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Two theorems

I will start by stating and briefly discussing two results: one
concerning intersections of ×p,×q-invariant Cantor sets
(Furstenberg’s intersection conjecture) and another one
concerning absolute continuity and densities of self-similar
measures.
Other than involving self-similarity, these results may appear
rather different. We will see that they both follow from a single
theorem on the Frostman exponents of dynamical self-similar
measures (all of these terms will be introduced).
The proof of the main theorem relies heavily on additive
combinatorics. I will introduce some of the main tools involved.
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Furstenberg’s intersection conjecture

Definition (×p map)

Tp(x) = px mod 1.

Conjecture (H. Furstenberg 1969)
Let p,q ≥ 2 be integers such that log p/ log q is irrational. If A,B ⊂ R/Z
are closed-invariant under Tp,Tq respectively, then

dimH(A ∩ f (B)) ≤ max(dimH(A) + dimH(B)− 1,0)

for all non-constant affine maps f : R→ R.
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Heuristics

This conjecture is part of a series of “×2× 3” conjectures
quantifying, in the different ways, the principle that “expansions in
incommensurable bases have no common structure”.
If A,B are subsets of Rd “without common structure” then
codim(A ∩ B) = codim(A) + codim(B) (this holds for example for
linear subspaces in general position).
Marstrand’s slice theorem says that for any compact A,B, one has

dimH(A ∩ f (B)) ≤ max(dimH(A) + dimH(B)− 1,0)

for almost all f , and this fails for any smaller number on the RHS.
The intersection conjecture says that there are no exceptional f
(and in particular the identity is not exceptional).
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Proof of the intersection conjecture

Theorem (P.S. / Meng Wu (independently) 2016)
Furstenberg’s intersection conjecture holds.
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Bernoulli convolutions

Definition
Let λ ∈ (0,1). The Bernoulli convolution νλ is the distribution of the
random sum

Xλ =
∞∑

n=0

±λn,

with the choice of signs IID and equiprobable. In other words,

νλ(A) = P(Xλ ∈ A).
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Bernoulli convolutions: basic properties

If λ ∈ (0,1/2), the BC νλ is the Cantor-Lebesgue measure on a
self-similar Cantor set of dimension log 2/ log(1/λ) < 1.
If λ = 1/2, the BC νλ is Lebesgue measure on the interval [−2,2].
For λ ∈ (1/2,1), the topological support of νλ is an interval
Iλ = [−1/(1− λ),1/(1− λ)].

Question
What are the properties of νλ for λ ∈ (1/2,1)?
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Regularity of Bernoulli convolutions: early history

Jessen-Wintner 1935 νλ is either purely singular or absolutely
continuous.

Erdős 1939 If 1/λ is a Pisot number (algebraic integer > 1 all of
whose Galois conjugates are < 1 in modulus), then νλ is
purely singular.

Erdős 1940 The BC νλ has a density in Ck for almost all
λ ∈ (1− εk ,1).

Garsia 1962 If 1/λ is Pisot, then dimH(νλ) < 1, where

dimH(ν) = inf{dimH(A) : ν(A) > 0}.

Solomyak 1995 νλ is absolutely continuous with an L2 density for
almost all λ ∈ (1/2,1).
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Regularity of Bernoulli convolutions: modern history

Solomyak 1995 νλ is absolutely continuous with an L2 density for
almost all λ ∈ (1/2,1).

Hochman 2014 There is a set E of zero-Hausdorff dimension (we will
introduce it later) such that if λ ∈ (1/2,1) \ E then
dimH(νλ) = 1.

P.S. 2014 There is a (different) set E of zero-Hausdorff dimension
such that if λ ∈ (1/2,1) \ E then νλ is absolutely
continuous.

Varjú 2019 dimH(νλ) = 1 for all transcendental λ ∈ (1/2,1)
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Densities of Bernoulli convolutions

Theorem (P.S. 2016)
There is a set E of zero-Hausdorff dimension such that νλ is absolutely
continuous and has a density in Lq for all finite q for all λ ∈ (1/2,1) \ E .

Remarks
It follows easily from Solomyak’s Theorem that νλ has a
continuous density for a.e. λ ∈ (1/

√
2,1). For λ ∈ (1/2,1), it was

not known even known that typically νλ has a density in L2+ε for
any ε > 0.
Unfortunately the exceptional set is completely ineffective so it
provides no explicit parameters of absolute continuity. The
problem of finding explicit parameters will be discussed by P. Varjú
in the second part of the course.
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Convolutions of measures

Definition
Given two measures µ, ν on Rd , their convolution is

S(µ× ν), S(x , y) = x + y .

In other words, ∫
f d(µ ∗ ν) =

∫
f (x + y) dµ(x)dν(y).

Example
If µ =

∑
j pjδaj , then

µ ∗ ν =
∑

j

pjTajν, Ta(x) = x + a.
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Infinite convolutions

Suppose (µn)∞n=1 are measures supported on [−an,an], with∑
n an <∞. Then we can likewise define their infinite convolution:∫

f d(∗∞n=1µn) =

∫
f

( ∞∑
n=1

xn

)
dµ1(x1)dµ2(x2) . . . .

∗Nn=1µn → ∗∞n=1µn

weakly as N →∞.
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Another way of looking at BCs

νλ ∼
∞∑

n=0

±λn.

Let
∆ = 1

2(δ−1 + δ1),

Sa(x) = ax .

Then
νλ = ∗∞n=0Sλn ∆.

This holds because the distribution of a sum of independent RVs is the
convolution of the distributions.
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Homogeneous self-similar measures
We generalize Bernoulli convolutions. Given a finitely supported
measure ∆ and λ ∈ (0,1), we define

ν∆,λ = ∗∞n=0Sλn ∆.

Remark
Suppose ∆ =

∑m
j=1 pjδaj . Then ν∆,λ can also be defined via the

self-similarity relation

ν∆,λ =
m∑

j=1

pj Sλ(Tajν∆,λ).

Indeed, this follows from

ν∆,λ = ∆ ∗ (∗∞n=1Sλn ∆) = ∆ ∗ Sλν∆,λ.
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Dynamic self-similarity: idea

ν∆,λ = ∗∞n=0Sλn ∆.

In order to prove Furstenberg’s intersection conjecture, we need to
introduce a wider class of infinite convolutions in which ∆ depends
on n through iteration of a dynamical system.

Definition
Let (X ,T ) be a dynamical system and suppose we have a map
∆ : X → A. We define a family of dynamical self-similar measures
(µx )x∈X via

µx = ∗∞n=0Sλn ∆(T nx).
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Dynamical self-similarity: setting

In our applications, (X ,T ) turns out to be a transitive group rotation.

Definition
G is a compact Abelian group, and h ∈ G is such that the orbit
{nh : n ∈ Z} is dense. We let T (g) = g + h.
λ ∈ (0,1) is a contraction parameter.
∆(x) : G→ Ad

C is a map taking values in purely atomic measures
in Rd with at most C atoms.

We call (G,T , λ,∆) a model. The measures

µx = ∗∞n=1Sλn ∆(T nx)

are called dynamical self-similar measures generated by the model.
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λ ∈ (0,1) is a contraction parameter.
∆(x) : G→ Ad

C is a map taking values in purely atomic measures
in Rd with at most C atoms.

We call (G,T , λ,∆) a model. The measures

µx = ∗∞n=1Sλn ∆(T nx)

are called dynamical self-similar measures generated by the model.
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p-Cantor sets

Definition
Let p ≥ 2 and let D ⊂ {0,1, . . . ,p − 1}. We define the Cantor set

Ap,D =

{ ∞∑
n=1

anp−n : an ∈ D

}

We say that Ap,D is a p-Cantor set.

Example
The middle-third Cantor set is a 3-Cantor set corresponding to
D = {0,2}.
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Measures on p-Cantor sets

Given a p-Cantor set A = Ap,D there is a natural Cantor-Lebesgue
measure µ = µp,D supported on it. It is the Hausdorff measure (in
its dimension log |D|/ log p), the measure of maximal entropy for
Tp, and also a self-similar measure:

µ = ∗∞n=1Sp−n ∆, where ∆ =
1
|D|

∑
a∈D

δa.

Our proof of Furstenberg’s intersection conjecture goes via the
study of convolutions

µp,D ∗ µq,D′

for rationally independent p,q. This convolution is not self-similar,
but we will now see it fits into the framework of dynamical
self-similarity.
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Dynamical self-similarity: an example I

Let p < q. Let T : [0, log q)→ [0, log q),

T (x) = x + log p mod log q.

Lemma
Let

n′(x) = |{j ∈ [1,n] : T j(x) ∈ [0, log p)}|.

Then
eT n(x)p−n = exq−n′(x).

Proof.

T n(x) = x + n log p − n′(x) log q.
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Dynamical self-similarity: an example II
Let A = Ap,∆A , B = Aq,∆B be p,q-Cantor sets.

µ = ∗∞n=1Sp−n ∆A,

ν = ∗∞k=1Sq−k ∆B.

Recall

eT n(x)p−n = exq−n′(x), n′(x) = |{j ∈ [1,n] : T j(x) ∈ [0, log p)}|.

So if we let

∆(x) =

{
∆A ∗ Sex ∆B if x ∈ [0, log p)
∆A if x ∈ [log p, log q)

.

then
µ ∗ Sexν = ∗∞n=1Sp−n ∆(T n(x))
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Frostman exponent

Our main theorem establishes that dynamical self-similar measures
are smooth (under certain assumptions). We measure smoothness by
Frostman exponents:

Definition
Let µ be a measure on Rd . The Frostman exponent dim∞(µ) is the
supremum of all s such that

µ(B(x , r)) ≤ Cs r s for all r ∈ (0,1] and all x .

Remark
If dimH(µ) > s, then µ(B(x , r)) ≤ r s for µ-almost all x.
If dim∞(µ) > s, then µ(B(x , r)) ≤ r s for all x.
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Exponential separation for DSSM

Definition
We say that a model (G,T , λ,∆) has exponential separation if for
Haar-almost all x ∈ G there is R > 0 such that following holds for
infinitely many n: the atoms of the discrete approximation

µn,x = ∗nj=1Sλj ∆(T jx)

are (distinct and) e−Rn-separated.
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Remarks on exponential separation

Definition (Exponential Separation)

The atoms of µn,x are e−Rn separated i.o., for almost all x .

µn,x has ≤ Cn atoms. Exponential separation requires that they
are e−Rn-separated for infinitely many n. So the separation we
require is exponentially small compared to the average
separation. This is a very weak condition!
For self-similar measures (G = {0}) this notion reduces back to
the notion of exponential separation introduced by M. Hochman
(we’ll come back to this). It is hard to check for specific examples.
On the other hand, if G is infinite then exponential separation is
usually almost trivial to check.
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Main Theorem: Frostman exponents of DSSM

Theorem (P.S.)
Let (G,T , λ,∆) be a model with exponential separation on R. We also
assume that the maps x 7→ ∆(x) and x 7→ µx are continuous a.e., and
that µx is supported on [0,1]. Let

s = min

(∫
log ‖∆(x)‖∞ dx

log λ
,1
)
,

where ‖∆‖∞ = maxy ∆{y}.
Then dim∞(µx ) = s for every x ∈ G.
Moreover, for every ε > 0 there is a constant Cε such that, for all
x ∈ G, y ∈ R and r ∈ (0,1],

µx (B(y , r)) ≤ Cεr s−ε
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