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Introduction

Tiling

Tiling: covering of the plane by interior disjoint tiles;

Aperiodic tiling: no invariance by translation;

Vertex-atlas A(r): all the patterns of radius r;
Local rules: a finite set of patterns that characterize the tiling.
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Introduction

Question

Is it possible to grow an aperiodic tiling locally?

The meaning of the locality constraint:
e units of the growing cluster must be added one by one;
e decisions are local, i.e. according to tiles within a fixed distance;

e no information must be stored between the steps.
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Introduction

Motivation

e Rapid development of aperiodic tilings started after discovery of
quasicrystals in 1982 by Dan Shechtman (Nobel prize in 2011);

e The atomic arrangement of a quasicrystal breaks the periodicity (no
translational symmetry);

e Due to specific local structure of these materials the growth process
of such crystals is still poorly understood.

March 3, 2019 8 /62



Introduction

Main Obstacle: Deceptions

e Deceptions: patterns allowed by local rules which cannot be extended
to a tiling of entire plane;

e Deceptions exist for all aperiodic tilings.




Introduction

Some Tiles Are Forced by Vertex-Atlas:

e (a) is allowed;
e (b) is forbidden.
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Introduction

Self-Assembly Algorithm (Socolar, 1991)

e Start with a finite pattern of Penrose tiling;
o Keep adding the forced tiles one by one until it is possible;

e When there are none left, add a thick tile to a special site;
e Repeat.

Theorem (Socolar, 1991)
The algorithm can build any Penrose tiling.
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Introduction

Self-Assembly Algorithm (Socolar, 1991)

e Start with a finite pattern of Penrose tiling;
o Keep adding the forced tiles one by one until it is possible;

e When there are none left, add a thick tile to a special site;
e Repeat.

Theorem (Socolar, 1991)
The algorithm can build any Penrose tiling.

e However, this algorithm is not local.
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Introduction

Demonstration

Demonstration: Penrose.
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Cut-and-project

Cut-and-project

Definition (Planar tiling)

Let E be a d-dim. affine space in R" called the slope.
Select the d-dim. faces with vertices in Z" lying in E + [0, 1]".
Project them onto E to get a so-called planar n — d tiling.
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Cut-and-project

Example: Planar 2 — 1 Tiling
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Cut-and-project

Example: Planar 2 — 1 Tiling
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Cut-and-project

Example: Planar 2 — 1 Tiling
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Cut-and-project

Example: Planar 2 — 1 Tiling

.....................

.....................

.....................

March 3, 2019 18 / 62



Cut-and-project

Example: Planar 2 — 1 Tiling
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Cut-and-project

Example: Planar 2 — 1 Tiling
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Cut-and-project

Example: Planar 2 — 1 Tiling
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Cut-and-project

Cut-and-project

Theorem (De Bruijn, 1981)

Penrose tiling is planar 5 — 2 with the slope generated by
1
cos(27/5) sm(27r/5)
u= | cos(4r/5) v = | sin(47/5)
cos(67/5) sin(67/5)
cos(8m/5) sin(87/5)

March 3, 2019 22 / 62






Cut-and-project

Example: Golden-Octagonal

Golden-Octagonal tiling is planar 4 — 2 with the slope generated by
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Cut-and-project

Example: Ammann-Beenker

Ammann-Beenker tiling is planar 4 — 2 with the slope generated by

1 0
cos(/4) = sin(7/4)
cos(2m/4) sin(2m/4)
cos(3m/4) sin(37/4)

March 3, 2019 26 / 62






Local Rules

Table of Contents

© Local Rules

March 3, 2019 28 / 62



Local Rules

Local Rules

Definition (Local rules)

A d-plane E C R” is said to admit /ocal rules if there exists a vertex-atlas
A(r) so that any n — d tiling with the same atlas is planar with the slope
parallel to E.

Theorem (Bedaride, Fernique, 2017)

A planar 4 — 2 tiling admits local rules if and only if it is determined by
its subperiods (easily checked on the generating vectors).
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Local Rules

Examples

A DDy

e Penrose tilling has local rules.

e Golden-Octagonal tiling has local rules.

e Ammann-Beenker tiling does not have local rules!

Proposition

In order to have a local self-assembly algorithm for a planar tiling it is
necessary for the slope of the tiling to admit local rules.

Is it sufficient?
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Growth

Forced Vertex Example:
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Growth

Local Algorithm

Given r > 0, a vertex-atlas A(r) and a finite pattern S:
e pick at random a vertex v in S and let P(v, r) be the subpattern of
radius r and center v;
e consider the set F of all the elements in the vertex-atlas A(r) that
matches with the subpattern P(v, r);
e add to S all the vertices that appear in every pattern of F;

e Repeat.
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Growth

Ammann-Beenker

Ammann-Beenker tiling does not have local rules and will not grow.
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Growth

But Golden-Octagonal will
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Growth

Demonstration

Demonstration: Golden-Octagonal.
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Growth

Golden-Octagonal
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Growth

Main Conjecture

Consider a planar tiling T with local rules. For any € > 0 there exists an
input data, such that the above algorithm generates proportion (1 — ¢) of
the tiles of a planar tiling with slope parallel to the slope of T .

e The algorithm is local but it misses some tiles (conway worms).
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Smaller Seed
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Defective Seeds

With a correct seed it is impossible to get all the tiles, but with a defective
seed one can grow a tiling of the entire plane except for a finite region!

The decapod, an example of such a seed for Penrose tiling.

March 3, 2019 43 / 62



Demonstration

Demonstration.
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Window

Window

Definition (Window)

The window W of a planar tiling with a slope E C R” is the orthogonal
projection of [0,1]" onto E+, where E*- is a complementary space to E

W = 7+([0,1]").
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Window

Window

The window for Penrose tiling.
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Introduction Cut-and-project Local Rules Grow: Seed Window

Region in the Window

To every pattern of a tiling we can assign a region in the window:

R(P)= [ (W-r"(x).

x:m(x)EP

In order for a pattern P to appear in a tiling it is necessary that

R(P) # @.
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Window

Examples
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Window

Examples

R(tiling) = {point}.
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Window

Examples

R(decapod) = {point}
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Introduction Cut-and-project Local Rules Seed Window Shadows

Defective Seeds

Conjecture

For all the planar tilings with local rules there is a set of defective seeds
such that the growth with such seeds will produce a tiling of the entire
plane except for a finite region.

Lemma

For any tiling with local rules T and for any R > [max(||pi||1)], where
{pi} is the set of subperiods of T, there exist a seed D with following
properties:
e every subpattern of D of radius R is correct (i.e. it is a subset of a
tiling with the same slope)

e R(D) = {point}
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Shadows
Shadows

Definition

The jjk-shadow of a 4 — 2 planar tiling is the orthogonal projection of its
lift to the space generated by e;, ¢; and ey.
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Shadows
Shadows Can Vote!




Shadows
Shadows Can Vote!




Thank you for your attention!
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Shadows

Conway worms
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Shadows

now to Construct The Defective Seeds?
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