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General result Partial hyperbolicit Billiards

Theorem (C.—Thompson 2016)
X compact metric space, f: X — X continuous, € = 280 > 0.

m
Assume: g (€) < hyop(f), sup{hy : Te(x) # {x} p-a. e}
and 3 a decomposition

TR €0 Ir g( C f(z)
CP,G,C° of X x N s.t. 5 €9
@ G has specification at scale § for every M € N;
@ h(CPUC*,0) < hiop(f). lim % = log #(CF UCs, )
r’\—/

Then (X, f) has a unique measure of maximal entropy.

If you prefer, can use stronger hypotheses:
o hjxp(f) = lim, hé(p( €) < hiop(f)
@ U has specification at every scale
@ h(CPUC®) =lims h(CPUC®) < hyop(f)
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[ Jelele]ele)

Mafié example on T3

Linear fy with 0 < A*® < A° <1 < AY. Perturb near fixed point g.
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Unique MME known: Ures, Buzzi—Fisher—-Sambarino—Vasquez
@ Let's study anyway! (Our method gives equilibrium states...)
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Expansivity for the Mafié example

Cl
Any g =~ f has EY ® E° & E°.

e(x) | o All 1-dim, W“* minimal.
\ ' o E€ integrates to W°.
EEENEE Bad news: Not expansive!

Fe(x) # {x} when x on W*<(q).
Good news: ‘Mostly’ expansive...
Fe(x) € We(x) always.

Let ©¢(x) := log || Dg|ge(xll and A°(p) = [ € dp.

Suppose p ergodic and A°(u) < —r. Then for p-a.e. x:

@ average of ¢ is < —r both forward and backward in time;

e average is < —r/2 for all y € ['(;)(x), so T'(x) = {x}.
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One-dimensional center: obstructions to expansivity

f any partially hyp. diffeo with _ and _

Vr > 0 Je > 0 such that |A\°(u)| > r implies p almost expansive

Y
hisp(f€) < sup{h(f) : A“(u)| < r, p € M5}
4
hesp(F) = lim hisey(F,€) < sup{hy(F) : A°(u) =0, pn € M5}

2nd step: Take g, with A\¢(p,) — 0 and hZ (%) < hy,(f) + %

exp

Mafié example: A\°(u) = 0 = most weight near g, so small entropy.
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One-dimensional center: decomposition for specification

CP ={(x,n): Spp(x) > —nr}, p(x,n)=max{p:(x,p) €CP}
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G = {(x,n) : Skp(x) < —kr for all 0 < k < n}, C*=10
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Entropy of CP, specification for G

Use CP orbit segments (S,p(x) > —nr) in “MME construction”:
dpu € My such that X°(u) > —r and  h,(f) > h(CP).

This gives the following lemma:

h(CP) < sup{h,(f) : A°(1) > —r} < hop(f).

\W¥dense = G (| Df¥|ec|| < e ™ Yk € [0, n]) has specification:

XS SfXS an_ﬁlx+ = W§*(x) C By(x,0) forall (x,n) € G
Wg
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Conclusions for one-dimensional center

Theorem (Following C.—Fisher—Thompson; applies to Mafié)

If f is partially hyperbolic with dim E€ =1, E€ integrable, all
leaves of W" dense, and h™ := sup{h,(f) : A°(n) > 0} < hyop(f),
then f has a unique measure of maximal entropy.

Same if W* dense and h™ := sup{h,(f) : X°(1) < 0} < hyop(f).

The following are equivalent to “min(h™, h™) < hyop”:
o ht #h™

e P(ty°) does not have a minimum at t =0

In fact, theorem is true without assuming E€ integrable:
fx fr1lx — S fx Frlx
X
VT S I
 true cs-mfd admiss. cs-mfd
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Bunimovich stadium billiard map

Collision info: (r, )
@ Location: r € 092
M o Angle with normal:
pel=(-373)
Phase space X = 09 x [

@ Open annulus

@ Must compactify

@ Obvious choice has
4 discontinuities
X=XU {2 fixed
points} = S2
F:S%2— S? has

r same MMEs
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A unique MME for the stadium

Theorem (Jianyu Chen, V.C., Hong-Kun Zhang — preliminary)
The billiard map for the Bunimovich stadium has a unique MME.

Fix n > 0, let G be the set of (x, n) that start and end in

R(n) :=={(r,¢) € X : d(r,Y) >nand |p| < 7/2 —n}
and cross the stadium at least once (hit both components of R(7))
KS

dgoT

KU

—
dr

Lemma: (x,n) € G = DFP(KY) C K“ and (DFP)~1(K*®) C K*,
with uniform expansion estimates.

@ This + transitivity is enough to give specification
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A decomposition for the stadium

Let C = {(x,n) : FX(x) € R(n)€ for all 0 < k < n}. Then C,G,C
is a decomposition:

e p = p(x,n) € [0, n] minimal such that FP(x) € R(n);
@ s = s(x,n) € [0, n] minimal such that F"~*(x) € R(n).
n "MME" for C = u(R(n)¢) =1, so
lim h(C) < lim sup{h,(F) : p(R(n)°) =1}
n—0 n—0
— sup{h(F) : u(R(0)) = 1}.
But R(0)€ is just fixed points and period 2 orbits. So h(C) — 0.

The lemma on G also shows hg,(F) = 0.
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General result for flows

Theorem (C.—Thompson 2016)
X compact metric space, f;: X — X continuous flow, € > 405 > 0.

N
Assume: s (6% hrop(F).  sup{hy - Fo() # fieg(x) prae)

Assume: Decomposition CP,G,C° of X x RT such that
©® GM has specification at scale 6 for every M > 0;
@ h(CPUC?,0) < hiop(f). m%log#([C”UCS]n,é)
K—/

Then (X,{f:}) has a unique measure of maximal entropy.




Geodesic flow
0®0000000

Geodesic flow and curvature

M a closed Riemannian manifold, f;: T*M — T1M geodesic flow
veETIM ~ ¢, geodesic with ¢,(0) = v ~ f(v):= ¢,(t)

Hyperbolicity associated to curvature: K < 0 = Anosov

K>0 K=0 K<0
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Horospheres as tool for studying hyperbolicity

Work in universal cover M and use ideal boundary OM.

Negative curvature: W*¥(v) <> normal vector fields to horospheres

Works under weaker conditions, but horospheres may have
higher-order tangencies, or even overlap nontrivially. Corresponds
to zero angle (or nontrivial intersection) between W* and W".
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Hierarchy of hyperbolicity conditions for geodesic flows

no focal points

all inclusions proper

No focal points (NFP): balls in M are convex

No conjugate points (NCP): p # q € M determine unique geodesic

For NCP, bijection between T'M x (0,00) and (M? — diag)/m M
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Gallery of uniqueness results for geodesic flows

Negative curvature: Bowen—Margulis (1970s), and ¢ # 0
Nonpositive curvature: Knieper (1998), only MME
Nonpositive curvature again:
Burns—C.—Fisher—Thompson (2018)

Some ¢ # 0: Dan's talks next week
will have more details

No focal points:

Katrin Gelfert, Rafael Ruggiero (published 2019): dim 2, MME
Fei Liu, Fang Wang, Weisheng Wu (arXiv 2018): any dim, MME
Dong Chen, Nyima Kao, Kiho Park (arXiv 2018): dim 2, some ¢

Theorem (V.C., Gerhard Knieper, Khadim War, 2019-arXiv)

Let M be a surface of genus > 2 without conjugate points. Then
the geodesic flow on T*M has a unique MME.
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Comparison of hyperbolicity conditions

things in M K<0 | K<O0 NFP NCP
t— d(ci(t), co(t)) | strictly : .
when C1(0) _ C2(0) convex convex | monotonic | positive

horospheres str. cvx convex 77
v E)Y =T, ,W,Y | Holder continuous 77
c(xo0) = () | a=c flat strip 77
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Comparison of hyperbolicity conditions

things in M K<0 | K<O0 NFP NCP

t— d(ci(t), co(t)) || strictly
when ¢1(0) = &(0) || convex

convex | monotonic | positive

horospheres str. cvx convex 77
v E)Y =T, ,W,Y | Holder continuous 77
c(xo0) = () | a=c flat strip 77

It looks like all of our tools have vanished! What are we to do? Is
anything left? In dimension 2, genus > 2 we have the following:

o M is a disc, every p # g connected by a unique geodesic

o OM still makes sense, as do horospheres

e h, >0 = W;Sn W/ trivial p-a.e. = Hj N HY trivial
ifwel: InJM( v), then lifting gives same in M, so either

w € {c'v( )}¢, or H; N HY nontrivial: thus hexp 3injM) =0
@ there is a different metric gp with negative curvature...
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No conjugate points: Morse lemma and specification

Morse lemma: Let g, go be two metrics on M such that gy has
negative curvature and g has no conjugate points. Then there is
R > 0 such that all p,q € M, the g-geodesic and gp-geodesic

connecting p to g are within Hausdorff distance R of each other.

(M2 — diag) /7 M

TN

TM x (0,00) R-shadowing TM x (0,00)
—
g-orbit segments go-orbit segments
Now given orbit segments (x1, t1), ..., (xk, tk) for g,

@ R-shadow each one by an orbit segment for gp;
@ R-shadow this list by a single gy orbit segment (go-spec.);
@ R-shadow this single orbit segment by a g-orbit segment.

Thus the g-geodesic flow has specification at scale (=) 3R
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Salvation by residual finiteness

Surface M of genus > 2 with no conjugate points:
@ the geodesic flow has hepr %inj M) =0 < hiop;
@ the flow has specification at scale 3R. (R from Morse)

If 40-3R < %inj M, then the general theorem gives a unique MME.

But we have no reason to expect this... probably R is very large.



Geodesic flow
000000000

Salvation by residual finiteness

Surface M of genus > 2 with no conjugate points:
@ the geodesic flow has hepr %inj M) =0 < hiop;
@ the flow has specification at scale 3R. (R from Morse)

If 40-3R < %inj M, then the general theorem gives a unique MME.
But we have no reason to expect this... probably R is very large.
Solution: Replace M with a finite cover N with inj N > 360R.

@ Entropy-preserving bijection between
M¢(TIM) and M¢(TIN)

o Theorem gives unique MME on TN

@ Thus there is a unique MME on T1M

Why possible? dim M = 2 implies 71 (M) is residually finite.
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Higher dimensions and open questions

Method works for higher-dim M with no conjugate points if
@ d Riemannian metric go on M with negative curvature;
@ divergence property: ¢1(0) = (0) = d(ci(t), e(t)) — oo;
@ m1(M) is residually finite;

© Ih* < hyop such that if py-a.e. v has non-trivially overlapping
horospheres, then h, < h*.

First is a real topological restriction: rules out Gromov example.

Second and third might be redundant? No example satisfying (1)
where they are known to fail

Fourth is true if {v : H; N HY trivial} contains an open set.
Unclear if this is always true.
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Higher dimensions and open questions

Method works for higher-dim M with no conjugate points if
@ d Riemannian metric go on M with negative curvature;
@ divergence property: ¢1(0) = (0) = d(ci(t), e(t)) — oo;
@ m1(M) is residually finite;

© Ih* < hyop such that if py-a.e. v has non-trivially overlapping
horospheres, then h, < h*.

First is a real topological restriction: rules out Gromov example.

Second and third might be redundant? No example satisfying (1)
where they are known to fail

Fourth is true if {v : H; N HY trivial} contains an open set.
Unclear if this is always true.

What about ¢ # 07 Not clear how to extend these techniques.
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