Lower Bounds for the Perfect Subtree Property at Weakly Compact Cardinals

Sandra Müller

Universität Wien

September 23, 2019

Joint with Yair Hayut

15th International Luminy Workshop in Set Theory

Sandra Müller (Universität Wien)

Perfect Subtree Property at Weakly Compacts Sep

September 23, 2019 1

A First Lower Bound Non-domestic Mouse *- Trees and Upper Below Woodin Cardinals and Sealed Trees from the to-PSp Bounds

< 3 >

э

Let κ be a regular cardinal. A tree T of height κ is called a normal $\kappa\text{-tree}$ if

- each level of T has size $<\kappa$,
- each level has at least one split,
- for every limit ordinal $\alpha < \kappa$ and every branch up to α there is at most one least upper bound in T, and
- for every $t \in T$ and $\alpha < \kappa$ above the height of t, there is some t' of level α in T such that $t <_T t'$.

Let κ be a regular cardinal. The *Branch Spectrum* of κ is the set

 $\mathfrak{S}_{\kappa} = \{ |[T]| \mid T \text{ is a normal } \kappa\text{-tree} \}.$

Let κ be a regular cardinal. The *Branch Spectrum* of κ is the set

 $\mathfrak{S}_{\kappa} = \{ |[T]| \mid T \text{ is a normal } \kappa\text{-tree} \}.$

Examples

•
$$\mathfrak{S}_{\omega} = \{\aleph_0, 2^{\aleph_0}\}.$$

Let κ be a regular cardinal. The *Branch Spectrum* of κ is the set

 $\mathfrak{S}_{\kappa} = \{ |[T]| \mid T \text{ is a normal } \kappa\text{-tree} \}.$

Examples

•
$$\mathfrak{S}_{\omega} = \{\aleph_0, 2^{\aleph_0}\}.$$

• For $\kappa > \omega$, if there are no κ -Kurepa trees, then $\kappa^+ \notin \mathfrak{S}_{\kappa}$.

Let κ be a regular cardinal. The Branch Spectrum of κ is the set

 $\mathfrak{S}_{\kappa} = \{ |[T]| \mid T \text{ is a normal } \kappa\text{-tree} \}.$

Examples

•
$$\mathfrak{S}_{\omega} = \{\aleph_0, 2^{\aleph_0}\}.$$

- For $\kappa > \omega$, if there are no κ -Kurepa trees, then $\kappa^+ \notin \mathfrak{S}_{\kappa}$.
- For $\kappa > \aleph_1$, if the tree property holds at κ , then $\min(\mathfrak{S}_{\kappa}) = \kappa$.

Let $\kappa > \aleph_1$.

Branch Spectrum	Upper bound
$\kappa^+ \notin \mathfrak{S}_{\kappa}$	inaccessible cardinal

• • = • •

э.

Let $\kappa > \aleph_1$.

Branch Spectrum	Upper bound
$\kappa^+ \notin \mathfrak{S}_{\kappa}$	inaccessible cardinal
$\min(\mathfrak{S}_{\kappa}) = \kappa$	weakly compact cardinal

< ≥ > <

Let $\kappa > \aleph_1$.

Branch Spectrum	Upper bound
$\kappa^+ \notin \mathfrak{S}_{\kappa}$	inaccessible cardinal
$\min(\mathfrak{S}_{\kappa}) = \kappa$	weakly compact cardinal
$\kappa^+ \notin \mathfrak{S}_{\kappa} \text{ and } \min(\mathfrak{S}_{\kappa}) = \kappa$?

< ≥ > <

Let $\kappa > \aleph_1$.

Branch Spectrum	Upper bound
$\kappa^+ \notin \mathfrak{S}_{\kappa}$	inaccessible cardinal
$\min(\mathfrak{S}_{\kappa}) = \kappa$	weakly compact cardinal
$\kappa^+ \notin \mathfrak{S}_{\kappa} \text{ and } \min(\mathfrak{S}_{\kappa}) = \kappa$?

The following gives an upper bound.

Proposition

Let κ be $<\mu$ -supercompact, where μ is strongly inaccessible. Then, there is a forcing extension in which κ is weakly compact, $\mathfrak{S}_{\kappa} = \{\kappa, \kappa^{++}\}$.

Proof idea: Consider $\operatorname{Col}(\kappa, <\mu) \times \operatorname{Add}(\kappa, \mu^+)$.

Let $\kappa > \aleph_1$.

Branch Spectrum	Upper bound
$\kappa^+ \notin \mathfrak{S}_{\kappa}$	inaccessible cardinal
$\min(\mathfrak{S}_{\kappa}) = \kappa$	weakly compact cardinal
$\kappa^+ \notin \mathfrak{S}_{\kappa} \text{ and } \min(\mathfrak{S}_{\kappa}) = \kappa$?

The following gives an upper bound.

Proposition

Let κ be $<\mu$ -supercompact, where μ is strongly inaccessible. Then, there is a forcing extension in which κ is weakly compact, $\mathfrak{S}_{\kappa} = \{\kappa, \kappa^{++}\}$.

Proof idea: Consider $\operatorname{Col}(\kappa, <\mu) \times \operatorname{Add}(\kappa, \mu^+)$.

Question Is this optimal?

Sandra Müller (Universität Wien)

A First Lower Bound Non-domestic Mouse "Trees and Upper Below Woodin Cardinals from the R-PSp and Sealed Trees Bounds

()

э

If for some weakly compact cardinal κ , $\kappa^+ \notin \mathfrak{S}_{\kappa}$ then $0^{\#}$ exists:

If for some weakly compact cardinal κ , $\kappa^+ \notin \mathfrak{S}_{\kappa}$ then $0^{\#}$ exists:

Fact (essentially Solovay)

If $0^{\#}$ does not exists then every weakly compact cardinal carries a tree with κ^+ many branches.

If for some weakly compact cardinal κ , $\kappa^+ \notin \mathfrak{S}_{\kappa}$ then $0^{\#}$ exists:

Fact (essentially Solovay)

If $0^{\#}$ does not exists then every weakly compact cardinal carries a tree with κ^+ many branches.

The tree actually has the following stronger property.

If for some weakly compact cardinal κ , $\kappa^+ \notin \mathfrak{S}_{\kappa}$ then $0^{\#}$ exists:

Fact (essentially Solovay)

If $0^{\#}$ does not exists then every weakly compact cardinal carries a tree with κ^+ many branches.

The tree actually has the following stronger property.

Definition

Let κ be a regular cardinal. A normal tree T of height κ is strongly sealed if the set of branches of T cannot be modified by set forcing that forces $cf(\kappa) > \omega$.

The tree actually has the following stronger property.

Definition

Let κ be a regular cardinal. A normal tree T of height κ is strongly sealed if the set of branches of T cannot be modified by set forcing that forces $cf(\kappa) > \omega$.

Strongly sealed trees with κ many branches exist in ZFC: Take $T \subseteq 2^{<\kappa}$ to be the tree of all x such that $\{\alpha \in \operatorname{dom}(x) \mid x(\alpha) = 1\}$ is finite.

The tree actually has the following stronger property.

Definition

Let κ be a regular cardinal. A normal tree T of height κ is strongly sealed if the set of branches of T cannot be modified by set forcing that forces $cf(\kappa) > \omega$.

Strongly sealed trees with κ many branches exist in ZFC: Take $T \subseteq 2^{<\kappa}$ to be the tree of all x such that $\{\alpha \in \operatorname{dom}(x) \mid x(\alpha) = 1\}$ is finite.

Question

How about strongly sealed κ -trees with at least κ^+ many branches?

A First Lower Bound Non-domestic Mouse "-Trees and Upper Below Woodin Cardinals from the R-PSp and Sealed Trees Bounds

()

э

Let us assume that there is no inner model with a Woodin cardinal. Then for every regular cardinal κ , there is a strongly sealed κ -tree with exactly $(\kappa^+)^K$ many branches. In particular, if κ is weakly compact, then there is a strongly sealed tree on κ with κ^+ many branches.

Let us assume that there is no inner model with a Woodin cardinal. Then for every regular cardinal κ , there is a strongly sealed κ -tree with exactly $(\kappa^+)^K$ many branches. In particular, if κ is weakly compact, then there is a strongly sealed tree on κ with κ^+ many branches.

Proof idea:

• Construct a κ -tree T in K with $|[T]| \ge (\kappa^+)^K$.

< ∃ ►

• Nodes: $\langle \overline{M}, \overline{x} \rangle$, where $\overline{M} = \operatorname{trcl}(\operatorname{Hull}^{K_{\kappa^+}}(\rho \cup \{x\}))$ for some $\rho < \kappa$, $x \in K_{\kappa^+} \cap {}^{\kappa}2$ and x collapses to \overline{x} .

- Nodes: $\langle \overline{M}, \overline{x} \rangle$, where $\overline{M} = \operatorname{trcl}(\operatorname{Hull}^{K_{\kappa^+}}(\rho \cup \{x\}))$ for some $\rho < \kappa$, $x \in K_{\kappa^+} \cap {}^{\kappa}2$ and x collapses to \overline{x} .
- Tree order: $\langle M_0, x_0 \rangle \leq \langle M_1, x_1 \rangle$ if there is some ordinal ρ such that $M_0 = \operatorname{trcl}(\operatorname{Hull}^{M_1}(\rho \cup \{x_1\}))$ and x_1 collapses to x_0 .

- Nodes: $\langle \overline{M}, \overline{x} \rangle$, where $\overline{M} = \operatorname{trcl}(\operatorname{Hull}^{K_{\kappa^+}}(\rho \cup \{x\}))$ for some $\rho < \kappa$, $x \in K_{\kappa^+} \cap {}^{\kappa}2$ and x collapses to \overline{x} .
- Tree order: $\langle M_0, x_0 \rangle \leq \langle M_1, x_1 \rangle$ if there is some ordinal ρ such that $M_0 = \operatorname{trcl}(\operatorname{Hull}^{M_1}(\rho \cup \{x_1\}))$ and x_1 collapses to x_0 .

Claim

 $\mathbb{T}(K_{\kappa^+})$ is a tree of height κ with at least $(\kappa^+)^K$ many branches.

Let us assume that there is no inner model with a Woodin cardinal. Then for every regular cardinal κ , there is a strongly sealed κ -tree with exactly $(\kappa^+)^K$ many branches. In particular, if κ is weakly compact, then there is a strongly sealed tree on κ with κ^+ many branches.

Proof idea:

• Construct a κ -tree T in K with $|[T]| \ge (\kappa^+)^K$.

Let us assume that there is no inner model with a Woodin cardinal. Then for every regular cardinal κ , there is a strongly sealed κ -tree with exactly $(\kappa^+)^K$ many branches. In particular, if κ is weakly compact, then there is a strongly sealed tree on κ with κ^+ many branches.

- Construct a κ -tree T in K with $|[T]| \ge (\kappa^+)^K$.
- Argue that each branch in V is in fact already in K, so $|[T]| = (\kappa^+)^K$ (use maximality and universality of K).

Let us assume that there is no inner model with a Woodin cardinal. Then for every regular cardinal κ , there is a strongly sealed κ -tree with exactly $(\kappa^+)^K$ many branches. In particular, if κ is weakly compact, then there is a strongly sealed tree on κ with κ^+ many branches.

- Construct a κ -tree T in K with $|[T]| \ge (\kappa^+)^K$.
- Argue that each branch in V is in fact already in K, so $|[T]| = (\kappa^+)^K$ (use maximality and universality of K).
- Use forcing absoluteness to see that T is strongly sealed.

Let us assume that there is no inner model with a Woodin cardinal. Then for every regular cardinal κ , there is a strongly sealed κ -tree with exactly $(\kappa^+)^K$ many branches. In particular, if κ is weakly compact, then there is a strongly sealed tree on κ with κ^+ many branches.

- Construct a κ -tree T in K with $|[T]| \ge (\kappa^+)^K$.
- Argue that each branch in V is in fact already in K, so $|[T]| = (\kappa^+)^K$ (use maximality and universality of K).
- Use forcing absoluteness to see that T is strongly sealed.
- Use covering to obtain $(\kappa^+)^K = (\kappa^+)^V$.

Observation

Strongly sealed κ -trees with κ^+ many branches cannot exist in the context of a Woodin cardinal $\delta > \kappa$.

Observation

Strongly sealed κ -trees with κ^+ many branches cannot exist in the context of a Woodin cardinal $\delta > \kappa$.

Why? Woodin's stationary tower forcing with critical point κ^+ will introduce new branches to any κ -tree T, while preserving the regularity of κ , as well as many large cardinal properties of κ .

The κ -Perfect Subtree Property

The following lemma yields a canonical weakening of being strongly sealed.

The κ -Perfect Subtree Property

The following lemma yields a canonical weakening of being strongly sealed.

Lemma (Folklore)

Let κ be a cardinal. The following are equivalent for a tree T of height κ :

- **1** *T* has a perfect subtree.
- **2** Every set forcing that adds a fresh subset to κ also adds a branch to T.
- 3 There is a κ -closed forcing that adds a branch to T.

The κ -Perfect Subtree Property

The following lemma yields a canonical weakening of being strongly sealed.

Lemma (Folklore)

Let κ be a cardinal. The following are equivalent for a tree T of height κ :

- **1** *T* has a perfect subtree.
- **2** Every set forcing that adds a fresh subset to κ also adds a branch to T.
- **③** There is a κ -closed forcing that adds a branch to T.

Definition

Let κ be an uncountable cardinal. The *Perfect Subtree Property* (PSP) for κ is the statement that every κ -tree with at least κ^+ many branches has a perfect subtree.

• = • •

Let κ be an uncountable cardinal. The *Perfect Subtree Property* (PSP) for κ is the statement that every κ -tree with at least κ^+ many branches has a perfect subtree.

What is the consistency strength of this statement?

Let κ be an uncountable cardinal. The *Perfect Subtree Property* (PSP) for κ is the statement that every κ -tree with at least κ^+ many branches has a perfect subtree.

What is the consistency strength of this statement?

Proposition

Let κ be $< \mu$ -supercompact, where μ is strongly inaccessible. Then, there is a forcing extension in which κ is weakly compact, $\mathfrak{S}_{\kappa} = \{\kappa, \kappa^{++}\}$ and the Perfect Subtree Property holds at κ .

Proof idea: Consider $\operatorname{Col}(\kappa, <\mu) \times \operatorname{Add}(\kappa, \mu^+)$.

A First Lower Bound Non-domestic Mouse "-Trees and Upper Below Woodin Cardinals and Sealed Trees from the to-PSp Bounds

э

()

Let κ be a weakly compact cardinal and let us assume that

• the Perfect Subtree Property holds at κ OR

Let κ be a weakly compact cardinal and let us assume that

- the Perfect Subtree Property holds at κ OR
- there is no κ -tree with exactly κ^+ many branches.

Let κ be a weakly compact cardinal and let us assume that

- the Perfect Subtree Property holds at κ OR
- there is no κ -tree with exactly κ^+ many branches.

Then there is a non-domestic mouse. In particular, there is a model of $ZF + AD_{\mathbb{R}}$.

Let κ be a weakly compact cardinal and let us assume that

- the Perfect Subtree Property holds at κ OR
- there is no κ -tree with exactly κ^+ many branches.

Then there is a non-domestic mouse. In particular, there is a model of $\mathrm{ZF} + \mathrm{AD}_{\mathbb{R}}$.

Proof idea:

• Consider the tree $\mathbb{T}(S)$ for $S = S(\kappa)$ the stack of mice on $K^c ||\kappa$ (cf. Andretta-Neeman-Steel and Jensen-Schimmerling-Schindler-Steel).

Let κ be a weakly compact cardinal and let us assume that

- the Perfect Subtree Property holds at κ OR
- there is no κ -tree with exactly κ^+ many branches.

Then there is a non-domestic mouse. In particular, there is a model of $ZF + AD_{\mathbb{R}}$.

- Consider the tree $\mathbb{T}(S)$ for $S = S(\kappa)$ the stack of mice on $K^c ||\kappa$ (cf. Andretta-Neeman-Steel and Jensen-Schimmerling-Schindler-Steel).
- $\mathbb{T}(S)$ has exactly $(\kappa^+)^V$ many branches (using covering as in JSSS).

Let κ be a weakly compact cardinal and let us assume that

- the Perfect Subtree Property holds at κ OR
- there is no κ -tree with exactly κ^+ many branches.

Then there is a non-domestic mouse. In particular, there is a model of $ZF + AD_{\mathbb{R}}$.

- Consider the tree $\mathbb{T}(S)$ for $S = S(\kappa)$ the stack of mice on $K^c ||\kappa$ (cf. Andretta-Neeman-Steel and Jensen-Schimmerling-Schindler-Steel).
- $\mathbb{T}(S)$ has exactly $(\kappa^+)^V$ many branches (using covering as in JSSS).
- $\mathbb{T}(S)$ does not have a perfect subtree (argue that set of branches does not change in an $Add(\kappa, 1)$ -generic extension of V).

A First Lower Bound Non-domestic Mouse " Trees and Upper Below Woodin Cardinals and Sealed Trees from the to-PSp Bounds

< 3 >

э

∃ ⊳

A First Lower Bound Non-domestic Mouse " Trees and Upper Below Woodin Cardinals and Sealed Trees from the k-PSp Bounds

"Never say there is nothing beautiful in the world anymore. There is always something to make you wonder in the shape of a tree, the trembling of a leaf."

Albert Schweitzer