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What these lectures are about
In these lectures I present a very condensed version
of some material which form the second part of a
M2 course I gave in Lyon.

This course was roughly based on Chapters 1 and 2
of Dan Romik’s beautiful book The surprising
mathematics of longest increasing subsequences
(available online).

In the second part (Chapter 2) I somewhat diverged
from the book by following my own favorite
approach (developed mostly by Okounkov), based
on fermions and saddle point computations for
asymptotics.

This is the material I would like to present here: fermions because of
physics, saddle point computations because, well, we are in Aléa!
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Integer partitions and Young diagrams/tableaux
An (integer) partition λ is a finite nonincreasing sequence of positive
integers called parts:

λ1 ≥ λ2 ≥ · · · ≥ λ` > 0.

Its size is |λ| :=
∑
λi and its length is `(λ) := ` (by convention λn = 0 for

n > `).

It may be represented by a Young diagram, e.g. for λ = (4, 2, 2, 1):

1 2 5 7

3 6

94

8

A standard Young tableau (SYT) of shape λ is a filling of the Young
diagram of λ by the integers 1, . . . , |λ| that is increasing along rows and
columns. We denote by dλ the number of SYTs of shape λ.
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Plancherel measure
The Plancherel measure on partitions of size n is the probability measure
such that

Prob(λ) =

{
d2
λ
n! if λ ` n,

0 otherwise.

Here λ ` n is a shorthand symbol to say that λ is partition of size n.

It is a probability measure because of the “well-known” identity

n! =
∑
λ`n

d2
λ

which has (at least) two classical proofs:

representation theory: n! is the dimension of the regular
representation of the symmetric group Sn, and dλ is the dimension of
its irreducible representation indexed by λ,

bijection: the Robinson-Schensted correspondence is a bijection
between Sn and the set of triples (λ,P,Q), where λ ` n and P,Q are
two SYTs of shape λ.
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Connection with Longest Increasing Subsequences

A property of the Robinson-Schensted correspondence is that if
σ 7→ (λ,P,Q), then the first part of λ satisfies

λ1 = L(σ)

where L(σ) is the length of a Longest Increasing Subsequence (LIS) of σ.

Example: for σ = (3, 1, 6, 7, 2, 5, 4), we have L(σ) = 3.

There is a more general statement (Greene’s theorem) but we will not
discuss it here.

The Longest Increasing Subsequence problem consists in understanding

the asymptotic behaviour as n→∞ of Ln := L(σn) = λ
(n)
1 , where σn

denotes a uniform random permutation in Sn, and λ(n) the random
partition to which it maps via the RS correspondence, and whose law is
the Plancherel measure.
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Some partial history of the LIS problem

The problem was formulated by Ulam (1961) who suggested
investigating it using Monte Carlo simulations and observed that Ln
should be of order

√
n.

It was then popularized by Hammersley (1972) who introduced a nice
graphical method (closely related with the RSK correspondence) and
proved that Ln/

√
n converges in probability to a constant c ∈ [π/2, e].

Vershik-Kerov and Logan-Shepp (1977) proved independently that
c = 2, as a consequence of a more general limit shape theorem for the
Plancherel measure on partitions. (See Chapter 1 of Romik’s book.)

Baik-Deift-Johansson (1999) proved the most precise result

P
(
Ln − 2

√
n

n1/6
≤ s

)
= FGUE (s), n→∞

where FGUE is the Tracy-Widow GUE distribution. (See Chapter 2.)
The unusual exponent n1/6 was previously conjectured by
Odlyzko-Rains and Kim based on numerical evidence and bounds.
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Limit shape

A Plancherel random partition of size 10000 (courtesy of D. Betea)
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Topics of the lectures

We will discuss some properties of the Plancherel measure.
1 We will show that the poissonized Plancherel measure (to be defined)

is closely related with a determinantal point process (DPP) called the
discrete Bessel process. Plan:

I Some general theory of DPPs
I Connection with Plancherel measure via fermions

2 We will then investigate asymptotics, in the following regimes:
I Bulk limits: the VKLS limit shape and the discrete sine process
I Edge limit: the Airy process and the Baik-Deift-Johansson theorem

These results were obtained indepently in two papers by Borodin,
Okounkov and Olshanski (2000) and by Johansson (2001). But we use a
different approach developed later by Okounkov et al., which may be
generalized to Schur measures and Schur processes. We concentrate on
the Plancherel measure for simplicity.
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Poissonized Plancherel measure

The poissonized Plancherel measure of parameter θ is the measure

Prob(λ) =
d2
λ

(|λ|!)2
θ|λ|e−θ.

It is a mixture of the Plancherel measures of fixed size, where the size is a
Poisson random variable of parameter θ.
We denote by λ〈θ〉 a random partition distributed according to the
poissonized Plancherel measure, λ(n) denoting a Plancherel random
partition of size n.
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Partitions and particle configurations

To a partition λ, here (4, 2, 1), we associate a set S(λ) ⊂ Z′ := Z + 1
2 by

S(λ) = {λ1 −
1

2
, λ2 −

3

2
, λ3 −

5

2
, . . .}

Here S(λ) = {7
2 ,

1
2 ,
−3
2 ,
−7
2 ,
−9
2 , . . .}. Elements of S(λ) (“particles” •)

correspond to the down-steps of the blue curve.
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Main result of today

Theorem [Borodin-Okounkov-Olshanski 2000, Johansson 2001]

The particle configuration S(λ〈θ〉) associated with the poissonized
Plancherel measure is a determinantal point process in the sense that, for
any distinct points {u1, . . . , un} ⊂ Z′, we have

P
(
{u1, . . . , un} ⊂ S(λ〈θ〉)

)
= det

1≤i ,j≤n
Jθ(ui , uj).

The correlation kernel Jθ is the discrete Bessel kernel

Jθ(s, t) =
∑
`∈Z′

>0

Js+`(2
√
θ)Jt+`(2

√
θ), s, t ∈ Z′

where Jn is the Bessel function of order n.

By the general theory of DPPs, knowing Jθ gives all the information on
the point process.
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Tomorrow

Asymptotics of Jθ, using saddle point computations. Again this is different
from the original techniques of BOO/J, our approach follows Okounkov
and Reshetikhin and are robust (“universality”).
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