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κ-Trees

Definition

Let κ be a regular cardinal. A tree T of height κ is called a normal κ-tree
if

each level of T has size <κ,

each level has at least one split,

for every limit ordinal α < κ and every branch up to α there is at
most one least upper bound in T , and

for every t ∈ T and α < κ above the height of t, there is some t′ of
level α in T such that t <T t

′.
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The Branch Spectrum

Definition

Let κ be a regular cardinal. The Branch Spectrum of κ is the set

Sκ = {|[T ]| | T is a normal κ-tree}.

Examples

Sω = {ℵ0, 2ℵ0}.
For κ > ω, if there are no κ-Kurepa trees, then κ+ /∈ Sκ.

For κ > ℵ1, if the tree property holds at κ, then min(Sκ) = κ.
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Upper Bounds

Let κ > ℵ1.

Branch Spectrum Upper bound

κ+ /∈ Sκ inaccessible cardinal

min(Sκ) = κ weakly compact cardinal

κ+ /∈ Sκ and min(Sκ) = κ ?

The following gives an upper bound.

Proposition

Let κ be <µ-supercompact, where µ is strongly inaccessible. Then, there
is a forcing extension in which κ is weakly compact, Sκ = {κ, κ++}.

Proof idea: Consider Col(κ,<µ)×Add(κ, µ+).

Question

Is this optimal?
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A First Lower Bound and Sealed Trees

If for some weakly compact cardinal κ, κ+ /∈ Sκ then 0# exists:

Fact (essentially Solovay)

If 0# does not exists then every weakly compact cardinal carries a tree
with κ+ many branches.

The tree actually has the following stronger property.

Definition

Let κ be a regular cardinal. A normal tree T of height κ is strongly sealed
if the set of branches of T cannot be modified by set forcing that forces
cf(κ) > ω.

Strongly sealed trees with κ many branches exist in ZFC: Take T ⊆ 2<κ

to be the tree of all x such that {α ∈ dom(x) | x(α) = 1} is finite.

Question

How about strongly sealed κ-trees with at least κ+ many branches?
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A Sealed Tree in K

Theorem (Hayut, M.)

Let us assume that there is no inner model with a Woodin cardinal. Then
for every regular cardinal κ, there is a strongly sealed κ-tree with exactly
(κ+)

K
many branches. In particular, if κ is weakly compact, then there is

a strongly sealed tree on κ with κ+ many branches.

Proof idea:

Construct a κ-tree T in K with |[T ]| ≥ (κ+)K .

Argue that each branch in V is in fact already in K, so |[T ]| = (κ+)K

(use maximality and universality of K).

Use forcing absoluteness to see that T is strongly sealed.

Use covering to obtain (κ+)K = (κ+)V .
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Construction of the Tree

Let T(Kκ+) be the following tree:

Nodes: 〈M̄, x̄〉, where M̄ = trcl(HullKκ+ (ρ ∪ {x})) for some ρ < κ,
x ∈ Kκ+ ∩ κ2 and x collapses to x̄.

Tree order: 〈M0, x0〉 ≤ 〈M1, x1〉 if there is some ordinal ρ such that
M0 = trcl(HullM1(ρ ∪ {x1})) and x1 collapses to x0.

Claim

T(Kκ+) is a tree of height κ with at least (κ+)K many branches.
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Sealed Trees in the context of Woodin cardinals

Observation

Strongly sealed κ-trees with κ+ many branches cannot exist in the context
of a Woodin cardinal δ > κ.

Why? Woodin’s stationary tower forcing with critical point κ+ will
introduce new branches to any κ-tree T , while preserving the regularity of
κ, as well as many large cardinal properties of κ.
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The κ-Perfect Subtree Property

The following lemma yields a canonical weakening of being strongly sealed.

Lemma (Folklore)

Let κ be a cardinal. The following are equivalent for a tree T of height κ:

1 T has a perfect subtree.

2 Every set forcing that adds a fresh subset to κ also adds a branch to
T .

3 There is a κ-closed forcing that adds a branch to T .

Definition

Let κ be an uncountable cardinal. The Perfect Subtree Property (PSP) for
κ is the statement that every κ-tree with at least κ+ many branches has a
perfect subtree.

What is the consistency strength of this statement?

Proposition

Let κ be < µ-supercompact, where µ is strongly inaccessible. Then, there
is a forcing extension in which κ is weakly compact, Sκ = {κ, κ++} and
the Perfect Subtree Property holds at κ.

Proof idea: Consider Col(κ,<µ)×Add(κ, µ+).
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A Non-domestic Mouse from the κ-PSP

Theorem (Hayut, M.)

Let κ be a weakly compact cardinal and let us assume that

the Perfect Subtree Property holds at κ OR

there is no κ-tree with exactly κ+ many branches.

Then there is a non-domestic mouse. In particular, there is a model of
ZF + ADR.

Proof idea:

Consider the tree T(S) for S = S(κ) the stack of mice on Kc||κ (cf.
Andretta-Neeman-Steel and Jensen-Schimmerling-Schindler-Steel).

T(S) has exactly (κ+)V many branches (using covering as in JSSS).

T(S) does not have a perfect subtree (argue that set of branches
does not change in an Add(κ, 1)-generic extension of V ).
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“Never say there is nothing beautiful in the world anymore.
There is always something to make you wonder in the shape of a

tree, the trembling of a leaf.”

Albert Schweitzer
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