Results on set mappings

Péter Komjáth Eötvös U. Budapest

15th International Workshop on Set Theory, Luminy, 26 September 2019

András Hajnal (05/13/1931–07/30/2016)

・日・ ・ ヨ・ ・ ヨ・

A set mapping is $F : \kappa \to \mathcal{P}(\kappa)$ for some infinite cardinal κ .

A set $A \subseteq \kappa$ is *free* if $y \notin F(u)$ for $u \in A$, $y \in A - \{u\}$.

御 と く ヨ と く ヨ と …

Paul Turán asked in 1934, if $f : \mathbb{R} \to [\mathbb{R}]^{<\omega}$ does there exist an infinite free set.

同 と く ヨ と く ヨ と

æ

Fundamental Theorem on Set Mappings. (Hajnal) If $\kappa > \mu$, $F : \kappa \to [\kappa]^{<\mu}$ then there is a free set of size κ .

同 と く ヨ と く ヨ と

æ

Theorem. (Bagemihl) If f is a set mapping on \mathbb{R} with f(x) nowhere dense for $x \in \mathbb{R}$ then there is an everywhere dense free set.

If $\kappa^{<\kappa} = \kappa$, let \mathbb{R}_{κ} be the set of all nonconstant $f : \kappa \to \{0, 1\}$ with no last 0. Order \mathbb{R}_{κ} lexicographically, then we have the notions of noweher dense, everywhere dense, etc.

Theorem. (Bagemihl) (GCH) If f is a set mapping on \mathbb{R}_{κ} with f(x) nwd for $x \in \mathbb{R}_{\kappa}$, then there is a free set of cardinality κ .

Theorem. (K, with a little help from S.) ($\kappa^{<\kappa} = \kappa$) If f is a set mapping on \mathbb{R}_{κ} with f(x) nwd for $x \in \mathbb{R}_{\kappa}$, then there is an everywhere dense free set. A set mapping is $F : [\kappa]^r \to [\kappa]^{<\mu}$ for some finite *r*, infinite cardinals κ and μ .

A set $A \subseteq \kappa$ is *free* if $y \notin F(u)$ for $u \in [A]^r$, $y \in A - u$.

通 と く ヨ と く ヨ と …

Theorem. (Erdős–Hajnal) If $F : [\exp_{r-1}(\kappa)^+]^r \to [\exp_{r-1}(\kappa)^+]^{<\kappa}$ is a set mapping, then there is a free set of cardinality κ^+ .

同 と く ヨ と く ヨ と

Theorem. (Kuratowski) If $F : [\omega_n]^n \to [\omega_n]^{<\omega}$ is a set mapping, then there is a free set of size n + 1. **Theorem.** (Sierpiński) There is a set mapping $F : [\omega_{n-1}]^n \to [\omega_{n-1}]^{<\omega}$ with no free set of size n + 1.

白 ト イヨト イヨト

Theorem. (Hajnal–Máté) If $f : [\omega_2]^2 \to [\omega_2]^{<\omega}$, then there are arbitrarily large finite free sets.

Theorem. (Hajnal) If $f : [\omega_3]^3 \to [\omega_3]^{<\omega}$, then there are arbitrarily large finite free sets.

向下 イヨト イヨト

$$t_0 = 5$$
, $t_1 = 7$, t_{n+1} is the least number that $t_{n+1} \to (t_n, 7)^5$.

Theorem. (Komjáth–Shelah) It is consistent that there is a set mapping $f : [\omega_n]^4 \to [\omega_n]^{<\omega}$ with no free set of cardinality t_n .

 s_n is the minimum number such that $s_n \rightarrow (5)_{3^n}^3$. Roughly a triple exponential.

Theorem. (S. Mohsenipour, S. Shelah) It is consistent that there is a set mapping $F : [\omega_n]^4 \to [\omega_n]^{\omega}$ with no free set of size s_n .

Theorem. (Gillibert) If $F : [\omega_n]^n \to [\omega_n]^{<\omega}$ is a set mapping, then there is a free set of size n + 2.

回 と く ヨ と く ヨ と

æ

Theorem. (Gillibert–Wehrung) If $F : [\omega_n]^r \to [\omega_n]^{<\omega}$ is a set mapping, then there is a free set of size $2^{\lfloor \frac{1}{2}(1-\frac{1}{2^r})^{-\frac{n+1}{2^r}} \rfloor}.$

For r = 4, this is about $2^{1.016^n}$

個 と く ヨ と く ヨ と …

Theorem. (Hajnal–Máté) Let $F : [\omega_2]^2 \to [\omega_2]^{<\omega}$ be a set mapping (a) if $\beta < f(\alpha, \beta)$ ($\alpha < \beta < \omega_2$), then there is a free set of size \aleph_2 ; (b) if $f(\alpha, \beta) \subseteq (\alpha, \beta)$ ($\alpha < \beta < \omega_2$), then there is an infinite free set.

伺下 イヨト イヨト

-Location of image

Definition. If λ is an infinite cardinal, $1 \leq r < \omega$, we call a set mapping $f : [\lambda]^r \to \mathcal{P}(\lambda)$ of order $(\mu_0, \mu_1, \ldots, \mu_r)$, if the following holds. For every $s \in [\lambda]^r$ with increasing enumeration $s = \{\alpha_0, \ldots, \alpha_{r-1}\}$ we have $|f(s) \cap \alpha_0| < \mu_0$ $|f(s) \cap (\alpha_i, \alpha_{i+1})| < \mu_{i+1}$ (i < r-1), and $|f(s) \cap (\alpha_{r-1}, \lambda)| < \mu_r.$

白 と く ヨ と く ヨ と …

Theorem. (GCH) Assume that $0 < r < \omega$, $\lambda = \kappa^{+r}$. Let $f : [\lambda]^r \to \mathcal{P}(\lambda)$ be a set mapping of order $(\kappa, \kappa^+, \kappa^{++}, \dots, \kappa^{+r})$. Then there is a free set of order type $\kappa^+ + r - 1$.

伺下 イヨト イヨト

Theorem. If $1 \le r < \omega$ and κ is infinite, then there is a set mapping $f_r : [\kappa^{+r}]^r \to \mathcal{P}(\kappa^{+r})$ of order $(0, \kappa^+, \kappa^{++}, \dots, \kappa^{+r-1}, 0)$, with no free set of order type $\kappa^+ + r$.

伺 とう きょう とう とう

Location of image

Theorem. If $1 \le r < \omega$, κ is infinite, then there is a set mapping $f : [\kappa^{+r}]^r \to \mathcal{P}(\kappa^{+r})$ of order $(\kappa^+, 0, 0, \dots, 0)$ such that f has no free set of order type

$$\left\{ \begin{array}{ll} 2, & (r=1) \\ \omega, & (r=2) \\ \omega_{r-3}+1, & (3 \leq r < \omega) \end{array} \right.$$

白 ト イヨ ト イヨ ト

-Free arithmetic progressions

Two methods of decomposing vector spaces into the union of countably many parts each omitting some configuration. - Free arithmetic progressions

Theorem. (Rado) Each vector space over \mathbb{Q} is the union of ctbly many pieces, each omitting a 3-AP.

- Free arithmetic progressions

Proof. Let *V* be a vector space over \mathbb{Q} , and $B = \{b_i : i \in I\}$ a basis with *I* ordered. If $x \in V$ write as

$$x = \lambda_1 b_{i_1} + \cdots + \lambda_n b_{i_n}$$

where $i_1 < \cdots < i_n$. Let $\langle \lambda_1, \dots \lambda_n \rangle$ be the color of x .

伺下 イヨト イヨト

Free arithmetic progressions

Assume that x, y, z get the same color $\langle \lambda_1, \ldots, \lambda_n \rangle$ and x + z = 2y. Then

$$\begin{aligned} x &= \lambda_1 b_{i_1^x} + \dots + \lambda_n b_{i_n^x}, \text{ where } i_1^x < \dots < i_n^x, \\ y &= \lambda_1 b_{i_1^y} + \dots + \lambda_n b_{i_n^y}, \text{ where } i_1^y < \dots < i_n^y, \\ z &= \lambda_1 b_{i_1^z} + \dots + \lambda_n b_{i_n^z}, \text{ where } i_1^z < \dots < i_n^z. \end{aligned}$$

(4回) (4回) (日)

-Free arithmetic progressions

Let $i = \min\{i_1^x, i_1^y, y_1^z\}$. Then the coefficients of x, y, z in b_i are 0 or λ_1 , one of them is λ_1 and they form a 3-AP. This is only possible, if all are equal to λ_1 and so $i_1^x = i_1^y = i_1^z$. Proceed to i_2^x, i_2^y, i_2^z , etc. Eventually, x = y = z. -Free arithmetic progressions

Definition. If S is a set, \mathcal{H} is a set system on S, then the coloring number of \mathcal{H} is countable, $\operatorname{Col}(\mathcal{H}) \leq \omega$, if there is a well ordering < of S such that for each $x \in S$, x is the largest element of finitely many sets in \mathcal{H} .

- Free arithmetic progressions

If a Rado-type proof gives that for some vector space V and configuration system \mathcal{H} on V, V is the union of countably many parts omitting configurations in \mathcal{H} , do we have $\operatorname{Col}(\mathcal{H}) \leq \omega$?

- Free arithmetic progressions

Theorem. If V is a vector space over \mathbb{Q} , $|V| = \aleph_n$, then there is a well ordering such that each element is the last member of only finitely many arithmetic progressions of length n + 1. Consequently, there is a set mapping $f : V \to [V]^{<\omega}$ with no free arithmetic progression of length n + 1.

-Free arithmetic progressions

Theorem. If V is a vector space over \mathbb{Q} with $|V| = \aleph_{n-1}$, $f : V \to [V]^{<\omega}$ is a set mapping, then there is a free arithmetic progression of length *n*.

伺 ト イヨト イヨト

-Free arithmetic progressions

Some old Erdős–Hajnal problems

Problem 1. Is the following consistent? GCH plus if $f : [\omega_2]^3 \to \omega_2$ then there is an uncountable free set.

Problem 2. Is the following consistent? GCH plus if $f : [\omega_3]^3 \rightarrow [\omega_3]^{<\omega}$ then there is an uncountable free set.

同 と く き と く き と

- Free arithmetic progressions

Thank you for your patience!

(1日) (日) (日)