Cut-and-project	Local Rules		

On self-assembly of aperiodic tilings

Galanov Ilya Laboratoire d'Informatique de Paris Nord Université Paris 13

	Cut-and-project	Local Rules		
Table of	f Contents			

- 1 Introduction
- 2 Cut-and-project
- **3** Local Rules
- 4 Growth
- 6 Seed
- 6 Window
- Shadows

Introduction	Cut-and-project	Local Rules		
Table of	f Contents			

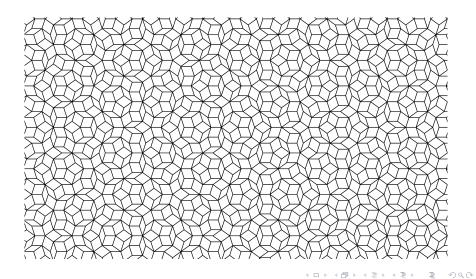
1 Introduction

- Out-and-project
- **3** Local Rules
- 4 Growth
- **6** Seed
- 6 Window
- Shadows

- 4 E

Introduction	Cut-and-project	Local Rules		
Tiling				

- Tiling: covering of the plane by interior disjoint tiles;
- Aperiodic tiling: no invariance by translation;
- Vertex-atlas $\mathcal{A}(r)$: all the patterns of radius r;
- Local rules: a finite set of patterns that characterize the tiling.



Introduction	Cut-and-project	Local Rules		
Tiling				

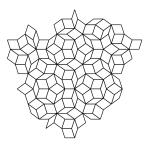
- Tiling: covering of the plane by interior disjoint tiles;
- Aperiodic tiling: no invariance by translation;
- Vertex-atlas $\mathcal{A}(r)$: all the patterns of radius r;
- Local rules: a finite set of patterns that characterize the tiling.

Introduction	Cut-and-project	Local Rules		
Penrose	Tiling			

Introduction	Cut-and-project	Local Rules		
Question				

Is it possible to grow an aperiodic tiling locally?

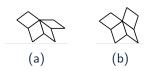
The meaning of the locality constraint:


- units of the growing cluster must be added one by one;
- decisions are local, i.e. according to tiles within a fixed distance;
- no information must be stored between the steps.

Introduction	Cut-and-project	Local Rules		
Motivat	ion			

- Rapid development of aperiodic tilings started after discovery of quasicrystals in 1982 by Dan Shechtman (Nobel prize in 2011);
- The atomic arrangement of a quasicrystal breaks the periodicity (no translational symmetry);
- Due to specific local structure of these materials the growth process of such crystals is still poorly understood.

• Deceptions: patterns allowed by local rules which cannot be extended to a tiling of entire plane;



• Deceptions exist for all aperiodic tilings.

Some Tiles Are Forced by Vertex-Atlas:

- (a) is allowed;
- (b) is forbidden.

- Start with a finite pattern of Penrose tiling;
- Keep adding the forced tiles one by one until it is possible;
- When there are none left, add a thick tile to a *special* site;
- Repeat.

Theorem (Socolar, 1991)

The algorithm can build any Penrose tiling.

- Start with a finite pattern of Penrose tiling;
- Keep adding the forced tiles one by one until it is possible;
- When there are none left, add a thick tile to a *special* site;
- Repeat.

Theorem (Socolar, 1991)

The algorithm can build any Penrose tiling.

• However, this algorithm is *not* local.

Introduction	Cut-and-project	Local Rules		
Demons	tration			

Demonstration: Penrose.

990

・ロト ・回ト ・ヨト ・ヨ

	Cut-and-project	Local Rules		
Table o	f Contents			

Introduction

Out-and-project

3 Local Rules

4 Growth

6 Seed

6 Window

Shadows

March 3, 2019 13 / 62

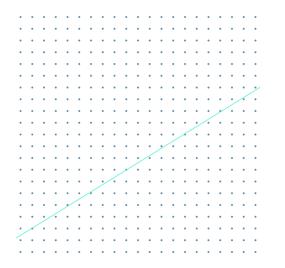
-

	Cut-and-project	Local Rules		
Cut-and	-project			

Definition (Planar tiling)

Let *E* be a *d*-dim. affine space in \mathbb{R}^n called the slope. Select the *d*-dim. faces with vertices in \mathbb{Z}^n lying in $E + [0, 1]^n$. Project them onto *E* to get a so-called *planar* $n \to d$ tiling.

Cut-and-project	Local Rules		


Example: Planar $2 \rightarrow 1$ Tiling

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	٠	•	٠	•	•	•	•	•	٠	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

◆ロ ▶ ◆ 祠 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ─ 臣 ─ ∽ � � �

Introduction **Cut-and-project** Local Rules Growth Seed Window Shadows

Example: Planar $2 \rightarrow 1$ Tiling

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ のへで

March 3, 2019 16 / 62

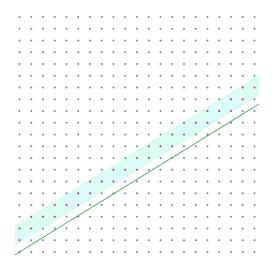
Cut-and-project	Local Rules		

Example: Planar $2 \rightarrow 1$ Tiling

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•			•									•	•
•	•	•	•	•		•				•								•	•	•
•	•	•	•	•	•	•		•							•	•	•	•	•	•
•	•	•	•	•	•	•		•					•		•		•	•	•	•
•	•	•	•	•				•				•			•			•	•	•
•	•	•						•				•			•					•
•	•							•							•					•
•					•				•			•	•					•	•	•
•			•		•	•	•		•	•		•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•		•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

(ロ) (同) (ヨ) (ヨ) (国) のへで

Cut-and-project	Local Rules		


Example: Planar $2 \rightarrow 1$ Tiling

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

◆□ ▶ ◆帰 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ ∽ � �

Introduction **Cut-and-project** Local Rules Growth Seed Window Shadows

Example: Planar $2 \rightarrow 1$ Tiling

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q @

Cut-and-project	Local Rules		

Example: Planar $2 \rightarrow 1$ Tiling

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	-
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1			•	•
•	•	•	•	•	•	•	•	•	•	•	•		•	2	-			•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	-			•	•	•	•	•
•	•	•	•	•	•	•	•	•	1	•	1			•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	2	-			•	•	•	•	•	•	•	•
•	•	•	•	•		•	•	-	·		:	•	•	•	•	•	•	•	•	•
•	•	•	•		1	-			•	•	•	•	•	•	•	•	•	•	•	•
•	•	-	•	•	-			•	•	•	•	•	•	•	•	•	•	•	•	•
	1	•	-	Ċ		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			5		:	÷	÷	÷	÷		:		:	Ĩ.	÷	Ĩ.	÷	Ĩ.	÷	
			:	÷		:	Ĩ		:		:	:	:	:	:		:	:	:	:
						1	×.	1		1	1	1	Ĩ.,	-		-				

(ロ) (同) (ヨ) (ヨ) (国) のへで

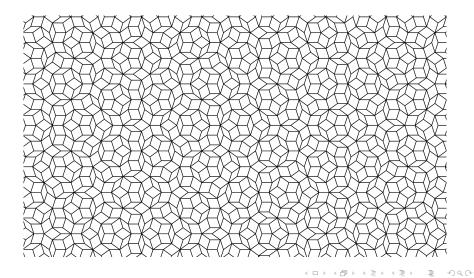
	Cut-and-project	Local Rules			
Example	e: Planar 2 -	\rightarrow 1 Tilin	g		

March 3, 2019 21 / 62

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	Cut-and-project	Local Rules		
Cut-and	l-project			

Theorem (De Bruijn, 1981)

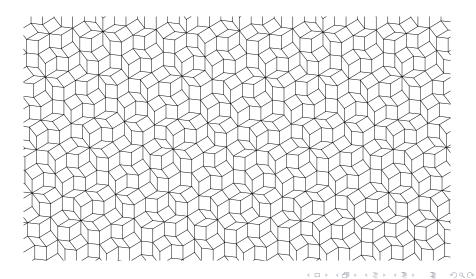

Penrose tiling is planar $5 \rightarrow 2$ with the slope generated by

$$u = \begin{pmatrix} 1 \\ \cos(2\pi/5) \\ \cos(4\pi/5) \\ \cos(6\pi/5) \\ \cos(8\pi/5) \end{pmatrix} \quad v = \begin{pmatrix} 0 \\ \sin(2\pi/5) \\ \sin(4\pi/5) \\ \sin(6\pi/5) \\ \sin(8\pi/5) \end{pmatrix}$$

March 3, 2019 22 / 62

	Cut-and	d-project	Local Rules		
_		-			

Example: Penrose Tiling

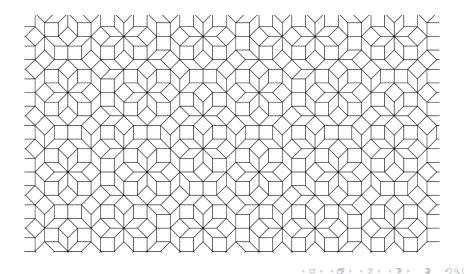


Golden-Octagonal tiling is planar 4 \rightarrow 2 with the slope generated by

$$u = \begin{pmatrix} -1 \\ 0 \\ \phi \\ \phi \end{pmatrix} \quad v = \begin{pmatrix} 0 \\ 1 \\ \phi \\ 1 \end{pmatrix}$$

	Cut-and-p	project	Local Rules		
_					

Example: Golden-Octagonal


Example: Ammann-Beenker

Ammann-Beenker tiling is planar $4 \rightarrow 2$ with the slope generated by

$$u = \begin{pmatrix} 1\\ \cos(\pi/4)\\ \cos(2\pi/4)\\ \cos(3\pi/4) \end{pmatrix} \quad v = \begin{pmatrix} 0\\ \sin(\pi/4)\\ \sin(2\pi/4)\\ \sin(3\pi/4) \end{pmatrix}$$

	Cut-and-project	Local			
_	•	_			

Example: Ammann-Beenker

	Cut-and-project	Local Rules		
Table o	f Contents			

- Introduction
- Out-and-project
- 3 Local Rules
- 4 Growth
- **5** Seed
- Window
- Shadows

-

	Cut-and-project	Local Rules		
Local R	uloc			

Definition (Local rules)

A *d*-plane $E \subset \mathbb{R}^n$ is said to admit *local rules* if there exists a vertex-atlas $\mathcal{A}(r)$ so that any $n \to d$ tiling with the same atlas is planar with the slope parallel to E.

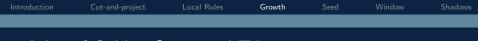
Theorem (Bedaride, Fernique, 2017)

A planar $4 \rightarrow 2$ tiling admits local rules if and only if it is determined by its subperiods (easily checked on the generating vectors).

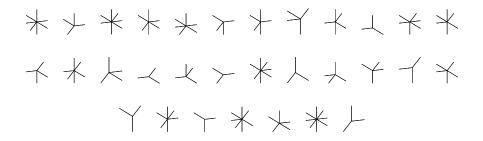
	Cut-and-project	Local Rules		
Fxample	24			

- Penrose tilling has local rules.
- Golden-Octagonal tiling has local rules.
- Ammann-Beenker tiling does not have local rules!

Proposition


In order to have a local self-assembly algorithm for a planar tiling it is necessary for the slope of the tiling to admit local rules.

Is it sufficient?


	Cut-and-project	Local Rules	Growth		
Table o	f Contents				

- Introduction
- Out-and-project
- **3** Local Rules
- 4 Growth
- **5** Seed
- **6** Window
- Shadows

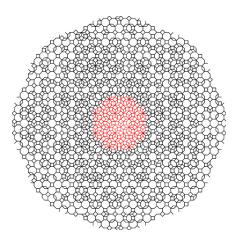
-

1-Atlas of Golden-Octagonal Tilings

3

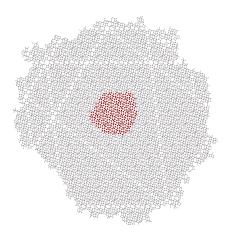
Forced Vertex Example:

< □ > < 同 >


March 3, 2019 33 / 62

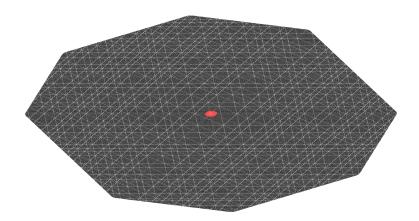
	Cut-and-project	Local Rules	Growth		
Local A	lgorithm				

Given r > 0, a vertex-atlas $\mathcal{A}(r)$ and a finite pattern S:


- pick at random a vertex v in S and let P(v, r) be the subpattern of radius r and center v;
- consider the set F of all the elements in the vertex-atlas A(r) that matches with the subpattern P(v, r);
- add to S all the vertices that appear in every pattern of F;
- Repeat.

	Cut-and-project	Local Rules	Growth		
Amman	n-Reenker				

Ammann-Beenker tiling does not have local rules and will not grow.



	Cut-and-project	Local Rules	Growth		
Demons	stration				

Demonstration: Golden-Octagonal.

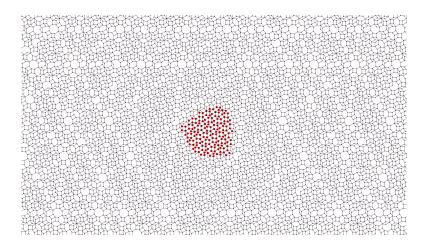
< D > < A

-

	Cut-and-project	Local Rules	Growth		
Main C	oniocturo				
	onjecture				

Conjecture

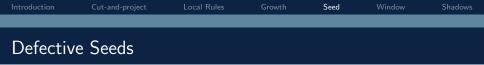
Consider a planar tiling T with local rules. For any $\varepsilon > 0$ there exists an input data, such that the above algorithm generates proportion $(1 - \varepsilon)$ of the tiles of a planar tiling with slope parallel to the slope of T.

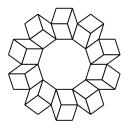

• The algorithm is local but it misses some tiles (conway worms).

	Cut-and-project	Local Rules	Seed	
Table o	f Contents			

- Introduction
- Out-and-project
- **3** Local Rules
- 4 Growth
- Seed
- Window
- Shadows

-


	Cut-and-project	Local Rules	Seed	
Smaller	Seed			


Introduction	Cut-and-project	Local Rules	Seed	Window	Shadows
Bigger S	eed				
	ccu				
					R
					H
				KAKK	¥.
現 段					
田田					₩
<u>AAA</u>					Æ
					Å.
					Ř
田田					
E Constantino de la constantino de					
					· 王 王

・ロト <
ゆ > <
き > <
き >
・
き ・
の へ
の
く つ >

March 3, 2019 42 / 62

With a *correct* seed it is impossible to get all the tiles, but with a *defective* seed one can grow a tiling of the entire plane except for a finite region!

The decapod, an example of such a seed for Penrose tiling.

	Cut-and-project	Local Rules	Seed	
Demons	stration			

Demonstration.

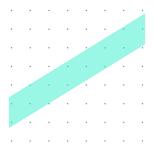
E

999

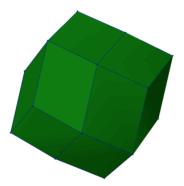
イロト イヨト イヨト イヨト

	Cut-and-project	Local Rules		Window	
					
lable of	f Contents				

- Introduction
- Out-and-project
- **3** Local Rules
- 4 Growth
- **5** Seed
- 6 Window
- Shadows


-

	Cut-and-project	Local Rules		Window	
Window					


Definition (Window)

The window W of a planar tiling with a slope $E \subset \mathbb{R}^n$ is the orthogonal projection of $[0, 1]^n$ onto E^{\perp} , where E^{\perp} is a complementary space to E

$$W = \pi^{\perp}([0,1]^n).$$

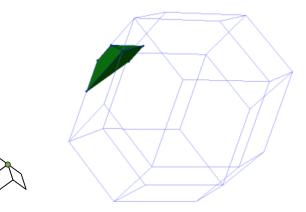
	Cut-and-project	Local Rules		Window	
Window					

The window for Penrose tiling.

	Cut-and-project	Local Rules		Window	
Region	in the Wind	$\cap M$			

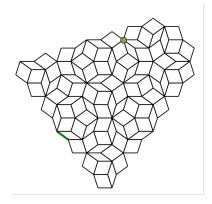
Proposition

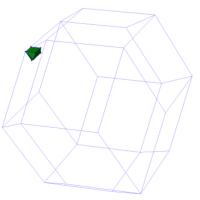
To every pattern of a tiling we can assign a region in the window:


$$R(P) = \bigcap_{x:\pi(x)\in P} (W - \pi^{\perp}(x)).$$

Corollary

In order for a pattern P to appear in a tiling it is necessary that


 $R(P) \neq \emptyset$.


	Cut-and-project	Local Rules		Window	
Example	es				

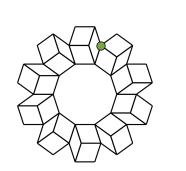
シックシー 川 (本市)・(市)・(日)・

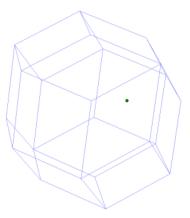
	Cut-and-project	Local Rules		Window	
Example	es				

シックシー 川 (本市)・(市)・(日)・

	Cut-and-project	Local Rules		Window	
Example	es				

 $R(tiling) = \{point\}.$


э


(日) (日) (日) (日)

E

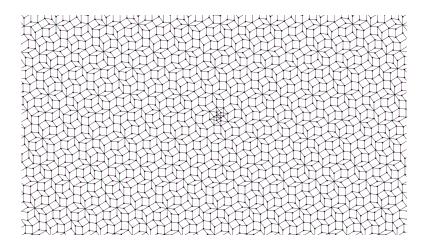
	Cut-and-project	Local Rules		Window	
Fxample	24				

 $R(decapod) = \{point\}$

	Cut-and-project	Local Rules		Window	
	a i				
Defectiv	ve Seeds				

Conjecture

For all the planar tilings with local rules there is a set of defective seeds such that the growth with such seeds will produce a tiling of the entire plane except for a finite region.


Lemma

For any tiling with local rules \mathcal{T} and for any $R > \lceil \max(||p_i||_1) \rceil$, where $\{p_i\}$ is the set of subperiods of \mathcal{T} , there exist a seed D with following properties:

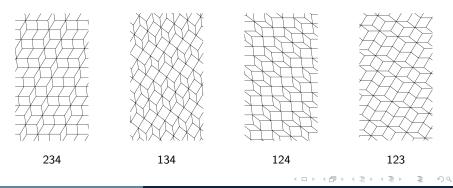
- every subpattern of D of radius R is correct (i.e. it is a subset of a tiling with the same slope)
- *R*(*D*) = {*point*}

Cut-and-project	Local Rules		Window	

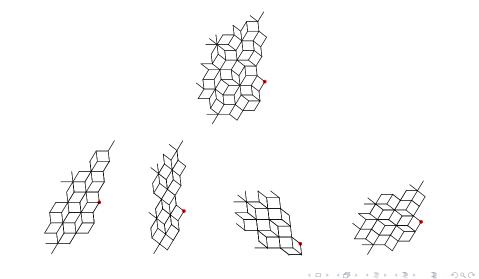
Defective Seed for Golden-Octagonal

	Cut-and-project	Local Rules		Shadows
Table o	f Contents			

- Introduction
- 2 Cut-and-project
- **3** Local Rules
- 4 Growth
- **5** Seed
- **6** Window

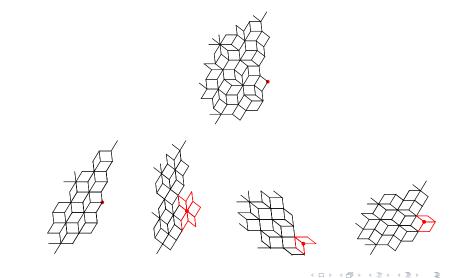


-

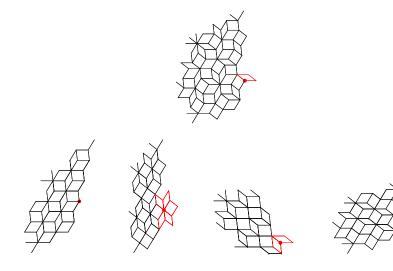

	Cut-and-project	Local Rules		Shadows
Shadows				

Definition

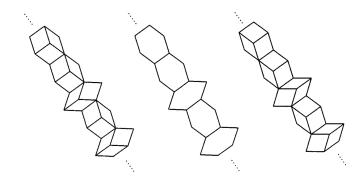
The *ijk*-shadow of a $4 \rightarrow 2$ planar tiling is the orthogonal projection of its *lift* to the space generated by e_i, e_j and e_k .



	Cut-and-project	Local Rules		Shadows
Shadow	S			



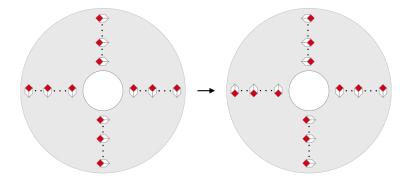
Shadows Can Vote!



Cut-and-project	Local Rules		Shadows

Thank you for your attention!

	Cut-and-project	Local Rules		Shadows
Conway	worms			



900

・ロト ・四ト ・日ト ・日ト

now to Construct The Defective Seeds?

