	Partial hyperbolicity		
0	000000	000	000000000

Beyond Uniform Hyperbolicity 2019 Specification, Lecture 3: Examples!!!!!

Vaughn Climenhaga

May 17, 2019

Partial hyperbolicity

Billiards

Theorem (C.–Thompson 2016)

X compact metric space, $f: X \to X$ continuous, $\epsilon = 28\delta > 0$.

Assume: $h_{\exp}^{\perp}(\epsilon)^{\leq} < h_{top}(f)$, and \exists a decomposition $C^{p}, \mathcal{G}, C^{s}$ of $X \times \mathbb{N}$ s.t.

• $\mathcal{G}^{\mathcal{M}}$ has specification at scale δ for every $\mathcal{M} \in \mathbb{N}$;

$$h(\mathcal{C}^p \cup \mathcal{C}^s, \delta) < h_{\mathrm{top}}(f).$$

 $\overline{\lim \frac{1}{n} \log \#(\mathcal{C}_n^p \cup \mathcal{C}_n^s, \delta)}$

Then (X, f) has a unique measure of maximal entropy.

If you prefer, can use stronger hypotheses:

- **2** \mathcal{G} has specification at every scale
- $h(\mathcal{C}^p \cup \mathcal{C}^s) = \lim_{\delta} h(\mathcal{C}^p \cup \mathcal{C}^s) < h_{\mathrm{top}}(f)$

	Partial hyperbolicity •00000	Billiards 000	Geodesic flow
Mañé example or	ו \mathbb{T}^3		

Linear f_0 with $0 < \lambda^{ss} < \lambda^s < 1 < \lambda^u$. Perturb near fixed point q.

Unique MME known: Ures, Buzzi-Fisher-Sambarino-Vásquez

• Let's study anyway! (Our method gives equilibrium states...)

Any $g \approx^{C^1} f$ has $E^u \oplus E^c \oplus E^s$.

- All 1-dim, $W^{u,s}$ minimal.
- E^c integrates to W^c .

Bad news: Not expansive! $\Gamma_{\epsilon}(x) \neq \{x\}$ when x on $W^{c}(q)$.

Good news: 'Mostly' expansive... $\Gamma_{\epsilon}(x) \subset W^{c}(x)$ always.

Let $\varphi^{c}(x) := \log \|Dg|_{E^{c}(x)}\|$ and $\lambda^{c}(\mu) = \int \varphi^{c} d\mu$.

Suppose μ ergodic and $\lambda^{c}(\mu) < -r$. Then for μ -a.e. x:

- average of φ^c is < -r both forward and backward in time;
- average is < -r/2 for all $y \in \Gamma_{\epsilon(r)}(x)$, so $\Gamma_{\epsilon}(x) = \{x\}$.

f any partially hyp. diffeo with dim $E^{c} = 1$ and E^{c} integrable

$$\begin{aligned} \forall r > 0 \ \exists \epsilon > 0 \ \text{such that } |\lambda^{c}(\mu)| > r \ \text{implies } \mu \ \text{almost expansive} \\ \downarrow \\ h_{\exp}^{\perp}(f, \epsilon) \leq \sup\{h_{\mu}(f) : |\lambda^{c}(\mu)| \leq r, \ \mu \in \mathcal{M}_{f}^{e}\} \\ \downarrow \\ h_{\exp}^{\perp}(f) = \lim_{\epsilon \to 0} h_{\exp}^{\perp}(f, \epsilon) \leq \sup\{h_{\mu}(f) : \lambda^{c}(\mu) = 0, \ \mu \in \mathcal{M}_{f}^{e}\} \end{aligned}$$

2nd step: Take μ_n with $\lambda^c(\mu_n) \to 0$ and $h_{exp}^{\perp}(\frac{1}{n}) \leq h_{\mu_n}(f) + \frac{1}{n}$

Mañé example: $\lambda^{c}(\mu) = 0 \Rightarrow \text{most weight near } q$, so small entropy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Suppose 'most' orbit segments have contracting E^c . Fix r > 0,

$$\mathcal{C}^p = \{(x,n): S_n \varphi^c(x) \ge -nr\}, \quad p(x,n) = \max\{p: (x,p) \in \mathcal{C}^p\}$$

 $\mathcal{G} = \{(x, n) : S_k \varphi^c(x) < -kr \text{ for all } 0 \le k \le n\}, \qquad \mathcal{C}^s = \emptyset$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Use C^p orbit segments $(S_n \varphi^c(x) \ge -nr)$ in "MME construction":

 $\exists \mu \in \mathcal{M}_f \text{ such that } \lambda^c(\mu) \geq -r \quad \text{and} \quad h_\mu(f) \geq h(\mathcal{C}^p).$

This gives the following lemma:

If $h^+ := \sup\{h_{\mu}(f) : \lambda^{c}(\mu) \ge 0\} < h_{top}(f)$, then $\exists r > 0$ s.t.

$$h(\mathcal{C}^{p}) \leq \sup\{h_{\mu}(f):\lambda^{c}(\mu) \geq -r\} < h_{ ext{top}}(f).$$

 W^{u} dense $\Rightarrow \mathcal{G} (\|Df^{k}|_{E^{c}}\| \leq e^{-rk} \forall k \in [0, n])$ has specification:

$$\begin{array}{c|c} x \\ W_{\delta}^{c} \end{array} \xrightarrow{fx} \left(\begin{array}{c} f^{n-1}x \\ 0 \end{array} \right) \Rightarrow W_{\delta}^{cs}(x) \subset B_{n}(x,\delta) \text{ for all } (x,n) \in \mathcal{G} \end{array}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Conclusions for one-dimensional center

Theorem (Following C.–Fisher–Thompson; applies to Mañé)

If f is partially hyperbolic with dim $E^c = 1$, E^c integrable, all leaves of W^u dense, and $h^+ := \sup\{h_\mu(f) : \lambda^c(\mu) \ge 0\} < h_{top}(f)$, then f has a unique measure of maximal entropy.

Same if W^s dense and $h^- := \sup\{h_\mu(f) : \lambda^c(\mu) \le 0\} < h_{top}(f)$.

The following are equivalent to "min $(h^+, h^-) < h_{
m top}$ ":

- $h^+ \neq h^-$
- $P(t\varphi^c)$ does **not** have a minimum at t = 0

In fact, theorem is true without assuming E^c integrable:

Partial hyperbolicity

Billiards

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

A unique MME for the stadium

Theorem (Jianyu Chen, V.C., Hong-Kun Zhang – preliminary)

The billiard map for the Bunimovich stadium has a unique MME.

Fix $\eta > 0$, let \mathcal{G} be the set of (x, n) that start and end in $R(\eta) := \{(r, \varphi) \in X : d(r, Y) > \eta \text{ and } |\varphi| < \pi/2 - \eta\}$

and cross the stadium at least once (hit both components of $R(\eta)$)

Lemma: $(x, n) \in \mathcal{G} \Rightarrow DF_x^n(K^u) \subset K^u$ and $(DF_x^n)^{-1}(K^s) \subset K^s$, with uniform expansion estimates.

• This + transitivity is enough to give specification

Let $C = \{(x, n) : F^k(x) \in R(\eta)^c \text{ for all } 0 \le k < n\}$. Then C, G, C is a decomposition:

• $p = p(x, n) \in [0, n]$ minimal such that $F^p(x) \in R(\eta)$;

• $s = s(x, n) \in [0, n]$ minimal such that $F^{n-s}(x) \in R(\eta)$.

$$\mu$$
 an "MME" for $\mathcal{C} \Rightarrow \mu(R(\eta)^c) = 1$, so
$$\lim_{\eta \to 0} h(\mathcal{C}) \leq \lim_{\eta \to 0} \sup\{h_\mu(F) : \mu(R(\eta)^c) = 1\}$$
$$= \sup\{h_\mu(F) : \mu(R(0)^c) = 1\}.$$

But $R(0)^c$ is just fixed points and period 2 orbits. So $h(\mathcal{C}) \to 0$.

The lemma on \mathcal{G} also shows $h_{\exp}^{\perp}(F) = 0$.

Billiards

General result for flows

Theorem (C.–Thompson 2016)

X compact metric space, $f_t: X \to X$ continuous flow, $\epsilon > 40\delta > 0$.

Assume: $h_{\exp}^{\perp}(\epsilon) \leqslant h_{top}(f)$. $\sup\{h_{\mu} : \Gamma_{\epsilon}(x) \neq f_{[-t,t]}(x) \ \mu$ -a.e. $\}$

Assume: Decomposition $\mathcal{C}^p, \mathcal{G}, \mathcal{C}^s$ of $X \times \mathbb{R}^+$ such that

• \mathcal{G}^{M} has specification at scale δ for every M > 0;

Then $(X, \{f_t\})$ has a unique measure of maximal entropy.

	Partial hyperbolicity	Geodesic flow
		000000000
Geodesic flow an	d curvature	

M a closed Riemannian manifold, $f_t \colon T^1M \to T^1M$ geodesic flow

 $v \in T^1M \rightsquigarrow c_v$ geodesic with $\dot{c}_v(0) = v \rightsquigarrow f_t(v) := \dot{c}_v(t)$

Hyperbolicity associated to curvature: $K < 0 \Rightarrow$ Anosov

K > 0 K = 0 K < 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 General result
 Partial hyperbolicity
 Billiards
 Geodesic flow

 0
 000000
 000
 000

 Horospheres as tool for studying hyperbolicity

Work in universal cover \widetilde{M} and use ideal boundary $\partial \widetilde{M}$.

Negative curvature: $W^{s,u}(v) \leftrightarrow$ normal vector fields to horospheres

Works under weaker conditions, but horospheres may have higher-order tangencies, or even overlap nontrivially. Corresponds to zero angle (or nontrivial intersection) between W^s and W^u .

No focal points (NFP): balls in \widetilde{M} are convex

No conjugate points (NCP): $p \neq q \in \widetilde{M}$ determine unique geodesic For NCP, bijection between $T^1M \times (0, \infty)$ and $(\widetilde{M}^2 - \text{diag})/\pi_1M$

Billiards

Geodesic flow

Gallery of uniqueness results for geodesic flows

Negative curvature: Bowen–Margulis (1970s), and $\varphi \neq 0$ **Nonpositive curvature**: Knieper (1998), only MME

Nonpositive curvature again: Burns–C.–Fisher–Thompson (2018)

Some $\varphi \neq$ 0: Dan's talks next week will have more details

No focal points:

Katrin Gelfert, Rafael Ruggiero (published 2019): dim 2, MME Fei Liu, Fang Wang, Weisheng Wu (arXiv 2018): any dim, MME Dong Chen, Nyima Kao, Kiho Park (arXiv 2018): dim 2, some φ

Theorem (V.C., Gerhard Knieper, Khadim War, 2019-arXiv)

Let M be a surface of genus ≥ 2 without conjugate points. Then the geodesic flow on T^1M has a unique MME.

	al result Partial hyperbolicity 000000		Billiards 000	Geode 0000	sic flow 0●000	
Comparison of hyperbolicity conditions						
	things in \widetilde{M}	<i>K</i> < 0	$K \leq 0$	NFP	NCP	

$t\mapsto d(c_1(t),c_2(t))$ when $c_1(0)=c_2(0)$	strictly convex	convex	monotonic	positive
horospheres	str. cvx	convex		???
$v \mapsto E_v^{s,u} = T_v W_v^{s,u}$	Hölder	continuous		???
$c_1(\pm\infty)=c_2(\pm\infty)$	$c_1 = c_2$	fla	t strip	???

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

	000000	000	0000000000
Comparison	ot hyperbolicity con	ditions	

things in \widetilde{M}	<i>K</i> < 0	$K \leq 0$	NFP	NCP
$t\mapsto d(c_1(t),c_2(t))$ when $c_1(0)=c_2(0)$	strictly convex	convex	monotonic	positive
horospheres	str. cvx	convex		???
$v \mapsto E_v^{s,u} = T_v W_v^{s,u}$	Hölder	continuous		???
$c_1(\pm\infty)=c_2(\pm\infty)$	$c_1 = c_2$	flat strip		???

It looks like all of our tools have vanished! What are we to do? Is anything left? In dimension 2, genus ≥ 2 we have the following:

- \widetilde{M} is a disc, every $p \neq q$ connected by a unique geodesic
- $\partial \widetilde{M}$ still makes sense, as do horospheres
- $h_{\mu} > 0 \Rightarrow W_{\nu}^{s} \cap W_{\nu}^{u}$ trivial μ -a.e. $\Rightarrow H_{\nu}^{s} \cap H_{\nu}^{u}$ trivial
- if $w \in \Gamma_{\frac{1}{3} \text{ inj } M}(v)$, then lifting gives same in \widetilde{M} , so either $w \in {\dot{c}_v(t)}_t$, or $H^s_v \cap H^u_v$ nontrivial: thus $h^{\perp}_{\exp}(\frac{1}{3} \text{ inj } M) = 0$
- there is a *different* metric g₀ with negative curvature...

Morse lemma: Let g, g_0 be two metrics on M such that g_0 has negative curvature and g has no conjugate points. Then there is R > 0 such that all $p, q \in \widetilde{M}$, the g-geodesic and g_0 -geodesic connecting p to q are within Hausdorff distance R of each other.

Now given orbit segments $(x_1, t_1), \ldots, (x_k, t_k)$ for g,

- *R*-shadow each one by an orbit segment for *g*₀;
- *R*-shadow this list by a single *g*₀ orbit segment (*g*₀-spec.);

• *R*-shadow this single orbit segment by a *g*-orbit segment. Thus the *g*-geodesic flow has specification at scale (\approx) 3*R*

Surface *M* of genus ≥ 2 with no conjugate points:

- the geodesic flow has $h_{\exp}^{\perp}(\frac{1}{3} \text{ inj } M) = 0 < h_{\exp}$;
- the flow has specification at scale 3R. (R from Morse)

If $40 \cdot 3R < \frac{1}{3}$ inj *M*, then the general theorem gives a unique MME.

But we have no reason to expect this... probably R is very large.

Surface M of genus ≥ 2 with no conjugate points:

- the geodesic flow has $h_{\exp}^{\perp}(\frac{1}{3} \inf M) = 0 < h_{\exp};$
- the flow has specification at scale 3*R*. (*R* from Morse)

If $40 \cdot 3R < \frac{1}{3}$ inj *M*, then the general theorem gives a unique MME.

But we have no reason to expect this... probably R is very large.

Solution: Replace *M* with a finite cover *N* with inj N > 360R.

- Entropy-preserving bijection between $\mathcal{M}_f(T^1M)$ and $\mathcal{M}_f(T^1N)$
- Theorem gives unique MME on T^1N
- Thus there is a unique MME on T^1M

Why possible? dim M = 2 implies $\pi_1(M)$ is residually finite.

Higher dimensions and open questions

Method works for higher-dim M with no conjugate points if

- **1** Riemannian metric g_0 on M with negative curvature;
- 2 divergence property: $c_1(0) = c_2(0) \Rightarrow d(c_1(t), c_2(t)) \rightarrow \infty$;
- **3** $\pi_1(M)$ is residually finite;
- ∃ $h^* < h_{top}$ such that if µ-a.e. v has non-trivially overlapping horospheres, then $h_{\mu} \leq h^*$.

First is a real topological restriction: rules out Gromov example.

Second and third might be redundant? No example satisfying (1) where they are known to fail

Fourth is true if $\{v : H_v^s \cap H_v^u \text{ trivial}\}$ contains an open set. Unclear if this is always true.

Higher dimensions and open questions

Method works for higher-dim M with no conjugate points if

- **1** Riemannian metric g_0 on M with negative curvature;
- 2 divergence property: $c_1(0) = c_2(0) \Rightarrow d(c_1(t), c_2(t)) \rightarrow \infty$;
- **3** $\pi_1(M)$ is residually finite;
- ∃ $h^* < h_{top}$ such that if µ-a.e. v has non-trivially overlapping horospheres, then $h_{\mu} \leq h^*$.

First is a real topological restriction: rules out Gromov example.

Second and third might be redundant? No example satisfying (1) where they are known to fail

Fourth is true if $\{v : H_v^s \cap H_v^u \text{ trivial}\}$ contains an open set. Unclear if this is always true.

What about $\varphi \neq 0$? Not clear how to extend these techniques.