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| - Local limit of triangulations
without matter



Planar Maps as discrete planar metric spaces

A triangulation is the proper embedding of a finite connected
graph in the 2-dimensional sphere seen up to continuous
deformations, such that all the faces have degree 3.
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Planar Maps as discrete planar metric spaces

A triangulation is the proper embedding of a finite connected
graph in the 2-dimensional sphere seen up to continuous
deformations, such that all the faces have degree 3.

~

Plane maps are rooted : by orienting an edge.

Distance between two vertices = number of edges between them.
Planar map = Metric space



"Classical” large random triangulations

Take a triangulation with n edges uniformly at random. What
does it look like if n is large 7

Local point of view : Look at neighborhoods of the root



"Classical” large random triangulations

Take a triangulation with n edges uniformly at random. What
does it look like if n is large 7

Local point of view : Look at neighborhoods of the root

The local topology on finite maps is
induced by the distance:

dioe(m, m’) =

(1 +max{r >0: B,.(m)= B.(m")})

where B, (m) is the graph made of all the vertices and
edges of m which are within distance r» from the root.

Courtesy of lgor Kortchemski



Local convergence: simple examples



Local convergence: simple examples



Local convergence: simple examples

01 2 n 01 2 n
Root = Uniformly chosen root



Local convergence: simple examples

oo - *o—eo—9o —— (Z+,O) Q—Hia—o—o
01 2 n 01 2 n
Root = Uniformly chosen root



Local convergence: simple examples

¢

oo o009 — (Z,,0) oo o -o-0-0-o — (7,0)
01 2 n 01 2 n
Root = Uniformly chosen root



Local convergence: simple examples

oo - oo — (Z.,0) Q—Hia—o—o — (2, 0)
01 2 n 01 2 n
Root = Uniformly chosen root

2 Root does not matter



Local convergence: simple examples

¢

oo o009 — (Z,,0) oo o -o-0-0-o — (7,0)
01 2 n 01 2 n
Root = Uniformly chosen root

2 Root does not matter
n 1

— (22.,0)




Local convergence: simple examples

n
.
2

n 1
— (22.,0)

¢

oo o -o-0-0-o — (7,0)
01 2 n
Uniformly chosen root

— (Z,0)

Root does not matter

0 — (27,0)

0 n
Uniformly chosen root



Local convergence: more complicated examples

Uniform plane trees with n vertices:
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Local convergence: more complicated examples

Uniform plane trees with n vertices:

§ 12 | 1o |
s s /2§ 15 15 1
n=1 En:Z i n =3 E n=4 ° L‘/x’/
1/5
4
The limit is a probability distribution on infinite \VW

trees with one infinite branch. [Kesten]

o

n = 500



Local convergence of uniform triangulations

Theorem [Angel — Schramm, '03]
As n — oo, the uniform distribution on triangulations of size n

converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.

—

Courtesy of Igor Kortchemski
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Local convergence of uniform triangulations

Theorem [Angel — Schramm, '03]
As n — oo, the uniform distribution on triangulations of size n

converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:
e The UIPT has almost surely one end [Angel — Schramm, '03]
e Volume (nb. of vertices) and perimeters of balls known to some extent.

For example T 1B, (Ts)|] ~ %,’A [Angel '04, Curien — Le Gall '12]

e Simple random Walk is recurrent [Gurel-Gurevich and Nachmias "13]



Local convergence of uniform triangulations

Theorem [Angel — Schramm, '03]
As n — oo, the uniform distribution on triangulations of size n

converges weakly to a probability measure called the Uniform Infinite
Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:
e The UIPT has almost surely one end [Angel — Schramm, '03]
e Volume (nb. of vertices) and perimeters of balls known to some extent.

For example T 1B, (Ts)|] ~ %,’A [Angel '04, Curien — Le Gall '12]

e Simple random Walk is recurrent [Gurel-Gurevich and Nachmias "13]

Universality: we expect the same behavior for slightly different models
(e.g. quadrangulations, triangulations without loops, ...)



Il - Ising model on random maps



Adding matter: Ising model on triangulations

First, Ising model on a finite deterministic graph:

Spin configuration on G:
o:V —{-1,+1}.

G = (V, F) finite graph
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B > 0: inverse temperature.
h = 0: no magnetic field.




Adding matter: Ising model on triangulations

First, Ising model on a finite deterministic graph:

Spin configuration on G:
o:V —{-1,+1}.

G = (V, F) finite graph

Ising model on G: take a random
spin configuration with probability

P(O‘) X e_g v~v! 1{0(1})#0(’0’)}

B > 0: inverse temperature.
h = 0: no magnetic field.

Combinatorial formulation: P(g) o< v™(%)
with m (o) = number of monochromatic edges and v = e”.
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Adding matter: Ising model on triangulations

T = {rooted planar triangulations with 3n edges}.

Random triangulation with spins in 7,, with probability oc v(T:9) ?

(1T -

™I 5 ) =30

°]Q(v, )

where (Q(v,t) = generating series of Ising-weighted triangulations:

Q(V, t) _ Z Z Vm(T,a)te(T).

TeTy o:V(T)—>{—1,+1}

Remark: This is a probability distribution on triangulations with spins. But, forgetting the
spins gives a probability a distribution on triangulations without spins different from the
uniform distribution.



Adding matter: New asymptotic behavior

Counting exponent for undecorated maps:

coeff [t"] of generating series of (undecorated) maps

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
~ /{p—nn—5/2

Note : x and p depend on the combinatorics of the model.



Adding matter: New asymptotic behavior

Counting exponent for undecorated maps:

coeff [t"] of generating series of (undecorated) maps

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
~ /{p—nn—5/2

Note : x and p depend on the combinatorics of the model.

Theorem |[Bernardi — Bousquet-Mélou 11]
For every v the series Q(v,t) is algebraic, has p, > 0 as unique
dominant singularity and satisfies

(

ifuzuczl—l—%,

K/ﬁ:p,j”n_5/2 if v #v..

t°"1Q (v, t)

This suggests an unusual behavior of the underlying maps for v = v...
See also [Boulatov — Kazakov 1987], [Bousquet-Melou — Schaeffer 03]
and [Bouttier — Di Francesco — Guitter 04].



11 - Results and idea of proofs



Local convergence of triangulations with spins

m(T,0)

Probability measure on triangulations y v
_ _ P T, = :
of 7T, with a spin configuration: " <{( 0)}> 37Q (v, 1)

Theorem [AMS]
As n — o0, the sequence P? converges weakly to a probability

measure P¥ for the local topology.
The measure P” is supported on infinite triangulations with one end.




Local Topology for planar maps : balls

Definition:
The local topology on M« is induced by the distance:

dioe(m,m’) := (1 + max{r > 0: B,.(m) = Br(fm’)})_1

where B,.(m) is the graph made of all the faces of m with at least
one vertex at distance r — 1 from the root.
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Local Topology for planar maps : balls

Definition:
The local topology on M« is induced by the distance:

dioe(m,m’) ;== (1 + max{r > 0: B.(m) = Br(fm’)})_1

where B,.(m) is the graph made of all the faces of m with at least
one vertex at distance r — 1 from the root.




Weak convergence for the local topology

Portemanteau theorem + Levy — Prokhorov metric:
To show that PY converges weakly to P, prove

1. For every r > 0 and every possible ball A, show:

P;({Ten : BT(T):A}> . IP”({TGTOO : BT(T):A}>.

n—oo

For instance for r = 2, A might be equal to:
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Weak convergence for the local topology

Portemanteau theorem + Levy — Prokhorov metric:
To show that PY converges weakly to P, prove

1. For every r > 0 and every possible ball A, show:

P;;({Ten : BT(T):A}> . IP’”({TGTOO : BT(T):A}>.

n—oo

Problem: the space (7,d;,.) is not compact! Ex: /\

degreen
2. No loss of mass at the limit: v ~

the measure P” defined by the limits in 1. is a probability measure.

Enough to prove a tightness result, which amounts here to say
that deg(root) is tight.
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Local convergence and generating series
Need to evaluate, for every possible ball A

Vm(A)—m(w) [t3n—e(A)—|—|w|]Zw (V, t)
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Local convergence and generating series
Need to evaluate, for every possible ball A

Vm(A)—m(w) [t3n—e(A)—|—|w|]Zw (V, t)

¥ 97, ) B
g B °"]Q(v, 1)
< <

Generating series of triangulations with simple
boundary and boundary conditions given by w.

Herew=+—-—+—-———+—++—

Theorem [AMS]
For every w, the series t/“!Z, (v, t) is algebraic, has p, as unique
dominant singularity and satisfies

(

/fw(yc) pzjcnn_7/3 ifV:Vc: 1"‘%7

Bl z (vt) ~ 4
™ ( )n—><>0 \/ﬁ:w(u)p;”n_5/2 if v # v..

Thanks to a "trick”, enough to prove the theorem for w = @& ... .



Positive boundary conditions : two catalytic variables
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L
A(x) :ZZ@pxP_ vta24 = (A( )— a:Z@ +Vt y|S(x,y) +
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Peeling equation at interface 6—@

S e e

vt
X




From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads K(z,y) - S(x,y) = R(z,y)
t
where K(r,y)=1————-—— A(x) — ;A(y)



From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads K(z,y) - S(x,y) = R(z,y)
t
where K(r,y)=1————-—— A(x) — ;A(y)

1. Find two series Y7 and Y5 in Q(x)|[t]] such that K («x,Y;/t) = 0.



From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads K(z,y) - S(x,y) = R(z,y)
t
where K(r,y)=1————-—— A(x) — ;A(y)

1. Find two series Y; and Yo in Q(x)|[t]] such that K(z,Y;/t) =0
It gives <+ ( (Y1/t)+1) = ( (Yo/t) +1).



From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads K(z,y) - S(x,y) = R(z,y)
t
where K(r,y)=1————-—— A(x) — ;A(y)

1. Find two series Y; and Yo in Q(x)|[t]] such that K(z,Y;/t) =0
It gives <+ ( (Y1/t) +1) = ( (Yo /t) +1).
I(y) = i (A(y/t)+ 1) is caIIed an invariant.



From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads  K(x,y) - S(z,y) = R(z,y)
t
where K(z,y)=1———— — — A(x) — QA(y)
1. Find two series Y and Y5 in Q(x)l[t]] such that K(z,Y;/t) =0

It gives o ( (Y1/t)+1) = Y% (A(Ya/t) +1).
I(y) = i (A(y/t) + 1) is called an invariant.

2. Work a bit with the help of R(x,Y;/t) = 0 to get a second invariant
J(y) depending only on t,v, Z4(t),y and A(y/t).



From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads K(z,y) - S(x,y) = R(z,y)
t
where K(r,y)=1————-—— A(x) — ;A(y)

1. Find two series Y and Y5 in Q(x)l[t]] such that K(z,Y;/t) =0
It gives < ( (Y1/t)+1) = Y% (A(Y3/t) + 1).
I(y) = i (A(y/t) + 1) is called an invariant.

2. Work a bit with the help of R(z,Y;/t) =0 to get a second invariant
J(y) depending only on t,v, Z4(t),y and A(y/t).

3. Prove that J(y) = Co(t) + C1(t)I(y) + Co(t)I*(y) with C;'s explicit
polynomials in t, Z~ (t) and Z42(t).
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From two catalytic variables to one: Tutte’s invariants

Kernel method: equation for S reads K(z,y) - S(x,y) = R(z,y)
t
where K(r,y)=1————-—— A(x) — ;A(y)

1. Find two series Y and Y5 in Q(x)l[t]] such that K(x,Y;/t) =0
It gives < ( (Y1/t)+1) = Y% (A(Y3/t) + 1).
I(y) = i (A(y/t) + 1) is called an invariant.

2. Work a bit with the help of R(z,Y;/t) =0 to get a second invariant
J(y) depending only on t,v, Z4(t),y and A(y/t).

3. Prove that J(y) = Co(t) + C1(t)I(y) + Co(t)I*(y) with C;'s explicit
polynomials in t, Z~ (t) and Z42(t).

Equation with one catalytic variable for A(y) !

General result of [Bousquet-Mélou,Jehanne, 2006] gives algebraicity of A(y)



Local convergence of triangulations with spins

m(T,0)

Probability measure on triangulations y v
_ _ P T, = :
of 7T, with a spin configuration: " <{( 0)}> 37Q (v, 1)

Theorem [AMS]
As n — o0, the sequence P? converges weakly to a probability

measure P¥ for the local topology.
The measure P” is supported on infinite triangulations with one end.

Recent related result by [Chen, Turunen, '18], ¢ ™
Local convergence for triangulations of the i
halfplane by studying the interface between ©
and 6.
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What we would like to know :

e Volume growth 7



Adding matter: link with Liouville Quantum Gravity

Maps without matter “converge” to %—LQG
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The critical Ising model is believed to converge to v/3-LQG.
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Adding matter: link with Liouville Quantum Gravity

Maps without matter “converge” to %—LQG
[Miermont'13],[Le Gall'13], [Miller,Sheffield '15],
[Holden, Sun '19

The critical Ising model is believed to converge to v/3-LQG.

Similar statements for other models of decorated maps
(with a spanning subtree (v = v/2), with a bipolar orientation (v = /4/3),...)
but no proofs.

For v € (0, 2), there exists d,, = “fractal dimension of v-LQG"
d., = ball volume growth exponent for corresponding maps 77
YES, in some cases [Gwynne, Holden, Sun '17], [Ding, Gwynne '18]

Unknown for Ising, but d s is a good candidate for the volume

growth exponent. What is d s ?



Adding matter: link with Liouville Quantum Gravity

Watabiki’s prediction:
2
| ’7 | 1 I ~
dy =1+ - - Z\/(4 +72)2 4+ 1672 gives d 5 ~ 4.21...

[Ding, Gwynne '18]
Bounds for d., which give:
418 < d gz < 4.25.

In particular d sz # 4 and growth
volume would then be different
than the uniform model.

Green = Watabiki. **]
Blue and Red = bounds by Ding and Gwynne. *i%
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Thank you for your attention!
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