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Results on set mappings

Definition

A set mapping is F : κ → P(κ) for some infinite
cardinal κ.

A set A ⊆ κ is free if y /∈ F (u) for u ∈ A,
y ∈ A− {u}.
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Results on set mappings

Definition

Paul Turán asked in 1934, if f : R → [R]<ω does
there exist an infinite free set.
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Results on set mappings

Definition

Fundamental Theorem on Set Mappings.
(Hajnal) If κ > µ, F : κ → [κ]<µ then there is a free
set of size κ.
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Results on set mappings

Definition

Theorem. (Bagemihl) If f is a set mapping on R

with f (x) nowhere dense for x ∈ R then there is an
everywhere dense free set.
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Results on set mappings

Definition

If κ<κ = κ, let Rκ be the set of all nonconstant
f : κ → {0, 1} with no last 0.
Order Rκ lexicographically, then we have the
notions of noweher dense, everywhere dense, etc.
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Results on set mappings

Definition

Theorem. (Bagemihl) (GCH) If f is a set mapping
on Rκ with f (x) nwd for x ∈ Rκ, then there is a
free set of cardinality κ.
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Results on set mappings

Definition

Theorem. (K, with a little help from S.) (κ<κ = κ)
If f is a set mapping on Rκ with f (x) nwd for
x ∈ Rκ, then there is an everywhere dense free set.
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Results on set mappings

Definition

A set mapping is F : [κ]r → [κ]<µ for some finite r ,
infinite cardinals κ and µ.

A set A ⊆ κ is free if y /∈ F (u) for u ∈ [A]r ,
y ∈ A− u.
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Results on set mappings

Definition

Theorem. (Erdős–Hajnal) If
F : [expr−1(κ)

+]r → [expr−1(κ)
+]<κ is a set

mapping, then there is a free set of cardinality κ+.
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Results on set mappings

Finite free sets

Theorem. (Kuratowski) If F : [ωn]
n → [ωn]

<ω is a
set mapping, then there is a free set of size n + 1.

Theorem. (Sierpiński) There is a set mapping
F : [ωn−1]

n → [ωn−1]
<ω with no free set of size

n + 1.
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Results on set mappings

Finite free sets

Theorem. (Hajnal–Máté) If f : [ω2]
2 → [ω2]

<ω,
then there are arbitrarily large finite free sets.

Theorem. (Hajnal) If f : [ω3]
3 → [ω3]

<ω, then
there are arbitrarily large finite free sets.
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Results on set mappings

Finite free sets

t0 = 5, t1 = 7, tn+1 is the least number that
tn+1 → (tn, 7)

5.

Theorem. (Komjáth–Shelah) It is consistent that
there is a set mapping f : [ωn]

4 → [ωn]
<ω with no

free set of cardinality tn.
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Results on set mappings

Finite free sets

sn is the minimum number such that sn → (5)33n.
Roughly a triple exponential.

Theorem. (S. Mohsenipour, S. Shelah) It is
consistent that there is a set mapping
F : [ωn]

4 → [ωn]
ω with no free set of size sn.

Péter Komjáth Eötvös U. Budapest Results on set mappings



Results on set mappings

Finite free sets

Theorem. (Gillibert) If F : [ωn]
n → [ωn]

<ω is a set
mapping, then there is a free set of size n + 2.
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Results on set mappings

Finite free sets

Theorem. (Gillibert–Wehrung) If
F : [ωn]

r → [ωn]
<ω is a set mapping, then there is a

free set of size

2⌊
1

2
(1− 1

2r
)−

n+1

2r ⌋.

For r = 4, this is about 21.016
n

.

Péter Komjáth Eötvös U. Budapest Results on set mappings



Results on set mappings

Location of image

Theorem. (Hajnal–Máté) Let F : [ω2]
2 → [ω2]

<ω

be a set mapping
(a) if β < f (α, β) (α < β < ω2), then there is a
free set of size ℵ2;
(b) if f (α, β) ⊆ (α, β) (α < β < ω2), then there is
an infinite free set.
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Results on set mappings

Location of image

Definition. If λ is an infinite cardinal, 1 ≤ r < ω,
we call a set mapping f : [λ]r → P(λ) of order
(µ0, µ1, . . . , µr), if the following holds. For every
s ∈ [λ]r with increasing enumeration
s = {α0, . . . , αr−1} we have
|f (s) ∩ α0| < µ0,
|f (s) ∩ (αi , αi+1)| < µi+1 (i < r − 1), and
|f (s) ∩ (αr−1, λ)| < µr .
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Results on set mappings

Location of image

Theorem. (GCH) Assume that 0 < r < ω,
λ = κ+r . Let f : [λ]r → P(λ) be a set mapping of
order (κ, κ+, κ++, . . . , κ+r). Then there is a free set
of order type κ+ + r − 1.
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Results on set mappings

Location of image

Theorem. If 1 ≤ r < ω and κ is infinite, then there
is a set mapping fr : [κ

+r ]r → P(κ+r) of order
(0, κ+, κ++, . . . , κ+r−1, 0), with no free set of order
type κ+ + r .
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Results on set mappings

Location of image

Theorem. If 1 ≤ r < ω, κ is infinite, then there is
a set mapping f : [κ+r ]r → P(κ+r) of order
(κ+, 0, 0, . . . , 0) such that f has no free set of order
type







2, (r = 1)
ω, (r = 2)

ωr−3 + 1, (3 ≤ r < ω).
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Results on set mappings

Free arithmetic progressions

Two methods of decomposing vector spaces into
the union of countably many parts each omitting
some configuration.
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Results on set mappings

Free arithmetic progressions

Theorem. (Rado) Each vector space over Q is the
union of ctbly many pieces, each omitting a 3-AP.
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Results on set mappings

Free arithmetic progressions

Proof. Let V be a vector space over Q, and
B = {bi : i ∈ I} a basis with I ordered. If x ∈ V

write as
x = λ1bi1 + · · ·+ λnbin

where i1 < · · · < in. Let 〈λ1, . . . λn〉 be the color of
x .

Péter Komjáth Eötvös U. Budapest Results on set mappings



Results on set mappings

Free arithmetic progressions

Assume that x , y , z get the same color 〈λ1, . . . , λn〉
and x + z = 2y .
Then
x = λ1bix

1
+ · · ·+ λnbix

n
, where i x1 < · · · < i xn ,

y = λ1biy
1
+ · · ·+ λnbiyn , where i

y
1 < · · · < i yn ,

z = λ1bi z
1
+ · · ·+ λnbi z

n
, where i z1 < · · · < i zn .
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Results on set mappings

Free arithmetic progressions

Let i = min{i x1 , i
y
1 , y

z
1 }. Then the coefficients of

x , y , z in bi are 0 or λ1, one of them is λ1 and they
form a 3-AP. This is only possible, if all are equal to
λ1 and so i x1 = i

y
1 = i z1 .

Proceed to i x2 , i
y
2 , i

z
2 , etc. Eventually, x = y = z .
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Results on set mappings

Free arithmetic progressions

Definition. If S is a set, H is a set system on S ,
then the coloring number of H is countable,
Col(H) ≤ ω, if there is a well ordering < of S such
that for each x ∈ S , x is the largest element of
finitely many sets in H.
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Results on set mappings

Free arithmetic progressions

If a Rado-type proof gives that for some vector
space V and configuration system H on V , V is the
union of countably many parts omitting
configurations in H, do we have Col(H) ≤ ω?
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Results on set mappings

Free arithmetic progressions

Theorem. If V is a vector space over Q, |V | = ℵn,
then there is a well ordering such that each element
is the last member of only finitely many arithmetic
progressions of length n + 1. Consequently, there is
a set mapping f : V → [V ]<ω with no free
arithmetic progression of length n + 1.
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Results on set mappings

Free arithmetic progressions

Theorem. If V is a vector space over Q with
|V | = ℵn−1, f : V → [V ]<ω is a set mapping, then
there is a free arithmetic progression of length n.
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Results on set mappings

Free arithmetic progressions

Some old Erdős–Hajnal problems

Problem 1. Is the following consistent? GCH plus
if f : [ω2]

3 → ω2 then there is an uncountable free
set.

Problem 2. Is the following consistent? GCH plus
if f : [ω3]

3 → [ω3]
<ω then there is an uncountable

free set.
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Results on set mappings

Free arithmetic progressions

Thank you for your patience!
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