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Review: Lq dimensions

Definition
Given a probability µ on Rd and q ∈ (1,∞), we let

Sn(µ,q) =
∑
I∈Dn

µ(I)q,

dimq(µ) = lim inf
n→∞

log Sn(µ,q)

n(1− q)
∈ [0,d ].

q 7→ dimq(µ) is non-increasing and dimq(µ)→ dim∞(µ) as
q →∞.
The main theorem holds not only for Frostman exponents but also
for Lq dimensions.
In the proof it is crucial that q <∞.
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Review: Main Theorem for Lq dimensions

Theorem (P.S.)
Let (G,T , λ,∆) be a model with exponential separation on R. We also
assume that the maps x 7→ ∆(x) and x 7→ µx are continuous a.e., and
that µx is supported on [0,1]. Let

s(q) = min

(∫
log ‖∆(x)‖qq dx
(q − 1) log λ

,1

)
,

where ‖∆‖qq =
∑

y ∆(y)q.
Then

dimq(µx ) = s(q)

for every x ∈ G and q > 1.
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Tools involved in the proof

1 Additive combinatorics: an inverse theorem for the Lq norm of the
convolution of two finitely supported
measures(Balog-Szemerédi-Gowers Theorem, Bourgain’s
additive part of discretized sum-product results).

2 Ergodic theory: key role played by subadditive cocycle over a
uniquely ergodic transformation (cocycle borrowed from
Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic
theorem given by Katznelson-Weiss).

3 Multifractal analysis (Lq spectrum, regularity at points of
differentiability).

4 General scheme of proof follows Mike Hochman’s strategy in his
landmark paper on the dimensions of self-similar measures, but
there are substantial differences.
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How much smoothing does convolution ensure?

Question
Let µ, ν be measures on R,R/Z, etc.
What conditions of µ and/or ν ensure that µ ∗ ν is substantially
smoother than µ?

Smoothness can be measured by entropy, Lq norms, etc.
We think in the case in which either the measures are discrete, or
are discretizations of arbitrary measures at a finite resolution. So
the problem is combinatorial in nature.
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Size of sumsets and additive structure

For any subset A of a group G,

|A| ≤ |A + A| ≤ min

(
1
2
|A|(|A|+ 1), |G|

)
.

So, to first order, |A + A| varies between |A| and |A|2 (or |G| if
|G| ≤ |A|2).
We think of sets A with |A + A| ∼ |A| as sets with additive structure
or as approximate subgroups.
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Examples of sets with/without additive structure
Examples of sets for which |A + A| ∼ |A|:

Subgroups (if they exist).
Arithmetic progressions: |A + A| . 2|A|.
Proper GAPs: |A + A| ≤ 2d |A| where d is the rank. A GAP of rank
d is a set of the form

{a + k1v1 + · · ·+ kdvd : 0 ≤ ki < ni}.

Dense subsets of a set with |A + A| ∼ |A| (such as a GAP).

Examples of sets for which |A + A| ∼ |A|2:
Random sets (pick each element of Z/pZ with probability p−α).
Lacunary sets (powers of 2).
A ∪ B where A,B are disjoint of the same size, A is one of the
previous examples and B is arbitrary.
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Freiman’s Theorem

Theorem (Freiman 1966)
Given K > 1 there are d(K ) and S(K ) such that the following holds.

Suppose |A + A| ≤ K |A|. Then there is a GAP P of rank d(K ) such that
A ⊂ P and |P| ≤ S(K )|A|.

In other words, sets of small doubling are always dense subsets of
GAPs of small rank.

P. Shmerkin (U.T. Di Tella/CONICET) Additive Combinatorics & Fractals CIRM-Luminy, 15.05.2019 8 / 23



Remarks on Freiman’s Theorem

Freiman’s Theorem can be seen as an inverse or classification
theorem: based on qualitative information about A, it returns
structural information.
In applications it is important to have quantitative estimates on
d(K ) and S(K ). Good bounds were obtained by Ruzsa, Chang,
Sanders and Schoen, with Schoen’s current record being:
d(K ) ≤ K 1+ε, S(K ) ≤ exp(K 1+ε).
The theorem does not guarantee that P is proper. But it can be
taken to be proper (with worse quantitative bounds).
The conjecture is that d and S can be both taken polynomial in K .
At least with the current bounds, Freiman’s Theorem says nothing
if K grows with |A|, in particular if K = |A|δ. We will later see a
result of Bourgain that gives structural information about A when
|A + A| ≤ |A|1+δ.
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Additive energy

Definition
The additive energy E(A,B) between two sets A,B is

E(A,B) = |{(x1, x2, y1, y2) ∈ A2 × B2 : x1 + y1 = x2 + y2|

Trivial lower bound: |A||B| ≤ E(A,B) since we always have the
quadruples (x , x , y , y).
Trivial upper bound: E(A,B) ≤ |A|2|B|, since once we have
x1, y1, x2, the value of y2 is completely determined.
In particular, |A|2 ≤ E(A,A) ≤ |A|3.
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Additive energy as the L2 norm of convolutions

Lemma

E(A,B) = ‖1A ∗ 1B‖22,

where 1A =
∑

a∈A δa (not a prob. measure).

Proof.
Note that

1A ∗ 1B(z) = |{(x , y) ∈ A× B : x + y = z}|,

so

E(A,B) =
∑

z

|{(x , y) ∈ A× B : x + y ∈ Z}|2 = ‖1A ∗ 1B‖22.
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Additive structure through energy

We can think of sets A with E(A,A) ∼ |A|3 as sets with “additive
structure”. Examples:

APs and GAPs.
Dense subsets of APs and GAPs.
Disjoint unions A ∪ B where E(A,A) ∼ |A|3 and B is arbitrary. If B
has large sumset, then so does A + B!

Observation
Having small sumset and having large additive energy are indications
of additive structure. These notions cannot agree because both the
size of the sumset and the additive energy are increasing functions of
A.

P. Shmerkin (U.T. Di Tella/CONICET) Additive Combinatorics & Fractals CIRM-Luminy, 15.05.2019 12 / 23



Additive structure through energy

We can think of sets A with E(A,A) ∼ |A|3 as sets with “additive
structure”. Examples:

APs and GAPs.
Dense subsets of APs and GAPs.
Disjoint unions A ∪ B where E(A,A) ∼ |A|3 and B is arbitrary. If B
has large sumset, then so does A + B!

Observation
Having small sumset and having large additive energy are indications
of additive structure. These notions cannot agree because both the
size of the sumset and the additive energy are increasing functions of
A.

P. Shmerkin (U.T. Di Tella/CONICET) Additive Combinatorics & Fractals CIRM-Luminy, 15.05.2019 12 / 23



Additive structure through energy

We can think of sets A with E(A,A) ∼ |A|3 as sets with “additive
structure”. Examples:

APs and GAPs.
Dense subsets of APs and GAPs.
Disjoint unions A ∪ B where E(A,A) ∼ |A|3 and B is arbitrary. If B
has large sumset, then so does A + B!

Observation
Having small sumset and having large additive energy are indications
of additive structure. These notions cannot agree because both the
size of the sumset and the additive energy are increasing functions of
A.

P. Shmerkin (U.T. Di Tella/CONICET) Additive Combinatorics & Fractals CIRM-Luminy, 15.05.2019 12 / 23



Additive structure through energy

We can think of sets A with E(A,A) ∼ |A|3 as sets with “additive
structure”. Examples:

APs and GAPs.
Dense subsets of APs and GAPs.
Disjoint unions A ∪ B where E(A,A) ∼ |A|3 and B is arbitrary. If B
has large sumset, then so does A + B!

Observation
Having small sumset and having large additive energy are indications
of additive structure. These notions cannot agree because both the
size of the sumset and the additive energy are increasing functions of
A.

P. Shmerkin (U.T. Di Tella/CONICET) Additive Combinatorics & Fractals CIRM-Luminy, 15.05.2019 12 / 23



Small sumsets⇒ large energy

Lemma

E(A,A) ≥ |A|4

|A + A|
.

Proof.

|A× A| =
∑

z∈A+A

|{(x , y) : x + y = z}| =
∑

z∈A+A

1A ∗ 1B(z).

Now apply Cauchy-Schwarz.
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Motivation

Additive energy is very natural for doing analysis. But it is easier
to understand sets of small doubling (e.g. Freiman’s Theorem).
By Young’s inequality (in this context, simply the convexity of
t 7→ tp),

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Since ‖1A‖1 = |A| and ‖1A‖2 = |A|1/2, sets with E(A,A) ∼ |A|3 are
sets for which Young’s inequality applied to ‖1A ∗ 1A‖2 is “almost”
an equality.
The examples of sets with additive energy ∼ |A|3 we have seen
are of the form: a set with small doubling ∪ an arbitrary set of
similar size. Are there any other examples?
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The Balog-Szemerédi-Gowers Theorem

Theorem (Balog-Szemerédi (1994), Gowers (1998), Schoen
(2014))
There are constants c,C > 0 such that the following holds. Suppose

E(A,A) ≥ |A|3/K .

Then there exists A′ ⊂ A such that

|A′| ≥ c|A|/K

and
|A′ + A′| ≤ CK 4|A′|.
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Remarks on BSG

The proof is an elementary count of paths on bi-partite graphs.
Gowers (1998) obtained polynomial bounds in K in his proof of a
quantitative version of Szemerédi’s Theorem for progressions of
length 4.
There is a very similar statement for two different sets A,B of
similar size (for example, B = −A), but the bounds become
meaningless if one set is much larger than the other. There is an
asymmetric version of BSG that gives information if log |A| and
log |B| are comparable.
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Small sumset in an exponential sense

Question
Suppose A ⊂ Z/2mZ satisfies

|A + A| ≤ 2εm|A|

for ε small but independent of A. What can we say about A?

In this regime Freiman’s Theorem gives no information.
Trivial cases are |A| ≤ 2εm or |A| ≥ 2(1−ε)m.
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A less trivial example

Example
Fix T � 1, let m = m′T and let S ⊂ {0,1, . . . ,m′}.
Let A be the numbers in [0,1] ∩ 2−mZ whose 2T -adic expansion has a
digit zero in position s for all s /∈ S, and has no restriction on the digit
for s ∈ S.
Other than the carries, A + A has the same structure, so one indeed
has

|A + A| ≤ 2|S||A| ≤ 2m/T |A|.

The set A is in fact a GAP.
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Multiscale decompositions

m = Tm′, T � 1,m′ � T .

Given A ⊂ 2−mZ ∩ [0,1), we associate to it the 2T -adic expansion tree
TA: the level s vertices are the 2−sT -dyadic intervals meeting A.

Definition
A is (R1, . . . ,Rm′)-regular if in TA each level (s − 1)-vertex has Rs
offspring.
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Bourgain’s sumset theorem

Theorem (Bourgain 2010)
Given ε > 0 there are δ > 0 and T ∈ N such that the following holds for
large enough m′.
Let m = m′T . Suppose A ⊂ [0,1] ∩ 2−mZ satisfies

|A + A| ≤ 2εm|A|.

Then A contains a subset A′ with |A′| ≥ 2−δm|A|. Moreover, A′ is
(R1, . . . ,Rm′)-regular and for each s

either Rs = 1 (no branching) or Rs ≥ 2(1−δ)m (full branching)
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A combined asymmetric version

Theorem (P.S.)
Given δ > 0, q ∈ (1,∞) there is ε > 0 such that the following holds for
large m = m′T . Suppose µ, ν are prob. measures on Z/2mZ such that

‖µ ∗ ν‖q ≥ 2−εm‖µ‖q

Then there exist sets A ⊂ suppµ, B ⊂ suppν such that:
1 ‖µ|A‖q ≥ m−δ‖µ|A‖, ν(B) ≥ m−δ.
2 µ, ν are constant on A,B (up to a constant factor).
3 The set A is (R1, . . . ,Rm′)-regular and the set B is

(R′1, . . . ,R
′
m′)-regular.

4 For each s,
either Rs ≥ 2(1−δ)T or R′s = 1
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Back to self-similar measures
The following is a key step in the proof of the main result. It is proved
using the inverse theorem from the previous slide.

Definition

ν(m)(j2−m) = ν([j2−m, (j + 1)2−m))

Theorem
Let (µx )x∈g be a family of DSSM, and suppose q > 1, D(q) < 1 and D
is differentiable at q, there D(q) is the almost sure value of dimq(µx ).
Then for every σ > 0 there is ε = ε(σ, q) > 0 such that the following
holds for all large enough m and all x: if ρ is an arbitrary 2−m-measure
such that ‖ρ‖q

′

q ≤ 2−σm, then

‖ρ ∗ µ(m)
x ‖

q
q ≤ 2−εm‖µ(m)

x ‖
q
q.
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End of part III

Merci beaucoup!
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