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Review: dynamical self-similarity

Definition
G is a compact Abelian group, and h ∈ G is such that the orbit
{nh : n ∈ Z} is dense. We let T (g) = g + h.
λ ∈ (0,1) is a contraction parameter.
∆(x) : G→ Ad

C is a map taking values in purely atomic measures
in Rd with at most C atoms.

We call (G,T , λ,∆) a model. The measures

µx = ∗∞n=1Sλn ∆(T nx)

are called dynamical self-similar measures generated by the model.
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Further examples of dynamical self-similar measures

1 Self-homothetic measures on Rd : they correspond to G = {0}, λ
the (common) contraction of maps in the IFS and ∆ =

∑
i piδti

(where ti ∈ Rd are translations) is built from the translations and
the probabilities of the IFS.

2 If µ, ν are two measures as above with contractions λ1, λ2, then
µ ∗ Sexν are DSSM where G is a finite group if log λ2/ log λ1 ∈ Q,
and the circle otherwise. This extends to

µ1 ∗ Sex2µ2 ∗ · · · ∗ Sexmµm.

3 A homogeneous self-similar measure in dimension d is, by
definition, a measure of the form

µ = ∗∞n=1SλnOn∆, O ∈ Od , λ ∈ (0,1),∆ ∈ A.

It can be realized as a DSSM where G = 〈O〉, h = O, ∆(g) = g∆.
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Discrete approximations and shifted self-similarity

µx = ∗∞n=0Sλn ∆(T nx).

We define the discrete step-n approximations

µx ,n = ∗n−1
j=0 Sλn ∆(T nx).

Note that µx ,n is purely atomic with ≤
∏n−1

j=0 |supp(∆(T jx))| ≤ Cn

atoms.
We then have the following crucial shifted self-similarity relationship:

µx = µx ,n ∗ SλnµT nx .

This says that µx is a convex combination of scaled down (by a factor
λn) translated copies of µT nx .
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Review: Frostman exponent

Definition
Let µ be a measure on Rd . The Frostman exponent dim∞(µ) is the
supremum of all s such that

µ(B(x , r)) ≤ Cs r s for all r ∈ (0,1] and all x .
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Review: exponential separation

Definition
We say that a model (G,T , λ,∆) has exponential separation if for
Haar-almost all x ∈ G there is R > 0 such that following holds for
infinitely many n: the atoms of the discrete approximation

µn,x = ∗nj=1Sλj ∆(T jx)

are (distinct and) e−Rn-separated.
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Main Theorem: Frostman exponents of DSSM

Theorem (P.S.)
Let (G,T , λ,∆) be a model with exponential separation on R. We also
assume that the maps x 7→ ∆(x) and x 7→ µx are continuous a.e., and
that µx is supported on [0,1]. Let

s = min

(∫
log ‖∆(x)‖∞ dx

log λ
,1
)
,

where ‖∆‖∞ = maxy ∆{y}.
Then dim∞(µx ) = s for every x ∈ G.
Moreover, for every ε > 0 there is a constant Cε such that, for all
x ∈ G, y ∈ R and r ∈ (0,1],

µx (B(y , r)) ≤ Cεr s−ε
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Remarks on main theorem

Remarks
In the self-similar case (corresponding to constant ∆) a version of
this result was obtained by M. Hochman but his version is for
Hausdorff dimension rather than Frostman exponents.
While exponential separation has to be checked for almost all x,
the conclusion holds for all x
The transitive translation on a compact Abelian group can be
replaced by a uniquely ergodic transformation on a compact
metric space.
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Application 1: Furstenberg’s Intersection Conjecture

Theorem (P.S./Meng Wu 2016)
Suppose log p/ log q /∈ Q. If A,B are closed and Tp,Tq-invariant, then

dimH(A ∩ f (B)) ≤ dimB(A ∩ f (B)) ≤ max(dimH(A) + dimH(B)− 1,0)

for all affine bijections f : R→ R.

Remark
A Tp-invariant set A can be embedded in a Tpn -Cantor set of
dimension dimH(A) + ε (the allowed digits are the length-n sequences
appearing in A). So it is enough to prove the theorem under the
assumption that A,B are p,q-Cantor sets.
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Review: convolutions of Cantor measures as DSSM

Let A,B be p,q-Cantor sets, and let µ, ν be the natural measures on
them. We saw yesterday that

µ ∗ Sexν = ∗∞n=1Sp−n ∆(T nx),

where
T (x) = x + log p mod log q

and

∆(x) =

{
∆A ∗ Sex ∆B if x ∈ [0, log p)
∆A if x ∈ [log p, log q)

.
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A corollary of the main result

Corollary
For all u ∈ R \ {0} it holds that

dim∞(µ ∗ Suν) = min(dimH(A) + dimH(B),1) =: s.

Remarks
All the assumptions in the main theorem are clear except
exponential separation, which is a simple lemma.
A small calculation shows that indeed the value of s given by the
main theorem is the RHS above.
The main theorem gives the corollary for u ∈ [1, log q]. Using
self-similarity it is easy to expand this to all non-zero u.
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Some additional remarks

Up to a similarity map, A ∩ (rB + t) is the same as
(A× B) ∩ {y = rx + t}.
µ(B(x , r)) ≈ rdimH(A) for x ∈ A, and likewise for B, so

(µ× ν)(B(x , r)) ≈ rdimH(A)+dimH(B)

for (x , y) ∈ A× B.
The convolution µ ∗ Suν is the push-forward of µ× ν under the
projection Πu(x , y) = x + uy .
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Conclusion of the proof
Let {B(xj , δ)}Mj=1 be disjoint collection of balls intersecting
(A× B) ∩ y = −x/u + t . We need to bound M from above.

(µ× ν)
(
∪M

j=1B(xj , δ)
)
& MδdimH(A)+dimH(B).

But (since Πu is Lipschitz and the line y = −x/u + t is the fiber
Π−1

u (tu))
Πu

(
∪M

j=1B(xj , δ)
)
⊂ B(tu,Cδ).

Since dim∞(Πu(µ× ν)) = min(dimH(A) + dimH(B),1), we
conclude

(µ× ν)
(
∪M

j=1B(xj , δ)
)
≤ Πu(µ× ν)Πu

(
∪M

j=1B(xj , δ)
)

.ε δ
min(dimH(A)+dimH(B),1)−ε.
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Exponential separation in the deterministic case I

Fix ∆ ∈ A, λ ∈ (0,1). Let

ν = ν∆,λ = ∗∞n=0Sλn ∆.

The atoms of
νn = ∗n−1

j=0 Sλj ∆

are of the form P(λ), for a polynomial of degree < 1 with coefficients in
D := supp(∆).
Therefore exponential separation holds if and only if there are R > 0
and infinitely many n such that

|Q(λ)| > e−Rn

for all polynomials Q of degree < n with coefficients in D − D.
In the Bernoulli convolution setting, D − D = {−1,0,1}.
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Exponential separation in the deterministic case II

Lemma (M. Hochman 2014)
If D = supp∆ is algebraic, then there is exponential separation if
and only if λ is not a root of a polynomial with coefficients in D−D.
For any fixed ∆, there is exponential separation for all λ outside of
a set of zero Hausdorff dimension.

Corollary
dim∞(νλ) = 1 for all algebraic numbers in (1/2,1) which are not
roots of a {−1,0,1}-polynomial.
dim∞(νλ) = 1 for all λ ∈ (1/2,1) outside of a set of zero Hausdorff
dimension.
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For any fixed ∆, there is exponential separation for all λ outside of
a set of zero Hausdorff dimension.

Corollary
dim∞(νλ) = 1 for all algebraic numbers in (1/2,1) which are not
roots of a {−1,0,1}-polynomial.
dim∞(νλ) = 1 for all λ ∈ (1/2,1) outside of a set of zero Hausdorff
dimension.
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Application 2: Densities of Bernoulli convolutions

Theorem (P.S. 2016)
The BC νλ has a density in every Lq for λ ∈ (1/2,1) outside of a set of
exceptions of zero Hausdorff dimension.
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Separating νλ into large and pseudorandom parts

νλ = ∗∞n=0Sλn ∆ =
(
∗∞k |nSλn ∆

)
∗
(
∗∞k -nSλn ∆

)
=: νλk ∗ ηλ,k .

1 Erdős-Kahane: for all λ ∈ (0,1) outside of a set of zero Hausdorff
dimension, |ν̂λ(ξ)| ≤ Cλ|ξ|−δ(λ): polynomial Fourier decay.

2 The measures ηλ are also homogeneous self-similar measures:
the contraction ratio is λk and the atomic measure is

∗k=1
j=0 Sλj ∆.

If exponential separation holds for νλ then it also holds for ηλ,k
(fewer atoms to consider, we are skipping some digits). So from
the main theorem we have

dim∞(ηλ,k ) = min

(
(k − 1) log 2
k log(1/λ)

,1
)
.

for all λ ∈ (1/2,1) outside of a zero-dimensional set of
exceptions, provided k is taken large enough.
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Conclusion of the proof

By taking the union of the exceptional sets over all k , we get that for
λ ∈ (1/2,1) outside of a set of zero Hausdorff dimension, we can split

νλ = ν ′λ ∗ ηλ,

where
ν ′λ has power Fourier decay,
dim∞(ηλ) = 1.

Proposition (P.S.-B. Solomyak 2016)
If ρ has power Fourier decay and η has full Frostman exponent, then
the convolution ρ ∗ η is absolutely continuous and the density is in Lq

for all finite q.
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Lq dimensions

Definition
Given a probability µ on Rd and q ∈ (1,∞), we let

Sn(µ,q) =
∑
I∈Dn

µ(I)q,

dimq(µ) = lim inf
n→∞

log Sn(µ,q)

n(1− q)
∈ [0,d ].

q 7→ dimq(µ) is non-increasing and dimq(µ)→ dim∞(µ) as
q →∞.
The main theorem holds not only for Frostman exponents but also
for Lq dimensions.
In the proof it is crucial that q <∞.
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Main Theorem: Lq dimensions of DSSM

Theorem (P.S.)
Let (G,T , λ,∆) be a model with exponential separation on R. We also
assume that the maps x 7→ ∆(x) and x 7→ µx are continuous a.e., and
that µx is supported on [0,1]. Let

s(q) = min

(∫
log ‖∆(x)‖qq dx
(q − 1) log λ

,1

)
,

where ‖∆‖qq =
∑

y ∆(y)q.
Then

dimq(µx ) = s(q)

for every x ∈ G and q > 1.
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Tools involved in the proof

1 Additive combinatorics: an inverse theorem for the Lq norm of the
convolution of two finitely supported
measures(Balog-Szemerédi-Gowers Theorem, Bourgain’s
additive part of discretized sum-product results).

2 Ergodic theory: key role played by subadditive cocycle over a
uniquely ergodic transformation (cocycle borrowed from
Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic
theorem given by Katznelson-Weiss).

3 Multifractal analysis (Lq spectrum, regularity at points of
differentiability).

4 General scheme of proof follows Mike Hochman’s strategy in his
landmark paper on the dimensions of self-similar measures, but
there are substantial differences.
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A submultiplicative cocycle

dimq(µx ) = lim
m→∞

log
(∑

I∈Dmµ(I)q

)
(1− q)n

.

Let
ψn(x) =

∑
I∈Dm(n)

µ(I)q,

where 2m(n) ≈ λn (so that |I| ≈ λn). Then

dimq(µx ) = lim
n→∞

logψn(x)

(q − 1)(log λ)n
.

Lemma

ψn+k (x) ≤ Cqψn(x)ψk (T nx).
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Use of unique ergodicity

ψn+k (x) ≤ Cqψn(x)ψk (T nx).

By the subadditive ergodic theorem, there exists D(q) such that

lim
n→∞

logψn(x)

(q − 1)(log λ)n
= D(q) for a.e. x ∈ G.

Lemma (Furman; follows from the Katznelson-Weiss proof of the
subadditive ergodic theorem)

lim inf
n→∞

logψn(x)

(q − 1)(log λ)n
≥ D(q) uniformly in x ∈ G.
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Reduction from “everywhere” to “almost everywhere”

We need to show that

dimq(µx ) = lim
n→∞

logψn(x)

(q − 1)(log λ)n
= min

(∫
log ‖∆(x)‖qq dx
(q − 1) log λ

,1

)
=: s(q).

The upper bound dimq(µ, x) ≤ s(q) for all x is easy. But we saw that

lim inf
n→∞

logψn(x)

(q − 1)(log λ)n
≥ D(q) for all x .

So it is enough to show that D(q) = s(q). In other words, it is enough
to prove that

lim
m→∞

log
∑

I∈Dm
µ(I)q

(1− q)m
= s(q) for almost all x ∈ G.
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End of part II

Merci beaucoup!
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