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Conventions

I κ and λ denote infinite cardinals;

I Reg(κ) := {θ < κ | cf(θ) = θ ≥ ℵ0};

I Eκ≥χ := {α < κ | cf(α) ≥ χ} and
Eκ>χ := {α < κ | cf(α) > χ};

I [A]χ := {a ⊆ A | |a| = χ} and
[A]<χ := {a ⊆ A | |a| < χ};

I For a, b, nonempty sets of ordinals,
a < b means that sup(a) < min(b).
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Chain conditions

Let P := 〈P,≤〉 denote a poset.

Definition
For a subset X ⊆ P, we write

∧
X := {z ∈ P | ∀x ∈ X (z ≤ x)}.

We say that x , y ∈ P are compatible iff
∧
{x , y} 6= ∅.

Definition

• P satisfies the κ-cc iff ∀A ∈ [P]κ ∃X ∈ [A]2
∧

X 6= ∅;
• P is κ-Knaster iff ∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]2

∧
X 6= ∅;

• P has precaliber κ iff
∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]<ω

∧
X 6= ∅.

• P is κ-stationarily layered iff the following set is stationary:
{Q ∈ [P]<κ | 〈Q,≤〉 is a regular suborder of P}.

5 / 34



Chain conditions

Let P := 〈P,≤〉 denote a poset.

Definition
For a subset X ⊆ P, we write

∧
X := {z ∈ P | ∀x ∈ X (z ≤ x)}.

We say that x , y ∈ P are compatible iff
∧
{x , y} 6= ∅.

Definition

• P satisfies the κ-cc iff ∀A ∈ [P]κ ∃X ∈ [A]2
∧

X 6= ∅;
• P is κ-Knaster iff ∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]2

∧
X 6= ∅;

• P has precaliber κ iff
∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]<ω

∧
X 6= ∅.

• P is κ-stationarily layered iff the following set is stationary:
{Q ∈ [P]<κ | 〈Q,≤〉 is a regular suborder of P}.

5 / 34



Chain conditions

Let P := 〈P,≤〉 denote a poset.

Definition
For a subset X ⊆ P, we write

∧
X := {z ∈ P | ∀x ∈ X (z ≤ x)}.

We say that x , y ∈ P are compatible iff
∧
{x , y} 6= ∅.

Definition

• P satisfies the κ-cc iff ∀A ∈ [P]κ ∃X ∈ [A]2
∧
X 6= ∅;

• P is κ-Knaster iff ∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]2
∧

X 6= ∅;
• P has precaliber κ iff
∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]<ω

∧
X 6= ∅.

• P is κ-stationarily layered iff the following set is stationary:
{Q ∈ [P]<κ | 〈Q,≤〉 is a regular suborder of P}.

5 / 34



Chain conditions

Let P := 〈P,≤〉 denote a poset.

Definition
For a subset X ⊆ P, we write

∧
X := {z ∈ P | ∀x ∈ X (z ≤ x)}.

We say that x , y ∈ P are compatible iff
∧
{x , y} 6= ∅.

Definition

• P satisfies the κ-cc iff ∀A ∈ [P]κ ∃X ∈ [A]2
∧
X 6= ∅;

• P is κ-Knaster iff ∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]2
∧
X 6= ∅;

• P has precaliber κ iff
∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]<ω

∧
X 6= ∅.

• P is κ-stationarily layered iff the following set is stationary:
{Q ∈ [P]<κ | 〈Q,≤〉 is a regular suborder of P}.

5 / 34



Chain conditions

Let P := 〈P,≤〉 denote a poset.

Definition
For a subset X ⊆ P, we write

∧
X := {z ∈ P | ∀x ∈ X (z ≤ x)}.

We say that x , y ∈ P are compatible iff
∧
{x , y} 6= ∅.

Definition

• P satisfies the κ-cc iff ∀A ∈ [P]κ ∃X ∈ [A]2
∧
X 6= ∅;

• P is κ-Knaster iff ∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]2
∧
X 6= ∅;

• P has precaliber κ iff
∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]<ω

∧
X 6= ∅.

• P is κ-stationarily layered iff the following set is stationary:
{Q ∈ [P]<κ | 〈Q,≤〉 is a regular suborder of P}.

5 / 34



Chain conditions

Let P := 〈P,≤〉 denote a poset.

Definition
For a subset X ⊆ P, we write

∧
X := {z ∈ P | ∀x ∈ X (z ≤ x)}.

We say that x , y ∈ P are compatible iff
∧
{x , y} 6= ∅.

Definition

• P satisfies the κ-cc iff ∀A ∈ [P]κ ∃X ∈ [A]2
∧
X 6= ∅;

• P is κ-Knaster iff ∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]2
∧
X 6= ∅;

• P has precaliber κ iff
∀A ∈ [P]κ ∃B ∈ [A]κ ∀X ∈ [B]<ω

∧
X 6= ∅.

• P is κ-stationarily layered iff the following set is stationary:
{Q ∈ [P]<κ | 〈Q,≤〉 is a regular suborder of P}.

5 / 34



The product order (aka, coordinatewise order)

Given posets 〈P1,≤1〉, 〈P2,≤2〉, consider their product
〈P1 × P2,E〉, where (x , y)E (x ′, y ′) iff x ≤1 x

′ and y ≤2 y
′.

(Longer products are defined analogously.)

Question
Suppose that 〈P1,≤1〉, 〈P2,≤2〉 satisfy the κ-cc.
Must their product satisfy the κ-cc?

Sufficient condition
If one of the posets is moreover κ-Knaster, then “yes”.

Definition
Let Cκ denote the assertion that the product of any two κ-cc
posets is again κ-cc.

Note: It suffices to consider squares

Cκ iff P2 is κ-cc for every κ-cc poset P.
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The case κ = ℵ1.

Question (Marczewski, 1947)

Is Cℵ1 (aka, “productivity of the ccc”) true?

Answers

I (Kurepa, 1952): Cℵ1 entails Souslin’s hypothesis.

I (Kunen;Rowbottom;Solovay;Hajnal-Juhász;Juhász, 1970’s)
MAℵ1 entails Cℵ1 ;

J (Velickovic-Todorcevic, 1987) MAℵ1 iff every ccc poset has
precaliber ℵ1;

I (Fleissner, 1978; Roitman, 1979): After adding
random/Cohen real, Cℵ1 fails;

I (Galvin, 1980) after (Laver, unpublished): c = ℵ1 refutes Cℵ1 .

I (Todorcevic, 1988): b = ℵ1 refutes Cℵ1 .

Open problem

Is MAℵ1 equivalent to Cℵ1?
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The case κ > ℵ1. Counterexamples in ZFC

Theorem (Todorcevic, 1985)

Ccf(iα+1) fails for every limit ordinal α.
Moreover, if λ is a cardinal for which there exists a linear order of
size 2λ with a dense subset of size λ, then Cκ fails, for κ = cf(2λ).

Theorem (Todorcevic, 1986)

Cλ+ fails whenever λ singular, and θcf(λ) < λ for all θ < λ.

Theorem (Todorcevic, 1989)

Cλ+ fails whenever λ singular, and 2cf(λ) < λ.

Theorem (Shelah, 1994)

Cλ+ fails whenever λ singular.
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More counterexamples in ZFC

Theorem (Shelah, 1990–1997)

Cλ+ fails whenever λ is a regular cardinal ≥ ℵ1. Specifically:

I [Sh:280]: λ > 2ℵ0 ;

I [Sh:327]: λ > ℵ1;

I [Sh:572]: λ = ℵ1.

Corollary

Cκ fails for every successor cardinal κ > ℵ1.

Conjecture (Todorcevic, 1980’s)

For all regular cardinal κ > ℵ1, Cκ iff κ is weakly compact.

Theorem (2014)

For all regular cardinal κ > ℵ1, Cκ entails (κ is weakly compact)L.
In fact, Cκ entails ¬�(κ) & every stationary subset of κ reflects.
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Longer products and stronger chain conditions

Shortly after our work on Todorcevic’s conjecture, Lücke and his
colleagues addressed analogous questions involving longer products
and stronger variations of the κ-cc.
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κ is weakly compact iff every κ-cc poset is κ-stationarily layered.

Non-characterization theorem (Cox and Lücke, 2016)

Suppose κ is weakly compact. In some cofinality-preserving forcing
extension:
For every θ < κ, the class of κ-Knaster posets is closed under
θ-support products, yet, κ is not weakly compact.

Theorem (Lambie-Hanson and Lücke, 2018)

Suppose θ < κ are infinite and regular.
If the class of κ-Knaster posets is closed under θ-support products,
then ¬�(κ), so that (κ is weakly comapct)L.
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How to cook up a counterexample

Hereafter, κ denotes a regular uncountable cardinal.

Galvin (1980) gave a consistent construction of an anti-Ramsey
coloring c : [κ]2 → 2 from which he derived a κ-cc poset whose
square is not κ-cc.
In 1997, Shelah constructed a ZFC example of such a coloring for
κ = ℵ2.

Lambie-Hanson and Lücke (2018) gave a consistent construction
of non-special κ-tree from which they derived a κ-Knaster poset
whose infinite power is not κ-cc.
They proved that such a tree exists, assuming �(κ).

We would like to obtain the conclusions of Lambie-Hanson and
Lücke from ZFC, e.g., getting a ZFC example of an ℵ2-Knaster
poset whose ωth-power is not ℵ2-cc.

For this, let us revisit Galvin’s approach.
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• P2 fails to have the κ-cc, e.g., {〈({α}, i) | i < 2〉 | α < κ}.
• Qθ fails to have the κ-cc, e.g., {〈({α}, i) | i < θ〉 | α < κ}.

About P2.
For α < β < κ and i := c(α, β), ({α}, 1− i) and ({β}, 1− i) are
incompatible in P.

About Qθ.

For α < β < κ and i := c(α, β), ({α}, i + 1) and ({β}, i + 1) are
incompatible in Q.
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Ordering: (x , i) extends (y , j) iff x ⊇ y and i = j .

Key feature

• P2 fails to have the κ-cc;

• Qθ fails to have the κ-cc.

The heart of the matter is to construct c for which the corresponding
P be κ-cc, or Qτ be κ-Knaster for all τ < θ.
By a simple reverse-engineering process, one arrives at a reformula-
tion of these features in the language of the coloring c .

The poset P was analyzed by Galvin, giving birth to Pr1(. . .).
Today, we shall focus on the poset Q.
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Unbounded functions

Suppose Q := {(x , i) | x ∈ [κ]<ω, c“[x ]2 ∩ i = ∅} is derived from
c : [κ]2 → θ. Assuming θ ∈ Reg(κ), Q is κ-Knaster iff it has
precaliber κ iff c witnesses U(κ, θ):
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min(c[a× b]) ≥ i for every pair a < b from B.

There’s also a χ-closed variation: {(x , i) | x ∈ [κ]<χ, c“[x ]2∩i = ∅}.
For this, we need:

Definition
U(κ, θ, χ) asserts there is a coloring c : [κ]2 → θ such that for
every χ′ < χ, every family A ⊆ [κ]χ

′
consisting of κ-many pairwise

disjoint sets, and every i < θ, there is B ∈ [A]κ such that
min(c[a× b]) ≥ i for every pair a < b from B.
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The coloring axiom

Definition
U(κ, µ, θ, χ) asserts there is a coloring c : [κ]2 → θ such that for
every χ′ < χ, every family A ⊆ [κ]χ

′
consisting of κ-many pairwise

disjoint sets, and every i < θ, there is B ∈ [A]µ such that
min(c[a× b]) ≥ i for every pair a < b from B.

Note that Pr1(κ, κ, θ, χ) entails U(κ, 2, θ, χ).
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Suppose χ, θ ∈ Reg(κ) and that κ is (<χ)-inaccessible.
For every coloring c : [κ]2 → θ witnessing U(κ, µ, θ, χ),
the corresponding poset Q satisfies the following:

I Qθ is not κ-cc;

I if µ = 2, then Qτ is κ-cc for all τ < min{χ, θ};
I if µ = κ, then Qτ has precaliber κ for all τ < min{χ, θ};
I Q is well-met and χ-directed-closed with greatest lower

bounds.
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every χ′ < χ, every family A ⊆ [κ]χ
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consisting of κ-many pairwise

disjoint sets, and every i < θ, there is B ∈ [A]µ such that
min(c[a× b]) ≥ i for every pair a < b from B.

Conjecture

For κ regular uncountable, κ is weakly compact iff ¬U(κ, 2, ω, 2).

Put differently, we ask whether the existence of a κ-Aronszajn tree
gives rise to a coloring c : [κ]2 → ω with the property that
sup(c“[A]2) = ω for every A ∈ [κ]κ.
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min(c[a× b]) ≥ i for every pair a < b from B.

Conjecture

For κ regular uncountable, κ is weakly compact iff ¬U(κ, 2, ω, 2).

Partial answer 1
The existence of a κ-Aronszajn tree with an ω-ascent path entails
U(κ, 2, ω, ω).

Partial answer 2 (with Todorcevic)

The existence of a coherent κ-Aronszajn tree entails U(κ, 2, ω, ω)
but not U(κ, κ, ω, ω).
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Inspecting the parameters

Definition
U(κ, µ, θ, χ) asserts there is a coloring c : [κ]2 → θ such that for
every χ′ < χ, every family A ⊆ [κ]χ

′
consisting of κ-many pairwise

disjoint sets, and every i < θ, there is B ∈ [A]µ such that
min(c[a× b]) ≥ i for every pair a < b from B.

About the second parameter
I U(κ, 2, θ, χ) iff U(κ, ω, θ, χ);
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Definition
U(κ, µ, θ, χ) asserts there is a coloring c : [κ]2 → θ such that for
every χ′ < χ, every family A ⊆ [κ]χ

′
consisting of κ-many pairwise

disjoint sets, and every i < θ, there is B ∈ [A]µ such that
min(c[a× b]) ≥ i for every pair a < b from B.

About the second parameter
I U(κ, 2, θ, χ) iff U(κ, ω, θ, χ);

I Suppose c |= U(κ, 2, θ, χ). If c is closed, then
c |= U(κ, κ, θ, χ).

Definition
c : [κ]2 → θ is closed iff {α < β | c(α, β) ≤ i} is closed below β
for all β < κ, i < θ.
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About the third parameter
I U(κ, κ, κ, κ) holds;

I U(κ, µ, θ, χ) iff U(κ, µ, cf(θ), χ);

Therefore, hereafter, we shall focus on θ ∈ Reg(κ).
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Inspecting the parameters

Definition
U(κ, µ, θ, χ) asserts there is a coloring c : [κ]2 → θ such that for
every χ′ < χ, every family A ⊆ [κ]χ

′
consisting of κ-many pairwise

disjoint sets, and every i < θ, there is B ∈ [A]µ such that
min(c[a× b]) ≥ i for every pair a < b from B.

About the third parameter
I U(κ, κ, κ, κ) holds;

I U(κ, µ, θ, χ) iff U(κ, µ, cf(θ), χ);

I Lack of monotonicity: If λ is the singular limit of strongly
compact cardinals, then, for every θ ≤ λ,
U(λ+, λ+, θ, λ) iff cf(θ) = cf(λ).
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disjoint sets, and every i < θ, there is B ∈ [A]µ such that
min(c[a× b]) ≥ i for every pair a < b from B.

About the fourth parameter
I U(κ, κ, θ, 3) iff U(κ, κ, θ, ω);

I U(λ+, 2, θ, 2) iff U(λ+, 2, θ, cf(λ));

The above is optimal: If λ is the limit of strongly compact cardinals,
θ ∈ Reg(λ) with θ 6= cf(λ), then U(λ+, 2, θ, χ) holds for χ := cf(λ),
but fails for χ := cf(λ)+ .
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About the fourth parameter
I U(κ, κ, θ, 3) iff U(κ, κ, θ, ω);

I U(λ+, 2, θ, 2) iff U(λ+, 2, θ, cf(λ));

I There are κ, θ and colorings c , c |= U(κ, κ, θ, 2), but
c 6|= U(κ, 2, θ, 3);

I If there is a closed witness to U(λ+, λ+, θ, 2), then there is
one for U(λ+, λ+, θ, cf(λ)).
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Theorem
For every regular λ and θ ∈ Reg(λ+), there is c : [λ+]2 → θ
witnessing U(λ+, λ+, θ, λ) which is moreover closed.
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Theorem
For every regular λ and θ ∈ Reg(λ+), there is c : [λ+]2 → θ
witnessing U(λ+, λ+, θ, λ) which is moreover closed.

In case you wondered

The corresponding tree T (c) := {c(·, γ) � β | β ≤ γ < κ} may
consistently be a special κ-Aronszajn tree, as well as an
almost Souslin κ-Aronszajn tree.
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witnessing U(λ+, λ+, θ, λ) which is moreover closed.

Corollary

There exists an ℵ2-Knaster poset whose ωth-power is not ℵ2-cc.

More generally

Suppose that θ ≤ χ ≤ λ are regular, with λ<χ = λ.
Then there exists a χ-directed-closed poset Q such that:

I Qτ has precaliber λ+ for all τ < θ;

I Qθ is not λ+-cc.
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Further findings

Theorem
For every regular λ and θ ∈ Reg(λ+), there is c : [λ+]2 → θ
witnessing U(λ+, λ+, θ, λ) which is moreover closed.

Corollary

There exists an ℵ2-Knaster poset whose ωth-power is not ℵ2-cc.
CH ⇒ ∃σ-closed ℵ2-Knaster poset whose ωth-power is not ℵ2-cc.

Open problem

Does CH entail a σ-closed ℵ2-cc poset whose square is not ℵ2-cc?
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Further findings (cont.)

Theorem
For every singular λ and θ ∈ Reg(λ), any of the following entail
the existence of a closed witness to U(λ+, λ+, θ, cf(λ)):

I 2λ = λ+;

I Refl(< cf(λ), λ+) fails;

I θ = ω or θ = cf(λ);

I θ < ν < ν+ = cf(λ);

I θ < cf(λ) and cf(NScf(λ),⊆) < λ.
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I θ = ω or θ = cf(λ);

I θ < ν < ν+ = cf(λ);

I θ < cf(λ) and cf(NScf(λ),⊆) < λ.

Corollary

If the class of κ-Knaster posets is closed under ω powers,
then κ is inaccessible.
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Further findings (cont.)

Theorem
For every singular λ and θ ∈ Reg(λ), any of the following entail
the existence of a closed witness to U(λ+, λ+, θ, cf(λ)):

I 2λ = λ+;

I Refl(< cf(λ), λ+) fails;

I θ = ω or θ = cf(λ);

I θ < ν < ν+ = cf(λ);

I θ < cf(λ) and cf(NScf(λ),⊆) < λ.

Theorem
For every θ, χ ∈ Reg(κ), any of the following entails the existence
of a closed witness to U(κ, κ, θ, χ):

I �(κ,<ω) or �ind(κ, θ);

I ∃stationary S ⊆ Eκ≥χ with S ∩ α nonstationary for α ∈ Eκ>ω;

I ∃stationary S ⊆ Eκ≥χ with S ∩ α nonstationary for all
α ∈ Reg(κ), and κ is inacc.
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A new cardinal invariant
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The C -sequence number

Theorem (Todorcevic, 1987)

For every strongly inaccessible cardinal κ, the following are
equivalent:

1. κ is weakly compact;

2. For every C -sequence 〈Cβ | β < κ〉, there exist ∆ ∈ [κ]κ and
b : κ→ κ such that ∆ ∩ α = Cb(α) ∩ α for every α < κ.

Recall
〈Cβ | β < κ〉 is a C -sequence iff each Cβ is closed subset of β with
sup(Cβ) = sup(β).

Definition (The C -sequence number of κ)

If κ is weakly compact, then let χ(κ) := 0.
Otherwise, let χ(κ) denote the least χ ≤ κ such that, for every
C -sequence 〈Cβ | β < κ〉, there exist ∆ ∈ [κ]κ and b : κ→ [κ]χ

with ∆ ∩ α ⊆
⋃
β∈b(α) Cβ for all α < κ.
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The C -sequence number

Todorcevic’s analysis of the number of steps function readily estab-
lishes the following.

The C -sequence number and yoU

U(κ, κ, ω, χ(κ)) holds, as witnessed by the closed function ρ2.

However, it is consistent that U(κ, κ, ω, χ) holds with χ� χ(κ).
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The C -sequence number

Questions
• Is “χ(κ) < ω” a large cardinal property?

• How about “χ(κ) < sup(Reg(κ))”?

• Could χ(κ) be singular?

Corollary

If the class of κ-Knaster posets is closed under taking ω powers,
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Increasing the C -sequence number
Kunen (1978) showed that by forcing over a model with a weakly
compact cardinal κ, one obtains a model V having a κ-Souslin tree
S such that V S |= κ is weakly compact.

Proposition

In Kunen’s model, χ(κ) = 1.

Proof. The κ-Souslin tree witnesses that κ is not weakly compact,
so χ(κ) 6= 0.
Now, let ~C = 〈Cβ | β < κ〉 be an arbitrary C -sequence.

In V S, ~C is a C -sequence over a weakly compact cardinal κ, and
hence there is ∆ ∈ [κ]κ and b : κ→ κ with ∆ ∩ α = Cb(α) ∩ α for
each α < κ. Clearly, ∆ is a club.
As S is κ-cc, there is a club D ⊆ κ in V , with D ⊆ ∆.
Then D ∩ α ⊆ Cb(α) ∩ α for each α < κ. �

Theorem
Suppose χ(κ) = 0. For every θ ∈ Reg(κ+), there is a
cofinality-preserving forcing extension in which κ remains strongly
inaccessible, and χ(κ) = θ.
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Increasing the C -sequence number (cont.)

Observation
cf(λ) ≤ χ(λ+) ≤ λ.

Theorem
If λ is a singular limit of supercompacts, then χ(λ+) = cf(λ).

Theorem
If λ is a singular limit of supercompacts, and θ ∈ Reg(λ) \ cf(λ),
then, in some cofinality-preserving forcing extension, χ(λ+) = θ.

Theorem
χ(ℵω+1) = ℵω is consistent, and so is χ(ℵω+1) = ω.1

1The latter assumes the consistency of a supercompact.
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Increasing the C -sequence number (cont.)

Observation
cf(λ) ≤ χ(λ+) ≤ λ.

Theorem
If λ is a singular limit of supercompacts, then χ(λ+) = cf(λ).

Theorem
If λ is a singular limit of supercompacts, and θ ∈ Reg(λ) \ cf(λ),
then, in some cofinality-preserving forcing extension, χ(λ+) = θ.

Theorem
χ(ℵω+1) = ℵω is consistent, and so is χ(ℵω+1) = ω.1

1The latter assumes the consistency of a supercompact.
26 / 34



Increasing the C -sequence number (cont.)

Observation
cf(λ) ≤ χ(λ+) ≤ λ.

Theorem
If λ is a singular limit of supercompacts, then χ(λ+) = cf(λ).

Theorem
If λ is a singular limit of supercompacts, and θ ∈ Reg(λ) \ cf(λ),
then, in some cofinality-preserving forcing extension, χ(λ+) = θ.

Theorem
χ(ℵω+1) = ℵω is consistent, and so is χ(ℵω+1) = ω.1

1The latter assumes the consistency of a supercompact.
26 / 34



How large
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How large

Theorem

1. Refl(<ω,Eκ>χ(κ));

2. If χ(κ) < ω, then χ(κ) ∈ {0, 1};
3. If κ is inaccessible and χ(κ) < κ, then κ is ω-Mahlo;

4. If χ(κ) = 1, then �(κ,<µ) fails for all µ < κ;

5. If χ(κ) = 1, then, for every sequence 〈Si | i < κ〉 of stationary
subsets of κ, there exists an inaccessible β < κ such that
Si ∩ β is stationary in β for all i < β.
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4. If χ(κ) = 1, then �(κ,<µ) fails for all µ < κ;

5. If χ(κ) = 1, then, for every sequence 〈Si | i < κ〉 of stationary
subsets of κ, there exists an inaccessible β < κ such that
Si ∩ β is stationary in β for all i < β.

Corollary
I In L, either χ(κ) = 0 or χ(κ) = sup(Reg(κ));

I �(κ,<ω) entails χ(κ) = sup(Reg(κ));

I If χ(κ) = 1, then κ is greatly Mahlo.
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How large

Theorem

1. Refl(<ω,Eκ>χ(κ));

2. If χ(κ) < ω, then χ(κ) ∈ {0, 1};
3. If κ is inaccessible and χ(κ) < κ, then κ is ω-Mahlo;

4. If χ(κ) = 1, then �(κ,<µ) fails for all µ < κ;

5. If χ(κ) = 1, then, for every sequence 〈Si | i < κ〉 of stationary
subsets of κ, there exists an inaccessible β < κ such that
Si ∩ β is stationary in β for all i < β.

Corollary

If the class of κ-Knaster posets is closed under ω powers,
then κ is greatly Mahlo.
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The C -sequence spectrum

Definition
For a C -sequence ~C = 〈Cβ | β < κ〉, let χ( ~C ) denote the least
cardinal χ ≤ κ such that there exist ∆ ∈ [κ]κ and b : κ→ [κ]χ

with ∆ ∩ α ⊆
⋃
β∈b(α) Cβ for every α < κ.

Definition
Cspec(κ) := {χ( ~C ) | ~C is a C -sequence over κ} \ ω.

Theorem

1. If Cspec(κ) 6= ∅, then χ(κ) = max(Cspec(κ));

2. If Cspec(κ) 6= ∅, then min(Cspec(κ)) = ω;

3. χ ∈ Cspec(κ) =⇒ cf(χ) ∈ Cspec(κ), but not ⇐= .

Open problem

Is Cspec(κ) an interval? Is it a closed set?
Is every limit uncountable cardinal in Cspec(κ) an accumulation
point of Cspec(κ)?
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Unexpected equivalency
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Unexpected equivalency

Theorem
For every θ ∈ Reg(κ), the following are equivalent:
• θ ∈ Cspec(κ);

• There exists a closed witness to U(κ, κ, θ, θ).

The forward implication works for θ singular; the backward does not.
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Unexpected equivalency

Theorem
For every θ ∈ Reg(κ), the following are equivalent:
• θ ∈ Cspec(κ);

• There exists a closed witness to U(κ, κ, θ, θ).

Corollary

• If κ is a successor of a regular, then Reg(κ) ⊆ Cspec(κ);

• If κ is a non-Mahlo inaccessible, then Reg(κ) ⊆ Cspec(κ);

• If �(κ,<ω) holds, then Reg(κ) ⊆ Cspec(κ);

• If Eκ≥χ admits a non-reflecting stationary subset, then
Reg(χ+) ⊆ Cspec(κ).
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Conjectures
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Conjectures

1. If χ(κ) = 1, then, in some set-forcing extension, χ(κ) = 0.

2. If χ(κ) = 1, then, there exists a coherent κ-Aronszajn tree.

3. If κ is inaccessible and 1 < χ(κ) < κ, then there exists a
κ-Aronszajn tree with a χ(κ)-ascent path.

4. Any U(κ, κ, . . .) may be witnessed by a closed coloring.

5. If χ(κ) is singular, then cf(χ(κ)) = cf(sup(Reg(κ))).

6. Reg(cf(λ)+) ⊆ Cspec(λ+) for every singular λ.

7. For all θ, χ ∈ Cspec(κ), U(κ, κ, θ, χ) holds.
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Thank you for your attention!
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