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Introduction

G = connected semisimple algebraic group defined over Q.
G = G(R). Maximal compact K ⊂ G.
X = G/K = symmetric space.
Γ = arithmetic subgroup.

Example. G = SLn(R). K = SOn(R). Γ ⊆ SLn(Z) congruence
subgroup.

Example. G is the restriction of scalars of GLn over a number
field k with ring of integers Ok.
Real quadratic k: Hilbert modular forms.
Imaginary quadratic k: Bianchi groups.



Our G have X contractible. Γ acts properly discontinuously on X.

If Γ is torsion-free,

H∗(Γ;C) = H∗(Γ\X;C).

M = rational finite-dimensional representation of G over a field F
(typically C or Fp). Gives a rep’n of Γ, hence a local system M on
Γ\X, and

H∗(Γ;M) = H∗(Γ\X;M). (1)

If Γ has torsion, (1) is still true as long as the characteristic of F
does not divide the order of any torsion element of Γ.



Theorem.

H∗(Γ;M) = H∗cusp(Γ;M)⊕
⊕

{P}

H∗{P}(Γ;M) (2)

where the sum is over the set of classes of associate proper
Q-parabolic subgroups of G.

Projects We’ve Done.

I Compute the terms in (2) explicitly.

I Compute the Hecke operators on H∗(Γ;M), which will help
identify the terms on the right.

I Galois representations.

I Compute both non-torsion and torsion classes.



Case of SLn: Lattices

G = SLn(R) is the space of (det 1) bases of Rn by row vectors.

SLn(Z)\G is the space of lattices in Rn.

Γ\G is a space of lattices with extra structure.

Choice of K ⇔ inner product on lattices.

X = G/K = space of lattice bases, modulo rotations.

Γ\X is a space of lattices with extra structure, modulo rotations.



How to Compute Cohomology

For a lattice L, the arithmetic min is min{‖x‖ : x ∈ L, x 6= 0}.
The minimal vectors of L are {x ∈ L | ‖x‖ = m(L)}.

L is well-rounded if its minimal vectors span Rn.

Let W ⊂ X be the space of bases of well-rounded lattices.

Theorem (Ash, late 1970s).

I There is an SLn(Z)-equivariant deformation retraction
X →W . Call W the well-rounded retract.

I dimW = dimX − (n− 1), the virtual coh’l dim.

I W is a locally finite regular cell complex. Cells characterized
by coords in Zn of their minimal vectors w.r.t. the basis.

I W is dual to Voronoi’s (1908) decomposition of X into
polyhedral cones via perfect forms.

I Γ\W is a finite cell complex.



Ash (1984) did this for number fields k, not only Q.

Conclusion. H∗(Γ;M) can be computed in finite terms.

Appendix 1 discusses our improvements in time and memory
performance for these difficult computations.



Example. n = 2. Then X = H, the upper half-plane.

Shaded region is fundamental domain for SL2(Z).
W is the graph.
Vertices of W are bases of the hexagonal lattice Z[ζ3].
Edge-centers of W are bases of the square lattice Z[i].



Example. n = 3. Then dimX = 5 and dimW = 3.
W is glued together from 3-cells like this one, the Soulé cube.
Four cells meet at each 4 face, three at each 7 face.
Vertices are bases of the A3 = D3 lattice (oranges at the market).



Theorem (Ash–M, 1996). The well-rounded retraction extends to
the Borel-Serre compactification X̄ →W . It is a composition of
geodesic flows away from the boundary components.



Hecke Correspondences

Let ` be a prime. Take k ∈ {1, . . . , n}.

Γ = SLn(Z) for simplicity. Γ\X is the space of lattices.

Given a lattice L, there are only finitely many lattices M ⊂ L with
L/M ∼= (Z/`Z)k.

Def 1. The Hecke correspondence T (`, k) is the one-to-many map
Γ\X → Γ\X given by L 7→M .

Example for SL2(Z) on next page. T (2, 1) has 3 sublattices,
T (3, 1) has 4 sublattices, and T (6, 1) has the 12 intersections.
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Alternative def: t = diag(1, . . . , 1, `, . . . , `) with k copies of `.

Γ0(N, k) = matrices in SLn(Z) congruent to

[
∗ ∗
0 ∗

]
modulo N ;

top left block is (n− k)× (n− k), bottom right k × k.

(Γ ∩ Γ0(`, k))\X
r ↓ ↓ s

Γ\X

where r : (Γ ∩ Γ0(`, k))g 7→ Γg, s : (Γ ∩ Γ0(`, k))g 7→ Γtg.

Def 2. The Hecke correspondence T (`, k) is s ◦ r−1.

Def. The Hecke operator T (`, k) on H∗(Γ\X;M) is r∗ ◦ s∗.

These (∀`, k) generate a commutative algebra, the Hecke algebra.



How to Compute Hecke Operators

Difficulty: Hecke correspondences do not preserve W .

If you retract, cells maps to fractions of cells.



The Sharbly1 Complex

For k > 0, consider n× (n+ k) matrices A over Q.

Shk = formal Z-linear combinations of symbols [A], the sharblies.

I Permuting columns of A multiplies [A] by the sign of the
permutation.

I Multiplying a column of A by a non-zero scalar does not
change [A].

I If rankA < n, then [A] identified with 0.

∂k : [v1, . . . , vn+k] 7→
n+k∑

i=1

(−1)i[v1, . . . , v̂i, . . . , vn+k].

(Sh∗, ∂∗) is the sharbly complex.

1R. Lee, R. H. Szczarba, On H∗ and H∗ of Congr. Subgps., Invent., 1976.



Tits building Tn: simplicial complex whose vertices are the proper
non-zero subspaces of Qn, with simplices corresponding to flags.
Homotopic to a bouquet of spheres Sn−2. The Steinberg module
is St = H̃n−2(Tn).

By Borel-Serre duality, if Γ torsion-free, the Steinberg module is
the dualizing module.

The Steinberg homology of Γ is H∗(Γ; St⊗Z M).

Theorem (L-S). · · · → Sh1 → Sh0 → St is an exact sequence of
GLn(Q)-modules. If Γ torsion-free, the sharbly complex is a Γ-free
resolution of the Steinberg module.

The sharbly homology of Γ is H∗(Γ; Sh∗ ⊗Z M).



If Γ torsion-free, all are the same: H∗(Γ;M), H∗(Γ\X;M),
H∗(Γ\X̄;M), H∗(Γ\W ;M), Steinberg homology, sharbly
homology.

Also all the same if M is over F of characteristic p and p does not
divide the order of any torsion element of Γ.

Otherwise, see Appendix 2.



Cells of W are characterized by their minimal vectors
w1, . . . , wn+k ∈ Zn. Cochains for W map into the sharbly complex
as [w1, . . . , wn+k], the well-rounded (or Voronoi) sharbly
subcomplex.

Only works for a range of dimensions of cells of W . Always works
for n = 2, 3. For n = 4, fortunately, the range contains the range
of cuspidal cohomology.

Hecke correspondences act on the sharbly complex. They do not
carry W to W .

Conclusion. In Ash–Gunnells–M computations for SL4, we
compute sharbly homology, not H∗(Γ\W ;M).

In char 0 or p > 5, all these (co)homologies are the same.
For p = 2, 3, 5 for SL4, see Appendix 2.



Computing Hecke Operators in Top Degree

Hvcd corresponds to Sh0, symbols on n× n matrices.
For n = 2 and 3, this is in the cuspidal range.

For n 6 4, well-rounded 0-sharblies have |det | = 1.

Hecke correspondences carry these to matrices of | det | > 1.

Ash–Rudolph (1979): algorithm to replace [A] with
∑

[Aj ],
homologous in sharbly homology, and where | detAj | are
decreasing. Recursively, replace any 0-cycle with an equivalent
cycle supported on W .

Generalizes modular symbols for SL2 (Birch, Manin, Mazur, Merel,
and Cremona). Generalizes continued fractions.



Computing Hecke Operators in Top Degree Minus One

For n = 4, top degree is H6, but cuspidal range is H5 and H4.

Gunnells has a Hecke operator algorithm for H5 in this case. H5 is
Sh1, using 4× 5 matrices. Three classes of well-rounded sharblies
up to SL4(Z):

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

]
,

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0

]
,

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

]
.

All 4× 4 subdeterminants are 0 or 1.

Gunnells uses a detailed study of 4× 5 matrices and their
subdeterminants.

Uses LLL to make subdeterminants smaller. Not proved to
converge, but has never failed.



The Well-Tempered Retract

An algorithm for Hecke operators on H i(W ;M) in all degrees i.

M. and Bob MacPherson, 2016–17.

G = restriction of scalars of GLn for any number field k. Any n.

Have working code for Γ ⊆ SLn(Z), n = 2 and 3. (Assume these
cases in this exposition.)



Fix lattice L. Prime ` - N . k ∈ {1, . . . , n}.
Fix M ⊆ L, one of the sublattices so L/M ∼= (Z/`Z)k.

t ∈ [1, `] real parameter, the temperament.

Definition. y ∈ L has tempered length

{
t · ‖y‖ if y /∈M
‖y‖ if y ∈M.

Do well-rounded retraction with this notion, in each t-slice
separately. Get W̃ ⊂ X × [1, `], the well-tempered retract. Slice
at t is W̃t. The Γ-action preserves slices.

Continuously interpolates between
W̃1, making L well-rounded; and
W̃`, making M well-rounded.



Hecke operator T (`, k) defined by W̃1 on left, W̃` on right.

(Γ ∩ Γ0(`, k))\W̃
↓ ↓
Γ\W

X is the space of positive-definite matrices (xij) modulo
homotheties. Open set in Rn(n+1)/2. Linear coordinates.

Fact. A bounded subset of W̃ can be computed as a big linear
programming problem in the variables xij and u = 1/t2.

Compute a bounded subset of a polyhedron dual to W̃ , the
Hecketope. Uses Sage’s class Polyhedron over Q.

Depends on n, `, k.

Choose the bounds large enough to get all cells mod Γ.



Hecke Eigenclasses and Galois Representations

F = finite field of characteristic p. (Not Qp.)
Representation M is over F.
Let z ∈ H i(Γ;M) be a Hecke eigenclass.
a(`, k) = eigenvalue for T (`, k).

ρ : Gal(Q/Q)→ GLn(F) is a Galois representation, semisimple
and continuous.

Def. ρ is attached to z if, ∀` - pN , the characteristic polynomial
of ρ(Frob`) is

n∑

k=0

(−1)k`k(k−1)/2a(`, k)Xk. (3)

Def. ρ seems to be attached to z if (3) holds for enough ` that
you are confident of the result. Hope that some ` determine ρ, rest
offer check.



Results

Ash and collaborators have many papers on SL3.
Use Γ0(N) := Γ0(N, 1) for a range of N .

Various M : constant coefficients, Dirichlet characters,
Symr(x, y, z) for a range of r.

Give Hecke eigenvalues for a range of `, and ρ that seem to be
attached.

Ash–Grayson–Green (1984) found cuspidal cohomology in
H3(Γ0(N);C) for N = 53, 61, 79, 89. (More found since.)



Report on Ash–Gunnells–M’s papers on H5(Γ0(N);M) for SL4.

Coefficients M :
I Constant coefficients:

I Characteristic 0 (pretend F12379 = C). Did all N 6 56, prime
N 6 211. Largest sparse matrix was 1M by 4M.

I Fp for a few p not dividing the order of torsion elements of Γ
(coefficients in Z).

I F3, F5, and F2.

I (2018) Twisted coefficients of degree one. All nebentypes,
i.e., all Dirichlet characters η on the bottom-right entry
of Γ0(N), taking values in M = Fp.
I Characteristic 0 (pretend Fp = C for generic p, with

expt (Z/NZ)× | (p− 1)). Did all N 6 28, prime N 6 41.



Recall

H∗(Γ;M) = H∗cusp(Γ;M)⊕
⊕

{P}

H∗{P}(Γ;M) (2)

We split the left side H5(Γ0(N);M) into Hecke eigenspaces for
the ` that we compute.

Each eigenspace always seems to be attached to a Galois
representation we recognize. In fact, uniquely. We partly
understand the summands for each {P}.

We have not yet seen any autochthonous cuspidal cohomology,
i.e., not a functorial lifting from a lower-rank group. /



What Galois Reps do we Search For?

Let F′ be a large enough finite extension of Fp.

Let χ be any Dirichlet character (Z/NZ)× → F′×.
ε = cyclotomic character for p.
L1 = {χ⊗ εi | ∀χ, ∀i = 0, 1, 2, 3}.

Let N1 | N . Let ψ be any nebentype character (Z/N1Z)× → C×.
Let f be a classical newform of weight 2, 3, 4 for Γ1(N1) with
nebentype character ψ.
Gives a Galois rep’n ϕf in characteristic 0 defined over a
cyclotomic field Kf . Let P be a prime of Kf over p. If F′ is large
enough, ϕf factors through to a rep’n over F′.
L2 = set of all these ϕf .
L3 = symmetric squares of rep’ns in L2.

Tensor together repn’s from L1, L2, L3. Take direct sums of the
tensors so total dim = 4.



The cuspidal SL3 classes from AGG appear for N = 53, 61, . . . .

For N = 41 and quartic nebentype, a cuspidal SL3 class for that
nebentype appears.

We get some classes in H∗cusp(Γ;M). They are functorial liftings
from holomorphic Siegel modular forms of weight 3 on GSp4(Q).
Ibukiyama: dims of weight 3 cuspidal Siegel modular forms on the
paramodular groups of prime level. Gritsenko constructed a lift
from Jacobi forms to Siegel modular forms on the paramodular
group; ours are not Gritsenko lifts.

For cusp forms of weight 4, we conjecture that they lift to
cohomology if and only if the central special value Λ(2, f) vanishes.
In our data, this only occurs for trivial coefficients (η = 1).

We always observe the Hodge-Tate (HT) numbers of the rep’ns are
[0, 1, 2, 3]. The HT number of εi is i, of χ is 0, and of ϕf is
[0,weight− 1].



Converses

Ash conjectured (1992) that any eigenclass z has an attached ρ.
n = 2: Eichler-Shimura, and Deligne.
Proved by Scholze (2014). The ρ will be odd.

Conversely,
Conjecture: For any odd ρ, ∃Γ ∃M ∃z to which ρ is attached.
Conjectured by Ash-Sinnott (2000).
Ash-Doud-Pollack-Sinnott (ADPS): refined to predict which Γ
and M will arise.
Refined further by Florian Herzig (for generic rep’ns).
When n = 2, this was Serre’s Conjecture. Proved by Khare and
Wintenberger (2008).

Next project (Ash–Gunnells–M–Pollack, 2020?) Test the ADPS
conjecture.



Appendix 1: Computational Issues

In our (co)homology calculations, the boundary maps are sparse.

Computing H∗(Γ;M) when M is a Z-module needs Smith normal
form of the boundary operators A. If A is m× n over Z of rank r,
then SNF is

A = PDQ, P ∈ GLm(Z), Q ∈ GLn(Z),

and D is diagonal with entries d1, . . . , dr, the elementary divisors,
with di | di+1. (Possibly dr+1 = · · · = 0.)



Two approaches to find elementary divisors.

(•) Find elementary divisors A mod pni
i for many primes pi in

parallel, and reconstruct D by Chinese remainder theorem.

Dumas–Saunders–Villard 2000
Eberly–Giesbrecht–Giorgi–Storjohann–Villard 2006: sub-cubic
complexity on sparse matrices.

(•) Parallel methods don’t give you P and Q. Need P , Q, P−1,
Q−1 to compute cohomology and Hecke operators. Much slower
than parallel methods.



Use a Markowitz pivoting strategy to reduce fill-in of the sparse
matrix.

Two tricks I found for computing H i at large level
(Ash–Gunnells–M 2009):

· · · ← Ci+1 PiDiQi←−−−−
Ai

Ci Pi−1Di−1Qi−1←−−−−−−−−−
Ai−1

← Ci−1 · · ·

1. Store Pi−1 and Q−1i on disk as a product of elementary
matrices. Get their inverses by reading the elementary matrices in
reverse order and inverting them.



2. Once you know Qi, compute SNF of η = QiAi−1, not Ai−1.

The topmost rank(Di) rows of QiAi−1 are zero. This compression
lets Markowitz be more intelligent at limiting fill-in for η.

Improvement on a 13614× 52766 matrix is shown by dotted blue
line in the figure [A–G–M 2009, p. 10].



I have two main bodies of code.

I Sheafhom, for linear algebra and SNF for large sparse
matrices over Q, Fq, Z, or other PIDs. In Common Lisp.
http://www.bluzeandmuse.com/oldMarkGeocities/math.html

I Sage code.
I Find W for SLn(Z) for any n. In practice, n 6 4.
I Finite-dim rep’ns of Γ over Q or Fq. Rep’n-theory

operators ⊕, Res, Ind, Coind, ⊗.
I Hecke operators: Ash-Rudolph for Hi at i = vcd.
I Hecke algorithm with MacPherson for Hi for all i.

Gunnells and Yasaki have code for W for SLn for a range of n for
k = Q, real and imaginary quadratic fields, and some cubic fields.
Also rank-one symmetric spaces like SU(2, 1). Hecke algorithms.



Appendix 2: SL4 Sharbly Homology at p = 2, 3, 5

Theorem (A–G–M 2012) If p odd divides the order of a torsion
element, then the sharbly homology, Steinberg homology, and
well-rounded homology are all the same for SL4 in the cuspidal
range. At p = 2, the Steinberg and well-rounded homologies are
the same in this range.


