
Fact 3. \mathcal{C}_{κ} holds for κ singular strong limit.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous. As $|B|=\kappa$ and $\langle P, \leq\rangle$ satisfies the κ-cc, there exists $X \in[B]^{2}$ with $\bigwedge X \neq \emptyset$. But B is c-homogeneous, and hence, for every $X \in[B]^{2}, \bigwedge X \neq \emptyset$, so that B is as sought.
Fact $2 . \mathcal{C}_{\kappa}$ holds for κ weakly compact.
κ is weakly compact iff $\kappa>\aleph_{0}$ and for every $c:[\kappa]^{2} \rightarrow 2$, there exists $B \in[\kappa]^{\kappa}$ which is homogeneous for c.
Fact 3. \mathcal{C}_{κ} holds for κ singular strong limit.

- Erdős and Tarski (1943): If κ is a singular cardinal and a poset \mathbb{P} satisfies the κ-cc, then \mathbb{P} satisfies the λ-cc for some $\lambda<\kappa$.

Basic facts

Fact 1. \mathcal{C}_{κ} holds for $\kappa=\aleph_{0}$.
We moreover show that every κ-cc poset $\langle P, \leq\rangle$ is κ-Knaster. Given $A \in[P]^{\kappa}$, define a coloring $c:[A]^{2} \rightarrow 2$ via $c(x, y)=1$ iff $\bigwedge\{x, y\} \neq \emptyset$. By Ramsey's theorem, there exists $B \in[A]^{\kappa}$ which is c-homogeneous. As $|B|=\kappa$ and $\langle P, \leq\rangle$ satisfies the κ-cc, there exists $X \in[B]^{2}$ with $\bigwedge X \neq \emptyset$. But B is c-homogeneous, and hence, for every $X \in[B]^{2}, \bigwedge X \neq \emptyset$, so that B is as sought.
Fact 2. \mathcal{C}_{κ} holds for κ weakly compact.
κ is weakly compact iff $\kappa>\aleph_{0}$ and for every $c:[\kappa]^{2} \rightarrow 2$, there exists $B \in[\kappa]^{\kappa}$ which is homogeneous for c.
Fact 3. \mathcal{C}_{κ} holds for κ singular strong limit.

- Erdős and Tarski (1943): If κ is a singular cardinal and a poset \mathbb{P} satisfies the κ-cc, then \mathbb{P} satisfies the λ-cc for some $\lambda<\kappa$.
- Kurepa (1963): If \mathbb{P} satisfies the λ^{+}-cc, then \mathbb{P}^{2} satisfies the $\left(2^{\lambda}\right)^{+}$-cc.

The case $\kappa=\aleph_{1}$.
Question (Marczewski, 1947)
Is $\mathcal{C}_{\aleph_{1}}$ (aka, "productivity of the $c c c$ ") true?

The case $\kappa=\aleph_{1}$.

Question (Marczewski, 1947)
Is $\mathcal{C}_{\aleph_{1}}$ (aka, "productivity of the $c c c$ ") true?
Answers

- (Kurepa, 1952): $\mathcal{C}_{\aleph_{1}}$ entails Souslin's hypothesis.

The case $\kappa=\aleph_{1}$.

Question (Marczewski, 1947)

Is $\mathcal{C}_{\aleph_{1}}$ (aka, "productivity of the $c c c$ ") true?
Answers

- (Kurepa, 1952): $\mathcal{C}_{\aleph_{1}}$ entails Souslin's hypothesis.
- (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's) $\mathrm{MA}_{\aleph_{1}}$ entails $\mathcal{C}_{\aleph_{1}}$;

The case $\kappa=\aleph_{1}$.

Question (Marczewski, 1947)

Is $\mathcal{C}_{\aleph_{1}}$ (aka, "productivity of the $c c c$ ") true?

Answers

- (Kurepa, 1952): $\mathcal{C}_{\aleph_{1}}$ entails Souslin's hypothesis.
- (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's) $\mathrm{MA}_{\aleph_{1}}$ entails $\mathcal{C}_{\aleph_{1}}$;
« (Velickovic-Todorcevic, 1987) $\mathrm{MA}_{\aleph_{1}}$ iff every ccc poset has precaliber \aleph_{1};

The case $\kappa=\aleph_{1}$.

Question (Marczewski, 1947)

Is $\mathcal{C}_{\aleph_{1}}$ (aka, "productivity of the $c c c$ ") true?

Answers

- (Kurepa, 1952): $\mathcal{C}_{\aleph_{1}}$ entails Souslin's hypothesis.
- (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's) $\mathrm{MA}_{\aleph_{1}}$ entails $\mathcal{C}_{\aleph_{1}}$;
« (Velickovic-Todorcevic, 1987) $\mathrm{MA}_{\aleph_{1}}$ iff every ccc poset has precaliber \aleph_{1};
- (Fleissner, 1978; Roitman, 1979): After adding random/Cohen real, $\mathcal{C}_{\aleph_{1}}$ fails;
- (Galvin, 1980) after (Laver, unpublished): $\mathfrak{c}=\aleph_{1}$ refutes $\mathcal{C}_{\aleph_{1}}$.
- (Todorcevic, 1988): $\mathfrak{b}=\aleph_{1}$ refutes $\mathcal{C}_{\aleph_{1}}$.

The case $\kappa=\aleph_{1}$.

Question (Marczewski, 1947)

Is $\mathcal{C}_{\aleph_{1}}$ (aka, "productivity of the $c c c$ ") true?

Answers

- (Kurepa, 1952): $\mathcal{C}_{\aleph_{1}}$ entails Souslin's hypothesis.
- (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970's) $\mathrm{MA}_{\aleph_{1}}$ entails $\mathcal{C}_{\aleph_{1}}$;
« (Velickovic-Todorcevic, 1987) $\mathrm{MA}_{\aleph_{1}}$ iff every ccc poset has precaliber \aleph_{1};
- (Fleissner, 1978; Roitman, 1979): After adding random/Cohen real, $\mathcal{C}_{\aleph_{1}}$ fails;
- (Galvin, 1980) after (Laver, unpublished): $\mathfrak{c}=\aleph_{1}$ refutes $\mathcal{C}_{\aleph_{1}}$.
- (Todorcevic, 1988): $\mathfrak{b}=\aleph_{1}$ refutes $\mathcal{C}_{\aleph_{1}}$.

Open problem

Is $\mathrm{MA}_{\aleph_{1}}$ equivalent to $\mathcal{C}_{\aleph_{1}}$?

The case $\kappa>\aleph_{1}$. Counterexamples in ZFC

Theorem (Todorcevic, 1985)
$\mathcal{C}_{\mathrm{cf}\left(\beth_{\alpha+1}\right)}$ fails for every limit ordinal α.
Moreover, if λ is a cardinal for which there exists a linear order of size 2^{λ} with a dense subset of size λ, then \mathcal{C}_{κ} fails, for $\kappa=\operatorname{cf}\left(2^{\lambda}\right)$.

The case $\kappa>\aleph_{1}$. Counterexamples in ZFC

Theorem (Todorcevic, 1985)
$\mathcal{C}_{\mathrm{cf}\left(\beth_{\alpha+1}\right)}$ fails for every limit ordinal α.
Moreover, if λ is a cardinal for which there exists a linear order of size 2^{λ} with a dense subset of size λ, then \mathcal{C}_{κ} fails, for $\kappa=\operatorname{cf}\left(2^{\lambda}\right)$.

Theorem (Todorcevic, 1986)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ singular, and $\theta^{\text {cf }(\lambda)}<\lambda$ for all $\theta<\lambda$.
Theorem (Todorcevic, 1989)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ singular, and $2^{c f(\lambda)}<\lambda$.
Theorem (Shelah, 1994)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ singular.

More counterexamples in ZFC

Theorem (Shelah, 1990-1997)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ is a regular cardinal $\geq \aleph_{1}$. Specifically:

-
-
-

More counterexamples in ZFC

Theorem (Shelah, 1990-1997)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ is a regular cardinal $\geq \aleph_{1}$. Specifically:

-
-
-

Corollary
\mathcal{C}_{κ} fails for every successor cardinal $\kappa>\aleph_{1}$.

More counterexamples in ZFC

Theorem (Shelah, 1990-1997)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ is a regular cardinal $\geq \aleph_{1}$. Specifically:

-
-
-

Corollary
\mathcal{C}_{κ} fails for every successor cardinal $\kappa>\aleph_{1}$.
Conjecture (Todorcevic, 1980's)
For all regular cardinal $\kappa>\aleph_{1}, \mathcal{C}_{\kappa}$ iff κ is weakly compact.

More counterexamples in ZFC

Theorem (Shelah, 1990-1997)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ is a regular cardinal $\geq \aleph_{1}$. Specifically:

-
-
-

Corollary
\mathcal{C}_{κ} fails for every successor cardinal $\kappa>\aleph_{1}$.
Conjecture (Todorcevic, 1980's)
For all regular cardinal $\kappa>\aleph_{1}, \mathcal{C}_{\kappa}$ iff κ is weakly compact.
Theorem (2014)
For all regular cardinal $\kappa>\aleph_{1}, \mathcal{C}_{\kappa}$ entails (κ is weakly compact) ${ }^{L}$.

More counterexamples in ZFC

Theorem (Shelah, 1990-1997)
$\mathcal{C}_{\lambda^{+}}$fails whenever λ is a regular cardinal $\geq \aleph_{1}$. Specifically:

-
-
-

Corollary
\mathcal{C}_{κ} fails for every successor cardinal $\kappa>\aleph_{1}$.
Conjecture (Todorcevic, 1980's)
For all regular cardinal $\kappa>\aleph_{1}, \mathcal{C}_{\kappa}$ iff κ is weakly compact.
Theorem (2014)
For all regular cardinal $\kappa>\aleph_{1}, \mathcal{C}_{\kappa}$ entails (κ is weakly compact) ${ }^{L}$. In fact, \mathcal{C}_{κ} entails $\neg \square(\kappa)$ \& every stationary subset of κ reflects.

Longer products and stronger chain conditions

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions involving longer products and stronger variations of the κ-cc.

Longer products and stronger chain conditions

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions. We mention three results:

Characterization theorem (Cox and Lücke, 2016)
For every regular uncountable cardinal κ :
κ is weakly compact iff every κ-cc poset is κ-stationarily layered.

Longer products and stronger chain conditions

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions. We mention three results:

Characterization theorem (Cox and Lücke, 2016)
For every regular uncountable cardinal κ :
κ is weakly compact iff every κ-cc poset is κ-stationarily layered.
Non-characterization theorem (Cox and Lücke, 2016)
Suppose κ is weakly compact. In some cofinality-preserving forcing extension:
For every $\theta<\kappa$, the class of κ-Knaster posets is closed under θ-support products, yet, κ is not weakly compact.

Longer products and stronger chain conditions

Shortly after our work on Todorcevic's conjecture, Lücke and his colleagues addressed analogous questions. We mention three results:

Characterization theorem (Cox and Lücke, 2016)
For every regular uncountable cardinal κ :
κ is weakly compact iff every κ-cc poset is κ-stationarily layered.
Non-characterization theorem (Cox and Lücke, 2016)
Suppose κ is weakly compact. In some cofinality-preserving forcing extension:
For every $\theta<\kappa$, the class of κ-Knaster posets is closed under θ-support products, yet, κ is not weakly compact.

Theorem (Lambie-Hanson and Lücke, 2018)

Suppose $\theta<\kappa$ are infinite and regular.
If the class of κ-Knaster posets is closed under θ-support products, then $\neg \square(\kappa)$, so that (κ is weakly comapct $)^{L}$.

How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.

How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.
Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c:[\kappa]^{2} \rightarrow 2$ from which he derived a κ-cc poset whose square is not κ-cc.

How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.
Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c:[\kappa]^{2} \rightarrow 2$ from which he derived a κ-cc poset whose square is not κ-cc.
In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa=\aleph_{2}$.

How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.
Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c:[\kappa]^{2} \rightarrow 2$ from which he derived a κ-cc poset whose square is not κ-cc.
In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa=\aleph_{2}$.

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ-tree from which they derived a κ-Knaster poset whose infinite power is not κ-cc.

How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.
Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c:[\kappa]^{2} \rightarrow 2$ from which he derived a κ-cc poset whose square is not κ-cc.
In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa=\aleph_{2}$.

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ-tree from which they derived a κ-Knaster poset whose infinite power is not κ-cc.
They proved that such a tree exists, assuming $\square(\kappa)$.

How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.
Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c:[\kappa]^{2} \rightarrow 2$ from which he derived a κ-cc poset whose square is not κ-cc.
In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa=\aleph_{2}$.

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ-tree from which they derived a κ-Knaster poset whose infinite power is not κ-cc.
They proved that such a tree exists, assuming $\square(\kappa)$.
We would like to obtain the conclusions of Lambie-Hanson and Lücke from ZFC, e.g., getting a ZFC example of an $\aleph_{2}-$ Knaster poset whose $\omega^{t h}$-power is not $\aleph_{2}-c c$.

How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.
Galvin (1980) gave a consistent construction of an anti-Ramsey coloring $c:[\kappa]^{2} \rightarrow 2$ from which he derived a κ-cc poset whose square is not κ-cc.
In 1997, Shelah constructed a ZFC example of such a coloring for $\kappa=\aleph_{2}$.

Lambie-Hanson and Lücke (2018) gave a consistent construction of non-special κ-tree from which they derived a κ-Knaster poset whose infinite power is not κ-cc.
They proved that such a tree exists, assuming $\square(\kappa)$.
We would like to obtain the conclusions of Lambie-Hanson and Lücke from ZFC, e.g., getting a ZFC example of an \aleph_{2}-Knaster poset whose $\omega^{t h}$-power is not $\aleph_{2}-c c$.
For this, let us revisit Galvin's approach.

Colorings FTW

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i=j$.

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i=j$.
Key feature

- \mathbb{P}^{2} fails to have the κ-cc;
- \mathbb{Q}^{θ} fails to have the κ-cc.

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i=j$.
Key feature

- \mathbb{P}^{2} fails to have the κ-cc, e.g., $\{\langle(\{\alpha\}, 0),(\{\alpha\}, 1)\rangle \mid \alpha<\kappa\}$.
- \mathbb{Q}^{θ} fails to have the κ-cc.

About \mathbb{P}^{2}.
For $\alpha<\beta<\kappa$ and $i:=c(\alpha, \beta),(\{\alpha\}, 1-i)$ and $(\{\beta\}, 1-i)$ are incompatible in \mathbb{P}.

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[k]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i=j$.
Key feature

- \mathbb{P}^{2} fails to have the κ-cc, e.g., $\{\langle(\{\alpha\}, i) \mid i<2\rangle \mid \alpha<\kappa\}$.
- \mathbb{Q}^{θ} fails to have the κ-cc, e.g., $\{\langle(\{\alpha\}, i) \mid i<\theta\rangle \mid \alpha<\kappa\}$.

About \mathbb{P}^{2}.

For $\alpha<\beta<\kappa$ and $i:=c(\alpha, \beta),(\{\alpha\}, 1-i)$ and $(\{\beta\}, 1-i)$ are incompatible in \mathbb{P}.

About \mathbb{Q}^{θ}.
For $\alpha<\beta<\kappa$ and $i:=c(\alpha, \beta),(\{\alpha\}, i+1)$ and $(\{\beta\}, i+1)$ are incompatible in \mathbb{Q}.

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i=j$.
Key feature

- \mathbb{P}^{2} fails to have the κ-cc;
- \mathbb{Q}^{θ} fails to have the κ-cc.

The heart of the matter is to construct c for which the corresponding \mathbb{P} be κ-cc, or \mathbb{Q}^{τ} be κ-Knaster for all $\tau<\theta$.

Colorings FTW

From a coloring $c:[k]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[k]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i=j$.
Key feature

- \mathbb{P}^{2} fails to have the κ-cc;
- \mathbb{Q}^{θ} fails to have the κ-cc.

The heart of the matter is to construct c for which the corresponding \mathbb{P} be κ-cc, or \mathbb{Q}^{τ} be κ-Knaster for all $\tau<\theta$.
By a simple reverse-engineering process, one arrives at a reformulation of these features in the language of the coloring c.

Colorings FTW

From a coloring $c:[\kappa]^{2} \rightarrow \theta$ with $\theta \in \operatorname{Reg}(\kappa)$, we derive posets:

- $\mathbb{P}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \subseteq\{i\}\right\} ;$
- $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c "[x]^{2} \cap i=\emptyset\right\}$.

Ordering: (x, i) extends (y, j) iff $x \supseteq y$ and $i=j$.
Key feature

- \mathbb{P}^{2} fails to have the κ-cc;
- \mathbb{Q}^{θ} fails to have the κ-cc.

The heart of the matter is to construct c for which the corresponding \mathbb{P} be κ-cc, or \mathbb{Q}^{τ} be κ-Knaster for all $\tau<\theta$.
By a simple reverse-engineering process, one arrives at a reformulation of these features in the language of the coloring c.
The poset \mathbb{P} was analyzed by Galvin, giving birth to $\operatorname{Pr}_{1}(\ldots)$.
Today, we shall focus on the poset \mathbb{Q}.

Unbounded functions

Suppose $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \cap i=\emptyset\right\}$ is derived from $c:[\kappa]^{2} \rightarrow \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa), \mathbb{Q}$ is κ-Knaster iff it has precaliber κ iff c witnesses $U(\kappa, \theta)$:

Unbounded functions

Suppose $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \cap i=\emptyset\right\}$ is derived from $c:[\kappa]^{2} \rightarrow \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa), \mathbb{Q}$ is κ-Knaster iff it has precaliber κ iff c witnesses $\mathrm{U}(\kappa, \theta)$:

Definition

$\mathrm{U}(\kappa, \theta)$ asserts that there exists a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every family $\mathcal{A} \subseteq[\kappa]^{<\omega}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\kappa}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Unbounded functions

Suppose $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \cap i=\emptyset\right\}$ is derived from $c:[\kappa]^{2} \rightarrow \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa), \mathbb{Q}$ is κ-Knaster iff it has precaliber κ iff c witnesses $\mathrm{U}(\kappa, \theta)$:

Definition

$\mathrm{U}(\kappa, \theta)$ asserts that there exists a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every family $\mathcal{A} \subseteq[\kappa]^{<\omega}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\kappa}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

There's also a χ-closed variation: $\left\{(x, i) \mid x \in[\kappa]^{<\chi}, c^{\prime \prime}[x]^{2} \cap i=\emptyset\right\}$. For this, we need:

Unbounded functions

Suppose $\mathbb{Q}:=\left\{(x, i) \mid x \in[\kappa]^{<\omega}, c^{\prime \prime}[x]^{2} \cap i=\emptyset\right\}$ is derived from $c:[\kappa]^{2} \rightarrow \theta$. Assuming $\theta \in \operatorname{Reg}(\kappa), \mathbb{Q}$ is κ-Knaster iff it has precaliber κ iff c witnesses $\mathrm{U}(\kappa, \theta)$:

Definition

$\mathrm{U}(\kappa, \theta)$ asserts that there exists a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every family $\mathcal{A} \subseteq[\kappa]^{<\omega}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\kappa}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

There's also a χ-closed variation: $\left\{(x, i) \mid x \in[\kappa]^{<\chi}, c^{\prime \prime}[x]^{2} \cap i=\emptyset\right\}$. For this, we need:

Definition

$\mathrm{U}(\kappa, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\kappa}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Note that $\operatorname{Pr}_{1}(\kappa, \kappa, \theta, \chi)$ entails $\mathrm{U}(\kappa, 2, \theta, \chi)$.

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Proposition

Suppose $\chi, \theta \in \operatorname{Reg}(\kappa)$ and that κ is $(<\chi)$-inaccessible. For every coloring $c:[\kappa]^{2} \rightarrow \theta$ witnessing $\mathrm{U}(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Proposition

Suppose $\chi, \theta \in \operatorname{Reg}(\kappa)$ and that κ is $(<\chi)$-inaccessible. For every coloring $c:[\kappa]^{2} \rightarrow \theta$ witnessing $\mathrm{U}(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

- \mathbb{Q}^{θ} is not κ-cc;

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Proposition

Suppose $\chi, \theta \in \operatorname{Reg}(\kappa)$ and that κ is $(<\chi)$-inaccessible. For every coloring $c:[\kappa]^{2} \rightarrow \theta$ witnessing $\mathrm{U}(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

- \mathbb{Q}^{θ} is not κ-cc;
- if $\mu=2$, then \mathbb{Q}^{τ} is κ-cc for all $\tau<\min \{\chi, \theta\}$;

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Proposition

Suppose $\chi, \theta \in \operatorname{Reg}(\kappa)$ and that κ is $(<\chi)$-inaccessible. For every coloring $c:[\kappa]^{2} \rightarrow \theta$ witnessing $\mathrm{U}(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

- \mathbb{Q}^{θ} is not κ-cc;
- if $\mu=2$, then \mathbb{Q}^{τ} is κ-cc for all $\tau<\min \{\chi, \theta\}$;
- if $\mu=\kappa$, then \mathbb{Q}^{τ} has precaliber κ for all $\tau<\min \{\chi, \theta\}$;

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Proposition

Suppose $\chi, \theta \in \operatorname{Reg}(\kappa)$ and that κ is $(<\chi)$-inaccessible.
For every coloring $c:[\kappa]^{2} \rightarrow \theta$ witnessing $\mathrm{U}(\kappa, \mu, \theta, \chi)$, the corresponding poset \mathbb{Q} satisfies the following:

- \mathbb{Q}^{θ} is not κ-cc;
- if $\mu=2$, then \mathbb{Q}^{τ} is κ-cc for all $\tau<\min \{\chi, \theta\}$;
- if $\mu=\kappa$, then \mathbb{Q}^{τ} has precaliber κ for all $\tau<\min \{\chi, \theta\}$;
- \mathbb{Q} is well-met and χ-directed-closed with greatest lower bounds.

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg \mathrm{U}(\kappa, 2, \omega, 2)$.

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg \mathrm{U}(\kappa, 2, \omega, 2)$.
Put differently, we ask whether the existence of a κ-Aronszajn tree gives rise to a coloring $c:[\kappa]^{2} \rightarrow \omega$ with the property that $\sup \left(c^{\prime \prime}[A]^{2}\right)=\omega$ for every $A \in[\kappa]^{\kappa}$.

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg \mathrm{U}(\kappa, 2, \omega, 2)$.
Partial answer 1
The existence of a κ-Aronszajn tree with an ω-ascent path entails $\mathrm{U}(\kappa, 2, \omega, \omega)$.

The coloring axiom

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

Conjecture

For κ regular uncountable, κ is weakly compact iff $\neg \mathrm{U}(\kappa, 2, \omega, 2)$.
Partial answer 1
The existence of a κ-Aronszajn tree with an ω-ascent path entails $\mathrm{U}(\kappa, 2, \omega, \omega)$.

Partial answer 2 (with Todorcevic)

The existence of a coherent κ-Aronszajn tree entails $\mathrm{U}(\kappa, 2, \omega, \omega)$ but not $\mathrm{U}(\kappa, \kappa, \omega, \omega)$.

Inspecting the parameters

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the second parameter

- $\mathrm{U}(\kappa, 2, \theta, \chi)$ iff $\mathrm{U}(\kappa, \omega, \theta, \chi)$;

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the second parameter

- $\mathrm{U}(\kappa, 2, \theta, \chi)$ iff $\mathrm{U}(\kappa, \omega, \theta, \chi)$;
- Suppose $c \vDash \mathrm{U}(\kappa, 2, \theta, \chi)$. If c is closed, then $c \vDash \mathrm{U}(\kappa, \kappa, \theta, \chi)$.

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the second parameter

- $\mathrm{U}(\kappa, 2, \theta, \chi)$ iff $\mathrm{U}(\kappa, \omega, \theta, \chi)$;
- Suppose $c \models \mathrm{U}(\kappa, 2, \theta, \chi)$. If c is closed, then $c \vDash \mathrm{U}(\kappa, \kappa, \theta, \chi)$.

Definition
$c:[\kappa]^{2} \rightarrow \theta$ is closed iff $\{\alpha<\beta \mid c(\alpha, \beta) \leq i\}$ is closed below β for all $\beta<\kappa, i<\theta$.

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the third parameter

- $\mathrm{U}(\kappa, \kappa, \kappa, \kappa)$ holds;

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[k]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the third parameter

- $\mathrm{U}(\kappa, \kappa, \kappa, \kappa)$ holds;
- $\mathrm{U}(\kappa, \mu, \theta, \chi)$ iff $\mathrm{U}(\kappa, \mu, \operatorname{cf}(\theta), \chi)$;

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the third parameter

- $\mathrm{U}(\kappa, \kappa, \kappa, \kappa)$ holds;
- $\mathrm{U}(\kappa, \mu, \theta, \chi)$ iff $\mathrm{U}(\kappa, \mu, \operatorname{cf}(\theta), \chi)$;

Therefore, hereafter, we shall focus on $\theta \in \operatorname{Reg}(\kappa)$.

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the third parameter

- $\mathrm{U}(\kappa, \kappa, \kappa, \kappa)$ holds;
- $\mathrm{U}(\kappa, \mu, \theta, \chi)$ iff $\mathrm{U}(\kappa, \mu, \operatorname{cf}(\theta), \chi)$;
- Lack of monotonicity: If λ is the singular limit of strongly compact cardinals, then, for every $\theta \leq \lambda$, $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ iff $\operatorname{cf}(\theta)=\operatorname{cf}(\lambda)$.

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the fourth parameter

- $\mathrm{U}(\kappa, \kappa, \theta, 3)$ iff $\mathrm{U}(\kappa, \kappa, \theta, \omega)$;

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the fourth parameter

- $\mathrm{U}(\kappa, \kappa, \theta, 3)$ iff $\mathrm{U}(\kappa, \kappa, \theta, \omega)$;
- $\mathrm{U}\left(\lambda^{+}, 2, \theta, 2\right)$ iff $\mathrm{U}\left(\lambda^{+}, 2, \theta, \operatorname{cf}(\lambda)\right)$;

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the fourth parameter

- $\mathrm{U}(\kappa, \kappa, \theta, 3)$ iff $\mathrm{U}(\kappa, \kappa, \theta, \omega)$;
- $\mathrm{U}\left(\lambda^{+}, 2, \theta, 2\right)$ iff $\mathrm{U}\left(\lambda^{+}, 2, \theta, \operatorname{cf}(\lambda)\right)$;

The above is optimal: If λ is the limit of strongly compact cardinals, $\theta \in \operatorname{Reg}(\lambda)$ with $\theta \neq \operatorname{cf}(\lambda)$, then $\mathrm{U}\left(\lambda^{+}, 2, \theta, \chi\right)$ holds for $\chi:=\operatorname{cf}(\lambda)$, but fails for $\chi:=\operatorname{cf}(\lambda)^{+}$.

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the fourth parameter

- $\mathrm{U}(\kappa, \kappa, \theta, 3)$ iff $\mathrm{U}(\kappa, \kappa, \theta, \omega)$;
- $\mathrm{U}\left(\lambda^{+}, 2, \theta, 2\right)$ iff $\mathrm{U}\left(\lambda^{+}, 2, \theta, \operatorname{cf}(\lambda)\right)$;
- There are κ, θ and colorings $c, c \models \mathrm{U}(\kappa, \kappa, \theta, 2)$, but $c \not \models \mathrm{U}(\kappa, 2, \theta, 3)$;

Inspecting the parameters

Definition

$\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts there is a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\chi^{\prime}<\chi$, every family $\mathcal{A} \subseteq[\kappa]^{\chi^{\prime}}$ consisting of κ-many pairwise disjoint sets, and every $i<\theta$, there is $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that $\min (c[a \times b]) \geq i$ for every pair $a<b$ from \mathcal{B}.

About the fourth parameter

- $\mathrm{U}(\kappa, \kappa, \theta, 3)$ iff $\mathrm{U}(\kappa, \kappa, \theta, \omega)$;
- $\mathrm{U}\left(\lambda^{+}, 2, \theta, 2\right)$ iff $\mathrm{U}\left(\lambda^{+}, 2, \theta, \operatorname{cf}(\lambda)\right)$;
- There are κ, θ and colorings $c, c \vDash \mathrm{U}(\kappa, \kappa, \theta, 2)$, but $c \not \models \mathrm{U}(\kappa, 2, \theta, 3)$;
- If there is a closed witness to $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, 2\right)$, then there is one for $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$.

Further findings

Further findings

Theorem
For every regular λ and $\theta \in \operatorname{Reg}\left(\lambda^{+}\right)$, there is $c:\left[\lambda^{+}\right]^{2} \rightarrow \theta$ witnessing $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ which is moreover closed.

Further findings

Theorem
For every regular λ and $\theta \in \operatorname{Reg}\left(\lambda^{+}\right)$, there is $c:\left[\lambda^{+}\right]^{2} \rightarrow \theta$ witnessing $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ which is moreover closed.

In case you wondered
The corresponding tree $\mathcal{T}(c):=\{c(\cdot, \gamma) \upharpoonright \beta \mid \beta \leq \gamma<\kappa\}$ may consistently be a special κ-Aronszajn tree, as well as an almost Souslin κ-Aronszajn tree.

Further findings

Theorem
For every regular λ and $\theta \in \operatorname{Reg}\left(\lambda^{+}\right)$, there is $c:\left[\lambda^{+}\right]^{2} \rightarrow \theta$ witnessing $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ which is moreover closed.

Corollary
There exists an \aleph_{2}-Knaster poset whose $\omega^{\text {th }}$-power is not $\aleph_{2}-c c$.

Further findings

Theorem
For every regular λ and $\theta \in \operatorname{Reg}\left(\lambda^{+}\right)$, there is $c:\left[\lambda^{+}\right]^{2} \rightarrow \theta$ witnessing $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ which is moreover closed.

Corollary
There exists an \aleph_{2}-Knaster poset whose $\omega^{\text {th }}$-power is not $\aleph_{2}-c c$.
More generally
Suppose that $\theta \leq \chi \leq \lambda$ are regular, with $\lambda<\chi=\lambda$.
Then there exists a χ-directed-closed poset \mathbb{Q} such that:

- \mathbb{Q}^{τ} has precaliber λ^{+}for all $\tau<\theta$;
- \mathbb{Q}^{θ} is not λ^{+}-cc.

Further findings

Theorem

For every regular λ and $\theta \in \operatorname{Reg}\left(\lambda^{+}\right)$, there is $c:\left[\lambda^{+}\right]^{2} \rightarrow \theta$ witnessing $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ which is moreover closed.

Corollary

There exists an \aleph_{2}-Knaster poset whose $\omega^{\text {th }}$-power is not \aleph_{2}-cc. $\mathrm{CH} \Rightarrow \exists \sigma$-closed \aleph_{2}-Knaster poset whose $\omega^{\text {th }}$-power is not \aleph_{2}-cc.

Further findings

Theorem
For every regular λ and $\theta \in \operatorname{Reg}\left(\lambda^{+}\right)$, there is $c:\left[\lambda^{+}\right]^{2} \rightarrow \theta$ witnessing $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ which is moreover closed.

Corollary
There exists an \aleph_{2}-Knaster poset whose $\omega^{\text {th }}$-power is not \aleph_{2}-cc.
$C H \Rightarrow \exists \sigma$-closed \aleph_{2}-Knaster poset whose $\omega^{\text {th }}$-power is not \aleph_{2}-cc.

Open problem

Does CH entail a σ-closed \aleph_{2}-cc poset whose square is not $\aleph_{2}-\mathrm{cc}$?

Further findings (cont.)

Theorem
For every singular λ and $\theta \in \operatorname{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$:

- $2^{\lambda}=\lambda^{+}$;
- Refl $\left(<\operatorname{cf}(\lambda), \lambda^{+}\right)$fails;
- $\theta=\omega$ or $\theta=\operatorname{cf}(\lambda)$;
- $\theta<\nu<\nu^{+}=\operatorname{cf}(\lambda)$;
- $\theta<\operatorname{cf}(\lambda)$ and $\operatorname{cf}\left(\mathrm{NS}_{\mathrm{cf}(\lambda)}, \subseteq\right)<\lambda$.

Further findings (cont.)

Theorem
For every singular λ and $\theta \in \operatorname{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$:

- $2^{\lambda}=\lambda^{+}$;
- $\operatorname{RefI}\left(<\operatorname{cf}(\lambda), \lambda^{+}\right)$fails;
- $\theta=\omega$ or $\theta=\operatorname{cf}(\lambda)$;
- $\theta<\nu<\nu^{+}=\operatorname{cf}(\lambda)$;
- $\theta<\operatorname{cf}(\lambda)$ and $\operatorname{cf}\left(\mathrm{NS}_{\mathrm{cf}(\lambda)}, \subseteq\right)<\lambda$.

Corollary

If the class of κ-Knaster posets is closed under ω powers, then κ is inaccessible.

Further findings (cont.)

Theorem
For every singular λ and $\theta \in \operatorname{Reg}(\lambda)$, any of the following entail the existence of a closed witness to $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$:

- $2^{\lambda}=\lambda^{+}$;
- Refl $\left(<\operatorname{cf}(\lambda), \lambda^{+}\right)$fails;
- $\theta=\omega$ or $\theta=\operatorname{cf}(\lambda)$;
- $\theta<\nu<\nu^{+}=\operatorname{cf}(\lambda)$;
- $\theta<\operatorname{cf}(\lambda)$ and $\operatorname{cf}\left(\mathrm{NS}_{\mathrm{cf}(\lambda)}, \subseteq\right)<\lambda$.

Theorem
For every $\theta, \chi \in \operatorname{Reg}(\kappa)$, any of the following entails the existence of a closed witness to $\mathrm{U}(\kappa, \kappa, \theta, \chi)$:

- $\square(\kappa,<\omega)$ or $\square^{\text {ind }}(\kappa, \theta)$;
- ヨstationary $S \subseteq E_{\geq \chi}^{\kappa}$ with $S \cap \alpha$ nonstationary for $\alpha \in E_{>\omega}^{\kappa}$;
- \exists stationary $S \subseteq E_{\geq \chi}^{\kappa}$ with $S \cap \alpha$ nonstationary for all $\alpha \in \operatorname{Reg}(\kappa)$, and κ is inacc.

A new cardinal invariant

The C-sequence number

Theorem (Todorcevic, 1987)
For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ such that $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for every $\alpha<\kappa$.

Recall
$\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ is a C-sequence iff each C_{β} is closed subset of β with $\sup \left(C_{\beta}\right)=\sup (\beta)$.

The C-sequence number

Theorem (Todorcevic, 1987)
For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ such that $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for every $\alpha<\kappa$.
The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, will see it is of interest for successor cardinals as well.

The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ such that $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for every $\alpha<\kappa$.
The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, will see it is of interest for successor cardinals as well.

Definition (The C-sequence number of κ)
If κ is weakly compact, then let $\chi(\kappa):=0$.

The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ such that $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for every $\alpha<\kappa$.
The cardinal invariant that we introduce suggests a way to measure how far an inaccessible cardinal κ is from being weakly compact, though, will see it is of interest for successor cardinals as well.

Definition (The C-sequence number of κ)

If κ is weakly compact, then let $\chi(\kappa):=0$.
Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ such that, for every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha<\kappa$.

The C-sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ, the following are equivalent:

1. κ is weakly compact;
2. For every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ such that $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for every $\alpha<\kappa$.

Note that $\chi(\kappa)$ is well-defined. In fact, $\chi(\kappa) \leq \sup (\operatorname{Reg}(\kappa))$.
Definition (The C-sequence number of κ)
If κ is weakly compact, then let $\chi(\kappa):=0$.
Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ such that, for every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha<\kappa$.

The C-sequence number

Todorcevic's analysis of the number of steps function readily establishes the following.
The C-sequence number and you
$\mathrm{U}(\kappa, \kappa, \omega, \chi(\kappa))$ holds, as witnessed by the closed function ρ_{2}.
However, it is consistent that $\mathrm{U}(\kappa, \kappa, \omega, \chi)$ holds with $\chi \gg \chi(\kappa)$.

Definition (The C-sequence number of κ)
If κ is weakly compact, then let $\chi(\kappa):=0$.
Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ such that, for every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha<\kappa$.

The C-sequence number

Todorcevic's analysis of the number of steps function readily establishes the following.
The C-sequence number and yoU
$\mathrm{U}(\kappa, \kappa, \omega, \chi(\kappa))$ holds, as witnessed by the closed function ρ_{2}.
However, it is consistent that $\mathrm{U}(\kappa, \kappa, \omega, \chi)$ holds with $\chi \gg \chi(\kappa)$.

Corollary

If the class of κ-Knaster posets is closed under taking ω powers, then $\chi(\kappa)<\omega$.

Definition (The C-sequence number of κ)
If κ is weakly compact, then let $\chi(\kappa):=0$.
Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ such that, for every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha<\kappa$.

The C-sequence number

Questions

- Is " $\chi(\kappa)<\omega$ " a large cardinal property?
- How about " $\chi(\kappa)<\sup (\operatorname{Reg}(\kappa))$ "?
- Could $\chi(\kappa)$ be singular?

Corollary

If the class of κ-Knaster posets is closed under taking ω powers, then $\chi(\kappa)<\omega$.

Definition (The C-sequence number of κ)
If κ is weakly compact, then let $\chi(\kappa):=0$.
Otherwise, let $\chi(\kappa)$ denote the least $\chi \leq \kappa$ such that, for every C-sequence $\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for all $\alpha<\kappa$.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}}=\kappa$ is weakly compact.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}}=\kappa$ is weakly compact.
Proposition
In Kunen's model, $\chi(\kappa)=1$.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}}=\kappa$ is weakly compact.
Proposition
In Kunen's model, $\chi(\kappa)=1$.
Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}}=\kappa$ is weakly compact.
Proposition
In Kunen's model, $\chi(\kappa)=1$.
Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.
Now, let $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ be an arbitrary C-sequence.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}}=\kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa)=1$.
Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.
Now, let $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ be an arbitrary C-sequence.
$\ln V^{\mathbb{S}}, \vec{C}$ is a C-sequence over a weakly compact cardinal κ, and hence there is $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ with $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for each $\alpha<\kappa$.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}}=\kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa)=1$.
Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.
Now, let $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ be an arbitrary C-sequence.
In $V^{\mathbb{S}}, \vec{C}$ is a C-sequence over a weakly compact cardinal κ, and hence there is $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ with $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for each $\alpha<\kappa$. Clearly, Δ is a club.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.
Proposition
In Kunen's model, $\chi(\kappa)=1$.
Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.
Now, let $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ be an arbitrary C-sequence.
$\ln V^{\mathbb{S}}, \vec{C}$ is a C-sequence over a weakly compact cardinal κ, and hence there is $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ with $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for each $\alpha<\kappa$. Clearly, Δ is a club.
As \mathbb{S} is κ-cc, there is a club $D \subseteq \kappa$ in V, with $D \subseteq \Delta$.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}} \models \kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa)=1$.
Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.
Now, let $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ be an arbitrary C-sequence.
In $V^{\mathbb{S}}, \vec{C}$ is a C-sequence over a weakly compact cardinal κ, and hence there is $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ with $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for each $\alpha<\kappa$. Clearly, Δ is a club.
As \mathbb{S} is κ-cc, there is a club $D \subseteq \kappa$ in V, with $D \subseteq \Delta$.
Then $D \cap \alpha \subseteq C_{b(\alpha)} \cap \alpha$ for each $\alpha<\kappa$.

Increasing the C-sequence number

Kunen (1978) showed that by forcing over a model with a weakly compact cardinal κ, one obtains a model V having a κ-Souslin tree \mathbb{S} such that $V^{\mathbb{S}}=\kappa$ is weakly compact.

Proposition

In Kunen's model, $\chi(\kappa)=1$.
Proof. The κ-Souslin tree witnesses that κ is not weakly compact, so $\chi(\kappa) \neq 0$.
Now, let $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ be an arbitrary C-sequence.
In $V^{\mathbb{S}}, \vec{C}$ is a C-sequence over a weakly compact cardinal κ, and hence there is $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow \kappa$ with $\Delta \cap \alpha=C_{b(\alpha)} \cap \alpha$ for each $\alpha<\kappa$. Clearly, Δ is a club.
As \mathbb{S} is κ-cc, there is a club $D \subseteq \kappa$ in V, with $D \subseteq \Delta$.
Then $D \cap \alpha \subseteq C_{b(\alpha)} \cap \alpha$ for each $\alpha<\kappa$.
Theorem
Suppose $\chi(\kappa)=0$. For every $\theta \in \operatorname{Reg}\left(\kappa^{+}\right)$, there is a cofinality-preserving forcing extension in which κ remains strongly inaccessible, and $\chi(\kappa)=\theta$.

Increasing the C-sequence number (cont.)

Observation
$\operatorname{cf}(\lambda) \leq \chi\left(\lambda^{+}\right) \leq \lambda$.

${ }^{1}$ The latter assumes the consistency of a supercompact.

Increasing the C-sequence number (cont.)

Observation
$\operatorname{cf}(\lambda) \leq \chi\left(\lambda^{+}\right) \leq \lambda$.
Theorem
If λ is a singular limit of supercompacts, then $\chi\left(\lambda^{+}\right)=\operatorname{cf}(\lambda)$.
Theorem
If λ is a singular limit of supercompacts, and $\theta \in \operatorname{Reg}(\lambda) \backslash \operatorname{cf}(\lambda)$, then, in some cofinality-preserving forcing extension, $\chi\left(\lambda^{+}\right)=\theta$.

[^0]
Increasing the C-sequence number (cont.)

Observation
$\operatorname{cf}(\lambda) \leq \chi\left(\lambda^{+}\right) \leq \lambda$.
Theorem
If λ is a singular limit of supercompacts, then $\chi\left(\lambda^{+}\right)=\operatorname{cf}(\lambda)$.
Theorem
If λ is a singular limit of supercompacts, and $\theta \in \operatorname{Reg}(\lambda) \backslash \operatorname{cf}(\lambda)$, then, in some cofinality-preserving forcing extension, $\chi\left(\lambda^{+}\right)=\theta$.

Theorem
$\chi\left(\aleph_{\omega+1}\right)=\aleph_{\omega}$ is consistent, and so is $\chi\left(\aleph_{\omega+1}\right)=\omega .^{1}$

[^1]
How large

How large

Theorem

1. $\operatorname{RefI}\left(<\omega, E_{>\chi(\kappa)}^{\kappa}\right)$;

How large

Theorem

1. $\operatorname{Refl}\left(<\omega, E_{>\chi(\kappa)}^{\kappa}\right)$;
2. If $\chi(\kappa)<\omega$, then $\chi(\kappa) \in\{0,1\}$;

How large

Theorem

1. $\operatorname{RefI}\left(<\omega, E_{>\chi(\kappa)}^{\kappa}\right)$;
2. If $\chi(\kappa)<\omega$, then $\chi(\kappa) \in\{0,1\}$;
3. If κ is inaccessible and $\chi(\kappa)<\kappa$, then κ is ω-Mahlo;

How large

Theorem

1. $\operatorname{RefI}\left(<\omega, E_{>\chi(\kappa)}^{\kappa}\right)$;
2. If $\chi(\kappa)<\omega$, then $\chi(\kappa) \in\{0,1\}$;
3. If κ is inaccessible and $\chi(\kappa)<\kappa$, then κ is ω-Mahlo;
4. If $\chi(\kappa)=1$, then $\square(\kappa,<\mu)$ fails for all $\mu<\kappa$;

How large

Theorem

1. $\operatorname{RefI}\left(<\omega, E_{>\chi(\kappa)}^{\kappa}\right)$;
2. If $\chi(\kappa)<\omega$, then $\chi(\kappa) \in\{0,1\}$;
3. If κ is inaccessible and $\chi(\kappa)<\kappa$, then κ is ω-Mahlo;
4. If $\chi(\kappa)=1$, then $\square(\kappa,<\mu)$ fails for all $\mu<\kappa$;
5. If $\chi(\kappa)=1$, then, for every sequence $\left\langle S_{i} \mid i<\kappa\right\rangle$ of stationary subsets of κ, there exists an inaccessible $\beta<\kappa$ such that $S_{i} \cap \beta$ is stationary in β for all $i<\beta$.

How large

Theorem

1. $\operatorname{RefI}\left(<\omega, E_{>\chi(\kappa)}^{\kappa}\right)$;
2. If $\chi(\kappa)<\omega$, then $\chi(\kappa) \in\{0,1\}$;
3. If κ is inaccessible and $\chi(\kappa)<\kappa$, then κ is ω-Mahlo;
4. If $\chi(\kappa)=1$, then $\square(\kappa,<\mu)$ fails for all $\mu<\kappa$;
5. If $\chi(\kappa)=1$, then, for every sequence $\left\langle S_{i} \mid i<\kappa\right\rangle$ of stationary subsets of κ, there exists an inaccessible $\beta<\kappa$ such that $S_{i} \cap \beta$ is stationary in β for all $i<\beta$.

Corollary

- In L, either $\chi(\kappa)=0$ or $\chi(\kappa)=\sup (\operatorname{Reg}(\kappa))$;
- $\square(\kappa,<\omega)$ entails $\chi(\kappa)=\sup (\operatorname{Reg}(\kappa))$;
- If $\chi(\kappa)=1$, then κ is greatly Mahlo.

How large

Theorem

1. $\operatorname{RefI}\left(<\omega, E_{>\chi(\kappa)}^{\kappa}\right)$;
2. If $\chi(\kappa)<\omega$, then $\chi(\kappa) \in\{0,1\}$;
3. If κ is inaccessible and $\chi(\kappa)<\kappa$, then κ is ω-Mahlo;
4. If $\chi(\kappa)=1$, then $\square(\kappa,<\mu)$ fails for all $\mu<\kappa$;
5. If $\chi(\kappa)=1$, then, for every sequence $\left\langle S_{i} \mid i<\kappa\right\rangle$ of stationary subsets of κ, there exists an inaccessible $\beta<\kappa$ such that $S_{i} \cap \beta$ is stationary in β for all $i<\beta$.

Corollary
If the class of κ-Knaster posets is closed under ω powers, then κ is greatly Mahlo.

The C-sequence spectrum

The C-sequence spectrum

Definition

For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.

The C-sequence spectrum

Definition

For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.
Definition
$\operatorname{Cspec}(\kappa):=\{\chi(\vec{C}) \mid \vec{C}$ is a C-sequence over $\kappa\} \backslash \omega$.

The C-sequence spectrum

Definition
For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.
Definition
$\operatorname{Cspec}(\kappa):=\{\chi(\vec{C}) \mid \vec{C}$ is a C-sequence over $\kappa\} \backslash \omega$.
Theorem

1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa)=\max (\operatorname{Cspec}(\kappa))$;

The C-sequence spectrum

Definition

For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.
Definition
$\operatorname{Cspec}(\kappa):=\{\chi(\vec{C}) \mid \vec{C}$ is a C-sequence over $\kappa\} \backslash \omega$.
Theorem

1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa)=\max (\operatorname{Cspec}(\kappa))$;
2. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\min (\operatorname{Cspec}(\kappa))=\omega$;

The C-sequence spectrum

Definition

For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.
Definition
Cspec $(\kappa):=\{\chi(\vec{C}) \mid \vec{C}$ is a C-sequence over $\kappa\} \backslash \omega$.
Theorem

1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa)=\max (\operatorname{Cspec}(\kappa))$;
2. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\min (\operatorname{Cspec}(\kappa))=\omega$;
3. $\chi \in \operatorname{Cspec}(\kappa) \Longrightarrow \operatorname{cf}(\chi) \in \operatorname{Cspec}(\kappa)$,

The C-sequence spectrum

Definition

For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.
Definition
$\operatorname{Cspec}(\kappa):=\{\chi(\vec{C}) \mid \vec{C}$ is a C-sequence over $\kappa\} \backslash \omega$.
Theorem

1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa)=\max (\operatorname{Cspec}(\kappa))$;
2. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\min (\operatorname{Cspec}(\kappa))=\omega$;
3. $\chi \in \operatorname{Cspec}(\kappa) \Longrightarrow \operatorname{cf}(\chi) \in \operatorname{Cspec}(\kappa)$, but not \qquad

The C-sequence spectrum

Definition

For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.
Definition
$\operatorname{Cspec}(\kappa):=\{\chi(\vec{C}) \mid \vec{C}$ is a C-sequence over $\kappa\} \backslash \omega$.
Theorem

1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa)=\max (\operatorname{Cspec}(\kappa))$;
2. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\min (\operatorname{Cspec}(\kappa))=\omega$;
3. $\chi \in \operatorname{Cspec}(\kappa) \Longrightarrow \mathrm{cf}(\chi) \in \operatorname{Cspec}(\kappa)$, but not \Longleftarrow.

Open problem

Is $\operatorname{Cspec}(\kappa)$ an interval? Is it a closed set?

The C-sequence spectrum

Definition

For a C-sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$, let $\chi(\vec{C})$ denote the least cardinal $\chi \leq \kappa$ such that there exist $\Delta \in[\kappa]^{\kappa}$ and $b: \kappa \rightarrow[\kappa]^{\chi}$ with $\Delta \cap \alpha \subseteq \bigcup_{\beta \in b(\alpha)} C_{\beta}$ for every $\alpha<\kappa$.
Definition
$\operatorname{Cspec}(\kappa):=\{\chi(\vec{C}) \mid \vec{C}$ is a C-sequence over $\kappa\} \backslash \omega$.
Theorem

1. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\chi(\kappa)=\max (\operatorname{Cspec}(\kappa))$;
2. If $\operatorname{Cspec}(\kappa) \neq \emptyset$, then $\min (\operatorname{Cspec}(\kappa))=\omega$;
3. $\chi \in \operatorname{Cspec}(\kappa) \Longrightarrow \operatorname{cf}(\chi) \in \operatorname{Cspec}(\kappa)$, but not \Longleftarrow.

Open problem

Is $\operatorname{Cspec}(\kappa)$ an interval? Is it a closed set?
Is every limit uncountable cardinal in $\operatorname{Cspec}(\kappa)$ an accumulation point of $\operatorname{Cspec}(\kappa)$?

Unexpected equivalency

Unexpected equivalency

Theorem
For every $\theta \in \operatorname{Reg}(\kappa)$, the following are equivalent:

- $\theta \in \operatorname{Cspec}(\kappa)$;
- There exists a closed witness to $\mathrm{U}(\kappa, \kappa, \theta, \theta)$.

The forward implication works for θ singular; the backward does not.

Unexpected equivalency

Theorem
For every $\theta \in \operatorname{Reg}(\kappa)$, the following are equivalent:

- $\theta \in \operatorname{Cspec}(\kappa)$;
- There exists a closed witness to $\mathrm{U}(\kappa, \kappa, \theta, \theta)$.

Corollary

- If κ is a successor of a regular, then $\operatorname{Reg}(\kappa) \subseteq \operatorname{Cspec}(\kappa)$;
- If κ is a non-Mahlo inaccessible, then $\operatorname{Reg}(\kappa) \subseteq \operatorname{Cspec}(\kappa)$;
- If $\square(\kappa,<\omega)$ holds, then $\operatorname{Reg}(\kappa) \subseteq \operatorname{Cspec}(\kappa)$;
- If $E_{\geq \chi}^{\kappa}$ admits a non-reflecting stationary subset, then $\operatorname{Reg}\left(\chi^{+}\right) \subseteq \operatorname{Cspec}(\kappa)$.

Conjectures

YOU GET A CONJECTURE!

Conjectures

1. If $\chi(\kappa)=1$, then, in some set-forcing extension, $\chi(\kappa)=0$.
2. If $\chi(\kappa)=1$, then, there exists a coherent κ-Aronszajn tree.
3. If κ is inaccessible and $1<\chi(\kappa)<\kappa$, then there exists a κ-Aronszajn tree with a $\chi(\kappa)$-ascent path.
4. Any $\mathrm{U}(\kappa, \kappa, \ldots)$ may be witnessed by a closed coloring.
5. If $\chi(\kappa)$ is singular, then $\operatorname{cf}(\chi(\kappa))=\operatorname{cf}(\sup (\operatorname{Reg}(\kappa)))$.
6. $\operatorname{Reg}\left(\operatorname{cf}(\lambda)^{+}\right) \subseteq \operatorname{Cspec}\left(\lambda^{+}\right)$for every singular λ.
7. For all $\theta, \chi \in \operatorname{Cspec}(\kappa), \mathrm{U}(\kappa, \kappa, \theta, \chi)$ holds.

Thank you for your attention!

[^0]: ${ }^{1}$ The latter assumes the consistency of a supercompact.

[^1]: ${ }^{1}$ The latter assumes the consistency of a supercompact.

