*M*₁ and its strategy extensions (and beyond) Farmer Schlutzenberg, University of Münster

15th International Luminy Workshop in Set Theory September 26, 2019 We will discuss connections between (pure extender) mice, and strategy mice. Some key things:

1. How much of its own iteration strategy can be added to M_1 without destroying the Woodinness of δ ?

We will discuss connections between (pure extender) mice, and strategy mice. Some key things:

- 1. How much of its own iteration strategy can be added to M_1 without destroying the Woodinness of δ ?
- 2. Given an M_1 -cardinal $\kappa > \delta$, what is the κ -mantle of M_1 ?

Definition 1.1.

Definition 1.1.

$$\overline{-M}=\overline{L}_{\alpha}[\mathbb{E}],$$

Definition 1.1.

$$-M=L_{\alpha}[\mathbb{E}],$$

$$- \,\, \mathbb{E} = \left\langle \mathbb{E}^{\textit{M}}_{\alpha} \right\rangle_{\alpha < \lambda} \,$$
 is a good sequence of extenders,

Definition 1.1.

- $-M=L_{\alpha}[\mathbb{E}],$
- $-\mathbb{E}=\left\langle \mathbb{E}_{lpha}^{\mathit{M}}
 ight
 angle _{lpha<\lambda}$ is a good sequence of extenders,
- *M* is <u>iterable</u> (mouse).

Definition 1.1.

(Pre-)mice M:

- $-M=L_{\alpha}[\mathbb{E}],$
- $-\mathbb{E} = \langle \mathbb{E}_{\alpha}^{M} \rangle_{\alpha < \lambda}$ is a good sequence of extenders,
- *M* is iterable (mouse).

With extender $E = \mathbb{E}_{\alpha}^{M}$ form (internal) <u>ultrapower</u>

$$U = \mathrm{Ult}_0(M, E),$$

Definition 1.1.

(Pre-)mice *M*:

- $-M=L_{\alpha}[\mathbb{E}],$
- $-\mathbb{E} = \langle \mathbb{E}_{\alpha}^{M} \rangle_{\alpha < \lambda}$ is a good sequence of extenders,
- *M* is iterable (mouse).

With extender $E = \mathbb{E}_{\alpha}^{M}$ form (internal) <u>ultrapower</u>

$$U = \mathrm{Ult}_0(M, E),$$

gives Σ_1 -elementary ultrapower map

$$i_E^M:M\to U$$

Definition 1.1.

(Pre-)mice M:

- $-M=L_{\alpha}[\mathbb{E}],$
- $-\mathbb{E} = \langle \mathbb{E}_{\alpha}^{M} \rangle_{\alpha < \lambda}$ is a good sequence of extenders,
- *M* is iterable (mouse).

With extender $E = \mathbb{E}_{\alpha}^{M}$ form (internal) <u>ultrapower</u>

$$U = \mathrm{Ult}_0(M, E),$$

gives Σ_1 -elementary ultrapower map

$$i_E^M:M\to U$$

(ignoring details).

Definition 1.1.

(Pre-)mice M:

- $-M=L_{\alpha}[\mathbb{E}],$
- $-\mathbb{E} = \langle \mathbb{E}_{\alpha}^{M} \rangle_{\alpha < \lambda}$ is a good sequence of extenders,
- *M* is iterable (mouse).

With extender $E = \mathbb{E}_{\alpha}^{M}$ form (internal) <u>ultrapower</u>

$$U = \mathrm{Ult}_0(M, E),$$

gives Σ_1 -elementary ultrapower map

$$i_E^M:M\to U$$

(ignoring details).

Set $M_0 = M$ and $M_1 = U...$

$$M_{\beta+1}=\mathrm{Ult}(M_{\alpha},E_{\beta}),$$

– Given M_{β} , choose $E_{\beta} \in \mathbb{E}^{M_{\beta}}$, choose $\alpha \leq \beta$, set

$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

– embedding $\emph{i}_{lpha,eta+1}:\emph{M}_{lpha}\rightarrow\emph{M}_{eta+1}$,

$$M_{\beta+1}=\mathrm{Ult}(M_{\alpha},E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}: M_{\alpha} \to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta +$ 1.

$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}: M_{\alpha} \to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.

$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.

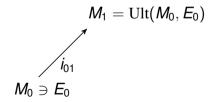
$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.

$$\textit{M}_0\ni\textit{E}_0$$

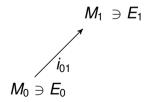
$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.



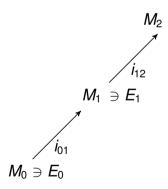
$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.



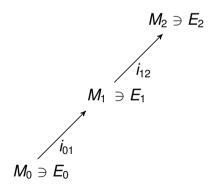
$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.



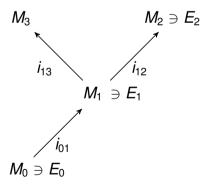
$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.



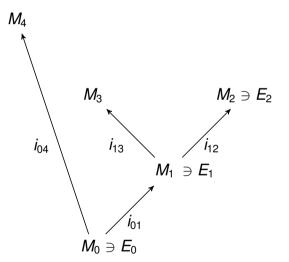
$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.



$$M_{\beta+1}=\mathrm{Ult}(M_{\alpha},E_{\beta}),$$

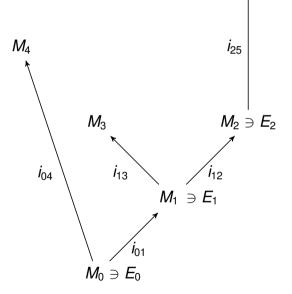
- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.



– Given M_{β} , choose $E_{\beta} \in \mathbb{E}^{M_{\beta}}$, choose $\alpha \leq \beta$, set

 $M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.

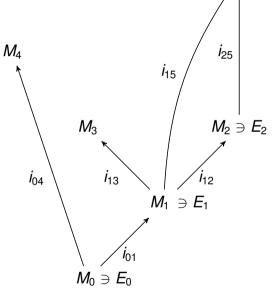


 M_5

– Given M_{β} , choose $E_{\beta} \in \mathbb{E}^{M_{\beta}}$, choose $\alpha \leq \beta$, set

$$M_{\beta+1}=\mathrm{Ult}(M_{\alpha},E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta +$ 1.
- Model M_{α} at node $\alpha \in \mathcal{T}$.

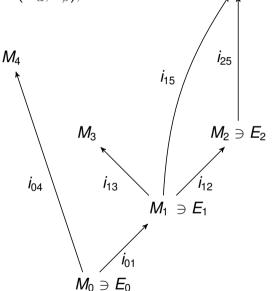


 M_5

– Given M_{β} , choose $E_{\beta} \in \mathbb{E}^{M_{\beta}}$, choose $\alpha \leq \beta$, set

$$M_{\beta+1} = \text{Ult}(M_{\alpha}, E_{\beta}),$$

- embedding $i_{\alpha,\beta+1}:M_{\alpha}\to M_{\beta+1}$,
- $-\alpha =$ tree-predecessor of $\beta + 1$.
- Model M_{α} at node $\alpha \in \mathcal{T}$.
- Write $M_{\alpha}^{\mathcal{T}} = M_{\alpha}$, $E_{\alpha}^{\mathcal{T}} = E_{\alpha}$, etc.



 M_5

– Limit stages λ ?

Iteration trees T:

- Limit stages λ ? Choose cofinal branch b, set

 $M_{\lambda}=M_{b}=\,$ direct limit of models along b.

Iteration trees T:

- Limit stages λ ? Choose cofinal branch b, set

 $M_{\lambda} = M_b = \text{ direct limit of models along } b.$

- Iteration strategy Σ chooses branches b, guarantees wellfounded models.

Iteration trees T:

- Limit stages λ ? Choose cofinal branch b, set

 $M_{\lambda} = M_{b} = \text{ direct limit of models along } b.$

- Iteration strategy Σ chooses branches b, guarantees wellfounded models.
- − M is (fully) <u>iterable</u> if such a Σ exists.

Definition 1.2.

An iteration tree T is normal iff

$$\alpha < \beta \implies \operatorname{lh}(\boldsymbol{\mathcal{E}}_{\alpha}^{\mathcal{T}}) \le \operatorname{lh}(\boldsymbol{\mathcal{E}}_{\beta}^{\mathcal{T}}),$$

and all extenders apply to the earliest and largest model possible.

We write $lh(\mathcal{T})$ for the length of \mathcal{T} .

 \mathcal{T} is on $M_0^{\mathcal{T}}$.

If \mathcal{T} has successor length then $M_{\infty}^{\mathcal{T}} = \text{last model of } \mathcal{T}$.

If b is a branch through \mathcal{T} then $M_b^{\mathcal{T}} = \text{direct limit model along } b$, and

$$i_b^{\mathcal{T}}:M_0^{\mathcal{T}}\to M_b^{\mathcal{T}}$$

is the direct limit map.

Let T be a normal iteration tree, of limit length. Then (Coherence)

$$\alpha < \beta \implies \mathbf{M}_{\alpha}^{\mathcal{T}} || \mathrm{lh}(\mathbf{E}_{\alpha}^{\mathcal{T}}) = \mathbf{M}_{\beta}^{\mathcal{T}} || \mathrm{lh}(\mathbf{E}_{\alpha}^{\mathcal{T}}).$$

Write:

$$-\delta(\mathcal{T}) = \sup_{\alpha < \operatorname{lh}(\mathcal{T})} \operatorname{lh}(\mathcal{E}_{\alpha}^{\mathcal{T}}).$$

 $-M(\mathcal{T})$ = eventual model of agreement of height $\delta(\mathcal{T})$,

$$M(\mathcal{T}) = \bigcup_{\alpha < \mathrm{lh}(\mathcal{T})} M_{\alpha}^{\mathcal{T}} || \mathrm{lh}(\mathcal{E}_{\alpha}^{\mathcal{T}}).$$

Definition 1.3.

 M_1 = the minimal proper class mouse with a Woodin cardinal $\delta = \delta^{M_1}$.

Then:

- $-M_1=L[\mathbb{E}^{M_1}]=L[\mathbb{E}]$ with $\mathbb{E}\subseteq M_1|\delta$.
- Write Σ_{M_1} for the (unique) normal iteration strategy for M_1 .
- Is M_1 closed under Σ_{M_1} ?
- If $\mathcal T$ is a normal tree on M_1 , we say $\mathcal T$ is maximal iff

$$L[M(T)] \models "\delta(T)$$
 is Woodin".

– Let \mathcal{T} be maximal and $b = \Sigma_{M_1}(\mathcal{T})$. Then

$$M_b^{\mathcal{T}} = L[M(\mathcal{T})],$$

$$i_b^{\mathcal{T}}(\delta^{M_1}) = \delta(\mathcal{T}).$$

 $-M_1$ computes correct branches through non-maximal trees.

But there are maximal trees $\mathcal{U} \in M_1$ such that:

- $L[M(\mathcal{U})]$ is a ground of M_1 ,
- $-\delta(\mathcal{U})$ is a successor cardinal of M_1 ,
- so $i_b^{\mathcal{U}}$ ∉ M_1 ,
- so $b \notin M_1$

(uses Woodin's genericity iterations).

(Corollary: M_1 has proper grounds.)

More generally, mice with Woodin cardinals cannot iterate themselves.

More generally, mice with Woodin cardinals cannot iterate themselves. We can build structures which can:

Definition 1.4.

A <u>strategy mouse</u>* is an iterable structure $M = L_{\alpha}[\mathbb{E}, \Sigma]$

More generally, mice with Woodin cardinals cannot iterate themselves. We can build structures which can:

Definition 1.4.

A strategy mouse* is an iterable structure $M = L_{\alpha}[\mathbb{E}, \Sigma]$

^{*}Terminology for this talk

More generally, mice with Woodin cardinals cannot iterate themselves. We can build structures which can:

Definition 1.4.

A strategy mouse* is an iterable structure $M = L_{\alpha}[\mathbb{E}, \Sigma]$, where:

 $-\mathbb{E}$ is a good sequence of extenders,

^{*}Terminology for this talk

More generally, mice with Woodin cardinals cannot iterate themselves. We can build structures which can:

Definition 1.4.

A strategy mouse* is an iterable structure $M = L_{\alpha}[\mathbb{E}, \Sigma]$, where:

- $-\mathbb{E}$ is a good sequence of extenders,
- $-\Sigma$ encodes a partial iteration strategy for M.

^{*}Terminology for this talk

Definition 1.5.

For $\eta \in OR$, let

$$\Sigma_{\eta} = \Sigma_{M_1} \upharpoonright (M_1 | \eta).$$

Define

$$M_1[\Sigma_{\eta}] = L[M_1, \Sigma_{\eta}]$$
 (adding branches).

Definition 1.5.

For $\eta \in OR$, let

$$\Sigma_{\eta} = \Sigma_{M_1} \upharpoonright (M_1 | \eta).$$

Define

$$M_1[\Sigma_{\eta}] = L[M_1, \Sigma_{\eta}]$$
 (adding branches).

Say $M_1[\Sigma_{\eta}]$ is a <u>nice extension</u> (of M_1) iff

$$V_{\delta}^{M_1[\Sigma_{\eta}]} = V_{\delta}^{M_1}$$
, and $M_1[\Sigma_{\eta}] \models$ " δ is Woodin", and $M_1[\Sigma_{\eta}]$ is iterable.

Similarly for extensions of iterates of M_1 .

Definition 1.5.

For $\eta \in OR$, let

$$\Sigma_{\eta} = \Sigma_{M_1} \upharpoonright (M_1 | \eta).$$

Define

$$M_1[\Sigma_{\eta}] = L[M_1, \Sigma_{\eta}]$$
 (adding branches).

Say $M_1[\Sigma_{\eta}]$ is a <u>nice extension</u> (of M_1) iff

$$V_{\delta}^{M_1[\Sigma_{\eta}]} = V_{\delta}^{M_1}$$
, and $M_1[\Sigma_{\eta}] \models$ " δ is Woodin", and $M_1[\Sigma_{\eta}]$ is iterable.

Similarly for extensions of iterates of M_1 .

Remark: if non-trivial, then Σ_{η} is not generic over M_1 .

Write $\kappa_{\alpha}^{M_1}$ = the α th Silver indiscernible of M_1 .

Definition 1.5.

For $\eta \in OR$, let

$$\Sigma_{\eta} = \Sigma_{M_1} \upharpoonright (M_1 | \eta).$$

Define

$$M_1[\Sigma_{\eta}] = L[M_1, \Sigma_{\eta}]$$
 (adding branches).

Say $M_1[\Sigma_{\eta}]$ is a <u>nice extension</u> (of M_1) iff

$$V_{\delta}^{M_1[\Sigma_{\eta}]} = V_{\delta}^{M_1}$$
, and $M_1[\Sigma_{\eta}] \models$ " δ is Woodin", and $M_1[\Sigma_{\eta}]$ is iterable.

Similarly for extensions of iterates of M_1 .

Remark: if non-trivial, then Σ_{η} is not generic over M_1 .

Write $\kappa_{\alpha}^{M_1}$ = the α th Silver indiscernible of M_1 .

Theorem 1.6 (Woodin).

Let $\kappa = \kappa_0^{M_1}$. Then $M_1[\Sigma_{\kappa}]$ is a nice extension.

But $M_1^\# \in L[M_1, \Sigma_{M_1}]$ (construct by closing under Σ_{M_1}).

So δ^{M_1} is countable in $L[M_1, \Sigma_{M_1}]$.

Recall:

- W is a ground (of V) iff $W \models \mathsf{ZFC}$ is a transitive class and V = W[G] for some set generic G over W.
- The mantle \mathbb{M} is the intersection of all grounds.
- Let η be a cardinal. The $\underline{\eta}$ -mantle \mathbb{M}_{η} is the intersection of all W such that W is a ground via some forcing \mathbb{P} of cardinality $< \eta$.

Recall:

- W is a ground (of V) iff $W \models \mathsf{ZFC}$ is a transitive class and V = W[G] for some set generic G over W.
- The mantle \mathbb{M} is the intersection of all grounds.
- Let η be a cardinal. The $\underline{\eta}$ -mantle $\underline{\mathbb{M}}_{\eta}$ is the intersection of all W such that W is a ground via some forcing $\underline{\mathbb{P}}$ of cardinality $< \eta$.

Recent work of Fuchs, Schindler, Sargsyan and myself analyses HODs and mantles associated to various mice.

The mantle of M_1 is given by iterating its least measurable out of the universe.

Recall:

- W is a ground (of V) iff $W \models \mathsf{ZFC}$ is a transitive class and V = W[G] for some set generic G over W.
- The mantle \mathbb{M} is the intersection of all grounds.
- Let η be a cardinal. The $\underline{\eta}$ -mantle \mathbb{M}_{η} is the intersection of all W such that W is a ground via some forcing \mathbb{P} of cardinality $< \eta$.

Recent work of Fuchs, Schindler, Sargsyan and myself analyses HODs and mantles associated to various mice.

The mantle of M_1 is given by iterating its least measurable out of the universe.

Higher mice...Fuchs and Schindler extended this to a wider class of mice *M* lacking strong cardinals.

Definition 1.7.

 $M_{\rm sw}=$ the minimal proper class mouse N with ordinals $\delta<\kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Definition 1.7.

 $M_{\rm sw} =$ the minimal proper class mouse N with ordinals $\delta < \kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Theorem 1.8 (Sargsyan, Schindler).

Definition 1.7.

 $M_{\rm sw} =$ the minimal proper class mouse N with ordinals $\delta < \kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Theorem 1.8 (Sargsyan, Schindler).

Assume $M_{sw}^{\#}$ exists (fully iterable). There is a class \mathscr{V} of $M=M_{sw}$ such that:

 $-\mathscr{V}=L[\mathbb{F},\Sigma]$ is a strategy mouse, closed under its strategy,

Definition 1.7.

 $M_{\rm sw} =$ the minimal proper class mouse N with ordinals $\delta < \kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Theorem 1.8 (Sargsyan, Schindler).

- $-\mathscr{V}=L[\mathbb{F},\Sigma]$ is a strategy mouse, closed under its strategy,
- $\mathscr{V} \models$ "There is a Woodin cardinal",

Definition 1.7.

 $M_{\rm sw} =$ the minimal proper class mouse N with ordinals $\delta < \kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Theorem 1.8 (Sargsyan, Schindler).

- $-\mathscr{V}=L[\mathbb{F},\Sigma]$ is a strategy mouse, closed under its strategy,
- $-\mathscr{V} \models$ "There is a Woodin cardinal",
- the universe of 𝒯

Definition 1.7.

 $M_{\rm sw} =$ the minimal proper class mouse N with ordinals $\delta < \kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Theorem 1.8 (Sargsyan, Schindler).

- $-\mathscr{V}=L[\mathbb{F},\Sigma]$ is a strategy mouse, closed under its strategy,
- $-\mathscr{V} \models$ "There is a Woodin cardinal",
- the universe of \mathscr{V}
 - $= \mathrm{HOD}^{M[G]}$, for M-generic $G \subseteq \mathrm{Col}(\omega, \lambda)$, for all large λ ,

Definition 1.7.

 $M_{\rm sw} =$ the minimal proper class mouse N with ordinals $\delta < \kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Theorem 1.8 (Sargsyan, Schindler).

- $-\mathscr{V}=L[\mathbb{F},\Sigma]$ is a strategy mouse, closed under its strategy,
- $-\mathscr{V} \models$ "There is a Woodin cardinal",
- the universe of 𝒯
 - $= \mathrm{HOD}^{M[G]}$, for M-generic $G \subseteq \mathrm{Col}(\omega, \lambda)$, for all large λ ,
 - = the mantle of M,

Definition 1.7.

 $M_{\rm sw} =$ the minimal proper class mouse N with ordinals $\delta < \kappa$ such that

 $N \models$ " δ is Woodin and κ is strong".

 $M_{\rm sw}^{\#}$ is a slightly stronger mouse.

Theorem 1.8 (Sargsyan, Schindler).

- $-\mathscr{V}=L[\mathbb{F},\Sigma]$ is a strategy mouse, closed under its strategy,
- $-\mathscr{V} \models$ "There is a Woodin cardinal",
- the universe of 𝒯
 - $= \mathrm{HOD}^{M[G]}$, for M-generic $G \subseteq \mathrm{Col}(\omega, \lambda)$, for all large λ ,
 - = the mantle of M,
 - = the least ground of M.

Definition 1.9.

 $M_{\mathrm{swsw}} = \text{minimal proper class mouse } M = L[\mathbb{E}] \text{ with }$

$$\delta_0 < \kappa_0 < \delta_1 < \kappa_1$$

with δ_n Woodin and κ_n strong in M, for n = 0, 1.

Definition 1.9.

 $M_{\text{swsw}} = \text{minimal proper class mouse } M = L[\mathbb{E}] \text{ with }$

$$\delta_0 < \kappa_0 < \delta_1 < \kappa_1$$

with δ_n Woodin and κ_n strong in M, for n = 0, 1.

Theorem 1.10 (Sargsyan, Schindler, S.).

Assume $M_{\text{swsw}}^{\#}$ exists. Then there is a class \mathscr{V}_2 of $M=M_{\text{swsw}}$ such that:

- V_2 is a strategy mouse, closed under its strategy,
- $-\mathscr{V}_2 \models$ "There are 2 Woodin cardinals"
- The universe of \mathscr{V}_2 :
 - $= \mathrm{HOD}^{M[G]}$, for M-generic $G \subseteq \mathrm{Col}(\omega, \lambda)$, for large λ ,
 - = the mantle of M,
 - = the least ground of M.

Definition 1.9.

 $M_{\text{swsw}} = \text{minimal proper class mouse } M = L[\mathbb{E}] \text{ with }$

$$\delta_0 < \kappa_0 < \delta_1 < \kappa_1$$

with δ_n Woodin and κ_n strong in M, for n = 0, 1.

Theorem 1.10 (Sargsyan, Schindler, S.).

Assume $M_{\text{swsw}}^{\#}$ exists. Then there is a class \mathscr{V}_2 of $M=M_{\text{swsw}}$ such that:

- V_2 is a strategy mouse, closed under its strategy,
- $-\mathscr{V}_2 \models$ "There are 2 Woodin cardinals"
- The universe of \mathscr{V}_2 :
 - $= \mathrm{HOD}^{M[G]}$, for M-generic $G \subseteq \mathrm{Col}(\omega, \lambda)$, for large λ ,
 - = the mantle of M,
 - = the least ground of M.

(To appear in Varsovian models II)

Theorem 1.11 (S.).

The κ_0 -mantle of $M_{\rm swsw}$ is a strategy mouse \mathscr{V}_1 .

Definition 1.12.

 $M_{\mathrm{sw}\omega}=$ minimal proper class mouse $M=L[\mathbb{E}]$ with

$$\delta_0 < \kappa_0 < \delta_1 < \kappa_1 < \ldots < \delta_n < \kappa_n < \ldots$$

for $n < \omega$, with δ_n Woodin and κ_n strong in M.

Definition 1.12.

 $M_{\mathrm{sw}\omega}=$ minimal proper class mouse $M=L[\mathbb{E}]$ with

$$\delta_0 < \kappa_0 < \delta_1 < \kappa_1 < \ldots < \delta_n < \kappa_n < \ldots$$

for $n < \omega$, with δ_n Woodin and κ_n strong in M.

Theorem 1.13 (S.).

Assume $M_{sw\omega}^{\#}$ exists. Then there is a class \mathscr{V}_{ω} of $M=M_{sw\omega}$ such that:

- $-\mathscr{V}_{\omega}$ is a strategy mouse, closed under its strategy,
- $-\mathscr{V}_{\omega}\models$ "There are ω Woodin cardinals",
- The universe of \mathscr{V}_{ω} :
 - $= \mathrm{HOD}^{M[G]}$, for M-generic $G \subseteq \mathrm{Col}(\omega, \lambda)$, for large λ ,
 - = the mantle of M, and
 - = the least ground of M.

But back to M_1 ...

What is the largest nice extension of M_1 ? Recall $M_1[\Sigma_{\kappa_0^{M_1}}]$ is nice (Woodin).

Theorem 1.14 (S.).

Let
$$\kappa = \kappa_0^{M_1}$$
 and $\kappa_+ = (\kappa^+)^{M_1}$. Then

$$M_1[\Sigma_{\eta}]$$
 is nice iff $\eta \leq \kappa_+$.

In fact,

- 1. $M_1[\Sigma_{\kappa_+}] = M_1[\Sigma_{\kappa}].$
- 2. Let $\mathcal{U} \in M_1$ be the M_1 -genericity iteration at κ_+ . Let $b = \Sigma_{M_1}(\mathcal{U})$. Then

$$M_1[b] = M_1[\Sigma_{OR}] = L[M_1^{\#}].$$

What is the η -mantle of M_1 ? Does it model ZFC?

Write (for good enough η):

- $-M_{\infty\eta}=$ the direct limit of all iterates of M_1 via maximal trees in $M_1|\eta$, and
- $-\Gamma_{\infty\eta}=\Sigma_{j(\eta)}^{M_{\infty\eta}}=$ the corresponding strategy fragment for $M_{\infty\eta}$,*
- $-j:M_1\to M_{\infty\eta}$ is the iteration map.

Woodin showed that $M_{\infty\eta}[\Gamma_{\infty\eta}]$ is nice when $\eta \leq \kappa_0^{M_1}$.

Theorem 1.15 (S.).

Let $\kappa = \kappa_0^{M_1}$. Then the κ -mantle of M_1 is $M_{\infty \kappa}[\Gamma_{\infty \kappa}] \models \mathsf{ZFC}$.

Remark: Let $\eta = (\delta^{+\omega})^{M_1}$.

Then the strategy mouse "at η " is a proper subset of the η -mantle of M_1 :

$$M_{\infty\eta}[\Gamma_{\infty\eta}]\subsetneq \mathbb{M}_{\eta}^{M_1}.$$

Proof of Theorem 1.14 part 2 (failure of niceness):

Let $\mathcal{T} = \mathcal{U} \cap b$ be M_1 -genericity iteration, first iterating least measurable out to $\kappa = \kappa_0^{M_1}$.

Let $P = L[M(\mathcal{U})] = \text{last model of } \mathcal{T}$, and $j : M_1 \to P$ the iteration map. Properties:

- $-\mathcal{U} \in M_1$, with \mathcal{U} of length κ_+ .
- $-\mathcal{U}$ and $M(\mathcal{U})$ are definable without parameters over $M_1|\kappa_+$.
- -P is a ground of M_1 via extender algebra.

$$-j(\delta^{M_1})=\delta^P=\kappa_+.$$

$$-j(\kappa_n)=\kappa_{n+1}$$
 for $n<\omega$.

$$- \langle \kappa_n \rangle_{n < \omega} \in M_1[j] = M_1[b].$$

$$-M_1^\# \in M_1[b].$$

$$-M_1[b] = L[M_1^{\#}] = M_1[\Sigma_{OR}].$$

QED.

<u>Proof</u> of Theorem 1.14 part 1 ($M_1[\Sigma_{\kappa_+}] = M_1[\Sigma_{\kappa}]$):

Let $\mathcal{T} \in M_1 | \kappa_+$ be a maximal tree, $b = \Sigma_{M_1}(\mathcal{T})$.

Let $j: M_1 \to M_1$ be elementary with $cr(j) = \kappa$.

CLAIM 1.

 $\delta \leq \mathsf{cof}^{M_1}(\mathsf{lh}(\mathcal{T})).$

Proof.

There is no maximal tree $\mathcal{U} \in M_1|\kappa$ with $\operatorname{cof}^{M_1}(\operatorname{lh}(\mathcal{U})) < \delta$ (as $M_1[\Sigma_{\kappa}]$ is nice and iteration maps continuous at δ^{M_1}).

But *j* lifts this to $M_1|j(\kappa)$, hence to $M_1|\kappa_+$.

- $-\mathcal{T} \in M_1|_{\mathcal{K}_+}$ is maximal, $b = \Sigma_{M_1}(\mathcal{T})$.
- $-j: M_1 \to M_1$ is elementary with $cr(j) = \kappa$.

CLAIM 2.

$$\delta \leq \mathsf{cof}^{M_1}(\mathsf{lh}(\mathcal{T})) < \kappa.$$

Proof.

Supose $cof^{M_1}(lh(\mathcal{T})) = \kappa$. Let $c = well founded branch through <math>j(\mathcal{T})$. Then

$$M_b^{\mathcal{T}} = L[M(\mathcal{T})]$$
 and $M_c^{j(\mathcal{T})} = L[M(j(\mathcal{T}))]$ are classes of M_1 .

Let $k = j \upharpoonright M_b^T$. Then

$$k: M_b^{\mathcal{T}} \to M_c^{j(\mathcal{T})}$$

is elementary, k discontinuous at $\delta(T)$. Embeddings

$$i_b^{\mathcal{T}}: M_1 \to M_b^{\mathcal{T}},$$

$$i_c^{j(\mathcal{T})}: M_1 \to M_c^{j(\mathcal{T})},$$

and j, k all fix infinitely many indiscernibles l', are continuous at δ^{M_1} . But

$$\operatorname{Hull}^{M_1}(I')$$
 is cofinal in δ^{M_1} ,

a contradiction.

We show $M_1[\Sigma_{\kappa_+}] \subseteq M_1[\Sigma_{\kappa}]$.

Work in M_1 . Let $\mathcal{T} \in M_1 | \kappa_+$ be maximal tree.

Let $\eta = cof(lh(\mathcal{T}))$. So $\delta \leq \eta < \kappa$.

Let θ be large, and take an elementary

$$\pi: \boldsymbol{H} \to \boldsymbol{M}_1 | \theta$$

with $H \in M_1$ transitive, card $(H) = \eta$, cr $(\pi) > \eta$, π cofinal in η , $\pi(\bar{\mathcal{T}}) = \mathcal{T}$.

So $\mathsf{cof}^{M_1}(\mathsf{lh}(\bar{\mathcal{T}})) = \eta.$

Now in V, let $\bar{b} = \Sigma_{M_1}(\bar{\mathcal{T}})$. Then π " \bar{b} yields a \mathcal{T} -cofinal branch b through \mathcal{T} .

Case 1: $\bar{\mathcal{T}}$ is non-maximal. Then $\bar{b} \in M_1$, and $\pi \in M_1$, so $b \in M_1$. Since $\operatorname{cof}^{M_1}(\eta) > \omega$, it follows that $M_b^{\mathcal{T}}$ is wellfounded, so $b = \Sigma_{M_1}(\mathcal{T})$.

Case 2: $\bar{\mathcal{T}}$ is maximal. Then $\bar{b} \in M_1[\Sigma_{\kappa}]$, a nice extension. By maximality, $\operatorname{cof}^{M_1[\Sigma_{\kappa}]}(\eta) = \delta > \omega$, so again, $b = \Sigma_{M_1}(\mathcal{T})$.

QED.

<u>Proof</u> of Theorem 1.15 (κ -mantle of M_1):

Let \mathscr{F}_{κ} be the collection of all κ -grounds of M_1 which are iterates of M_1 .

Then \mathscr{F}_{κ} is dense in the κ -grounds.

Every $W \in \mathscr{F}_{\kappa}$ computes

$$M_{\infty\kappa}[\Gamma_{\infty\kappa}],$$

in the same manner. So $M_{\infty\kappa}[\Gamma_{\infty\kappa}] \subseteq \mathbb{M}_{\kappa}^{M_1}$.

<u>Proof</u> of Theorem 1.15 (κ -mantle of M_1):

Let \mathscr{F}_{κ} be the collection of all κ -grounds of M_1 which are iterates of M_1 .

Then \mathscr{F}_{κ} is dense in the κ -grounds.

Every $W \in \mathscr{F}_{\kappa}$ computes

$$M_{\infty\kappa}[\Gamma_{\infty\kappa}],$$

in the same manner. So $M_{\infty\kappa}[\Gamma_{\infty\kappa}] \subseteq \mathbb{M}_{\kappa}^{M_1}$.

Notation: For $P, Q \in \mathscr{F}_{\kappa}$, write $P \leq Q$ iff Q is an iterate of P. For $P \leq Q$,

$$i_{PQ}: P \rightarrow Q$$

is the iteration map.

Say that P is $\underline{\alpha}$ -stable iff for all $Q \in \mathscr{F}_{\kappa}$ with $P \leq Q$, we have

$$i_{PQ}(\alpha) = \alpha.$$

It remains to show

$$\mathbb{M}_{\kappa}^{M_1} \subseteq M_{\infty\kappa}[\Gamma_{\infty\kappa}].$$

Let $X \in \mathbb{M}_{\kappa}^{M_1}$.

Let $j: M_1 \to M_1$ be elementary with $\operatorname{cr}(j) = \kappa$. Then

$$j(X) \in \mathbb{M}^{M_1}_{j(\kappa)}$$
.

But

$$M_{\infty\kappa}[\Gamma_{\infty\kappa}] = \mathrm{HOD}^{M_1[G]}$$

is a ground of M_1 , via Vopenka, a forcing of size $< j(\kappa)$. So

$$j(X) \in M_{\infty\kappa}[\Gamma_{\infty\kappa}].$$

So there is an ordinal γ and formula φ such that

$$\alpha \in j(X) \iff M_1[G] \models \varphi(\gamma, \alpha).$$

Then for all $P \in \mathscr{F}_{\kappa}$ we have

$$j(X) = \{ \alpha \in OR \mid P \models \text{``Col}(\omega, < \kappa) \text{ forces } \varphi(\gamma, \alpha)\text{''} \}.$$

Let $P \in \mathscr{F}_{\kappa}$ be γ -stable. Note $i_{QR}(j(X)) = j(X)$ for all $Q, R \in \mathscr{F}_{\kappa}$ with $P \leq Q \leq R$.

CLAIM 3.

 $i_{QR}(X) = X$ for all such $Q, R \in \mathscr{F}_{\kappa}$ with $P \leq Q \leq R$.

Proof.

Let $Y = i_{QR}(X)$. We have

$$j \circ i_{QR} = i_{QR} \circ j \upharpoonright Q$$
.

Therefore

$$j(Y) = j(i_{QR}(X)) = i_{QR}(j(X)) = j(X),$$

so Y = X.

CLAIM 4.

 $X \in M_{\infty\kappa}[\Gamma_{\infty\kappa}].$

Proof.

For $Q \in \mathscr{F}_{\kappa}$, write

$$i_{Q\infty}: Q \to M_{\infty\kappa}$$

for the iteration map. Let

$$X^* = i_{P\infty}(X)$$

where *P* is as before.

The usual *-map map

$$\alpha \mapsto \alpha^* = \min\{i_{Q_{\infty}}(\alpha) \mid Q \in \mathscr{F}_{\kappa}\}$$

is in $M_{\infty\kappa}[\Gamma_{\infty\kappa}]$.

But

$$\alpha \in X \iff i_{Q_{\infty}}(\alpha) = i_{Q_{\infty}}(X) \iff \alpha^* \in X^*,$$

where Q is α -stable. So $X \in M_{\infty \kappa}[\Gamma_{\infty \kappa}]$.

QED.

Consider $\eta = (\delta^{+\omega})^{M_1}$. One shows that

$$M_{\infty\eta}[\Gamma_{\infty\eta}]\subseteq\mathbb{M}_{\eta}^{M_1}$$

and $(\delta^{+\omega})^{M_1}$ is the least measurable of $M_{\infty\eta}[\Gamma_{\infty\eta}]$, much as before. But

$$\langle (\delta^{+n})^{M_1} \rangle_{n < \omega} \in \mathbb{M}_{\infty \eta},$$

(and this sequence is Prikry generic over $M_{\infty\eta}[\Gamma_{\infty\eta}]$).

Question: Does $\mathbb{M}_{\eta}^{M_1} \models \mathsf{ZFC}$?