
ADDITIVE COMBINATORICS METHODS IN
FRACTAL GEOMETRY

PÉTER P. VARJÚ

Abstract. These are notes for a set of three lectures I gave at
CIRM in Luminy as part of a minicourse in the Dynamics Be-
yond Uniform Hyperbolicity conference between 13–24 May 2019.
These lectures are closely related to but independent of the first
three lectures of the minicourse given by Pablo Shmerkin. Video
recordings of the lectures are also available on the CIRM website.

We do not present the full details of proofs, which may be found
in the original papers, instead, we aim to indicate the main ideas
and hide the technicalities.

If you have any comments, please write to pv270@dpmms.cam.ac.uk.

1. Lecture 4

1.1. Bernoulli convolutions. This set of lectures are devoted to Bernoulli
convolutions. We recall the definition. Fix a number λ ∈ (0, 1). The
Bernoulli convolution νλ with parameter λ is the probability measure
on R that is the law of the random variable

∞∑
n=0

±λn,

where ± are independent unbiased random variables.
The aim of these lectures is to discuss recent developments in the

dimension theory of Bernoulli convolutions, which led to the following
result.

Theorem 1. Let λ ∈ (0, 1) be a number that is not the root of a
polynomial with 0,±1 coefficients. Then

dim νλ = min(log 2/ log λ−1, 1).

For λ < 1/2, this result is folklore. In that case, νλ is the Cantor-
Lebesgue measure on a Cantor set and it has dimension log 2/ log λ−1.
The case λ ∈ [1/2, 1)∩Q, that is when λ is algebraic, is due to Hochman
[9]. The case λ ∈ [1/2, 1)\Q, that is when λ is transcendental is due
to Varjú [17], building on previous work by several mathematicians
including Breuillard, Garsia, Hochman, Mignotte and Solomyak.
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BERNOULLI CONVOLUTIONS 2

1.2. Exact dimensional measures. The notion of dimension of mea-
sures, which we use in Theorem 1, differs from that used by Shmerkin
in his part of the mini-course. We say that a measure µ on R is exact
dimensional, if

(1) dimµ := lim
r→0

log µ[x− r, x+ r]

log r

exists and is constant µ-almost everywhere. We use (1) as the definition
of dimension of measures throughout these lectures.

It was proved by Feng and Hu [5] that all self-similar measures (to
be defined below), and hence Bernoulli convolution, in particular are
exact dimensional.

1.3. Self-similar measures. We observe that Bernoulli convolutions
satisfy the identity

νλ =
1

2
ϕ1(νλ) +

1

2
ϕ−1(νλ),

where ϕj : R → R is defined by ϕj(x) = λx + j. In fact, νλ is the
unique probability measure on R satisfying this identity, so this yields
an alternative way to define Bernoulli convolutions.

Using this property, we can put Bernoulli convolutions in a general
framework. Let Λ be a finite set and let {ψj : j ∈ Λ} be a finite
collection of contractive similarities on Rd. Furthermore, let {pj : j ∈
Λ} be a probability vector. Then there is a unique probability measure
µ on Rd that satisfy the identity

µ =
∑
j∈Λ

pjψj(µ).

Feng and Hu proved that self-similar measures are exact dimensional
and we are interested in computing their dimension. There is a folklore
conjecture about this, which we state below for d = 1, but we first need
a definition.

Definition 2. We say that the iterated function system {ψj : j ∈ Λ}
has exact overlaps, if there is n and

(i1, . . . , in) 6= (j1, . . . , jn) ∈ Λn

such that

ψi1 ◦ . . . ◦ ψin = ψj1 ◦ . . . ◦ ψjn
Conjecture 3. Let µ be a self-similar measure on R defined by an
iterated function system {ψj : j ∈ Λ} that does not have exact overlaps.
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Then

(2) dimµ = min
(∑ pj log p−1

j∑
pj log r−1

j

, 1
)
,

where rj is the contraction factor of ψj.

Note that the right hand side of (2) depends on the iterated function
system. The same self-similar measure could be realized by different
iterated function systems. Indeed, we may replace Λ by Λn and the
maps by all n-fold compositions. If there are exact overlaps, we may
remove repeated occurrences of the same map and get the same self-
similar measure if we adjust the weights pj appropriately. This has the
effect of reducing the value of the right hand side of (2). It is possible to
state a similar conjecture for self-similar measures in Rd, but it requires
some technical conditions to avoid “too much” of the measure being
“trapped” in lower dimensional subspaces. This is subtle and technical
and we will not discuss it further.

We end this section by discussing the exact overlaps property for
Bernoulli convolutions. We first note

ϕi0 ◦ ϕi1 ◦ . . . ◦ ϕin(x) = λnx+ (inλ
n + . . .+ i1λ+ i0).

Therefore, we can write

ϕi0 ◦ . . . ◦ ϕin(x)− ϕj0 ◦ . . . ◦ ϕjn(x) = 2P (λ),

where P is a polynomial of degree at most n with coefficients ±1, 0.
Since this family of polynomials will play a special role in this lectures,
we introduce the notation Pn for them. This means that the Bernoulli
convolution νλ has exact overlaps if and only if P (λ) = 0 for some
P ∈

⋃
Pn. Therefore, Theorem 1 is an instance of the above conjecture.

1.4. Outline of the proof. We turn to the proof of Theorem 1. We
first set out the main parts of the proof; we will discuss some of these
in detail in the next two lectures. These developments started with the
following result of Hochman [9, Theorem 1.9].

Theorem 4 (Hochman). Let λ ∈ [1/2, 1) be such that dim νλ < 1.
Then for all C and for all sufficiently large n > N(C), there is a number
ηn ∈ C such that P (ηn) = 0 for some P ∈ Pn and |λ− ηn| < C−n.

Informally, this result shows that all parameters λ for which the
conclusion of Theorem 1 fails are extremely well approximated by pa-
rameters with exact overlaps at all scales.

Theorem 4 already implies Theorem 1 for algebraic parameters. This
follows simply from the fact that algebraic numbers repel each other
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and hence the conclusion of Theorem 4 may hold for an algebraic num-
ber λ only if λ = ηn. For example, the following result can be used to
justify this.

Theorem 5 (Mignotte [13]). Let η be an algebraic number of degree n
and let n′ > n(log n)2 be another integer. Let η′ 6= η be the root of a
polynomial in Pn′. Then

|η′ − η| > (CM(η))−2n′
,

where C is an absolute constant and M(λ) is the Mahler measure of λ
(to be defined below).

Mignotte’s theorem is more general than this, we just stated it in the
form we will use it. This theorem is much stronger than what we need
to deduce Theorem 1 for algebraic parameters from Theorem 4. Indeed,
it would be enough for us to have |η′ − η| > C−n

′
for any C = C(η)

and such a statement is significantly easier to prove. However, we will
need the full force of Theorem 5 shortly.

In the paper [17], Theorem 5 was substituted by an alternative result
(see [17, Proposition 12]), which was derived from earlier results of
Garsia [6] and Solomyak [15].

We still owe the reader the definition of Mahler measure.

Definition 6. Let η be an algebraic number with minimal polynomial
an
∏n

j=1(x − ηj) ∈ Z[x], that is, an is the leading coefficient of the
minimal polynomial and η1, . . . , ηn are its roots; one of these numbers
equal η. Then the Mahler measure of η is defined as

M(η) = |an|
n∏
j=1

max(1, |ηj|).

It was observed by Hochman that Theorem 4 already implies all of
Theorem 1 if the answer to the following question posed by him is
affirmative.

Question 7 (Hochman). Is there a universal constant C such that
|η − η′| > C−n for all numbers η 6= η′ that are roots of polynomials in
Pn?

Note that this question asks for a strengthening of Theorem 5 in two
ways. First, the constant in the separation bound needs to be universal,
it is not allowed to depend on the Mahler measure of η. Second, the
separation is also required for numbers that have (approximately) the
same degree.

Here is the argument of Hochman to deduce Theorem 1 from his
Theorem 4 assuming the answer to the above question is affirmative.
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Suppose that λ ∈ [1/2, 1) is such that dim νλ < 1. By Theorem 4, for
all n sufficiently large, there is ηn that is a root of a polynomial in Pn
and |λ − ηn| < C−n. This means that |ηn − ηn+1| < 2C−n. Now an
affirmative answer to the above question yields ηn = ηn+1 provided we
set the constant in Theorem 4 suitably. Now we see that the sequence
ηn stabilizes and hence its limit λ is a root of a polynomial in

⋃
Pn.

An affirmative answer to Hochman’s question seems plausible. How-
ever, we do not know how to prove this. On the other hand, the above
argument can still be carried out using Mignotte’s Theorem 5 instead
together with the following result.

Theorem 8 (Breuillard, Varjú [4, Theorem 1]). Let λ ∈ [1/2, 1) be
such that dim νλ < 1. Then for any ε > 0, there are infinitely many
integers n, and numbers ηn ∈ R such that P (ηn) = 0 for some P ∈ Pn,
|λ− ηn| < exp(−n100) and dim νηn < dim νλ + ε.

The theorem holds with any number in place of 100, in fact, one may
even take a slowly diverging sequence of exponents as a function of n.

Now we may conclude the proof of Theorem 1. Assume to the con-
trary that there is λ ∈ [1/2, 1)\Q such that dim νλ < 1. We first apply
Theorem 8 to find η of degree at most n such that |λ−η| < exp(−n100)
and dim η ≤ dim νλ + ε. Now we choose an integer n′ such that
C−n

′
< |λ − η| ≤ C−(n′−1) with an appropriately chosen constant C.

Observe that the condition n′ > n(log n)2 of Mignotte’s theorem 5
holds. Now we apply Theorem 4 and find an η′ that is a root of a
polynomial in Pn′ and |λ− η′| < C−n

′
. We chose n′ just large enough

to guarantee that η 6= η′ but we still have

|η − η′| ≤ |λ− η|+ |λ− η′| < C−n
′
+ C−(n′−1).

This contradicts Mignotte’s Theorem 5 if we choose the constants ap-
propriately and if we can get a suitable bound on M(η). We will discuss
in Lecture 6 how to control the Mahler measure using the information
dim η ≤ dim νλ + ε.

Observe that the success of the above argument crucially depends
on three features of Theorems 4 and 8. First, the approximation in
Theorem 4 holds at all sufficiently smalls scales, so we can choose n′

in the argument as we want. Second, the approximation in Theorem
8 holds with very good precision and this ensures that the n′ is much
larger than n. Third, in Theorem 8, we have a bound on the dimension
of the Bernoulli convolution for the approximating parameter, which
allows us to bound the Mahler measure (as we will discuss it in Lecture
6).
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1.5. Plan for the remaining two lectures. We will discuss some
details of the proof of Theorem 4 and Theorem 8 in Lecture 5. We
will discuss the dimension of Bernoulli convolutions for algebraic pa-
rameters in Lecture 6, in particular, we will explain the connection to
Mahler measure.

2. Lecture 5

We discuss the proof of the following theorem of Hochman in this
lecture.

Theorem 9 (Hochman). Let λ ∈ [1/2, 1) be such that dim νλ < 1.
Then for all C and for all sufficiently large n > N(C), there is a number
ηn ∈ C such that P (ηn) = 0 for some P ∈ Pn and |λ− ηn| < C−n.

The proof we present is essentially the same as Hochman’s original,
but some technical aspects have been influenced by the paper [4].

2.1. Entropy dimension. Let µ be a compactly supported probabil-
ity measure on R and let X be a random variable with distribution µ.
We keep this notation until the end of this lecture.

The entropy dimension of µ is defined as

diment µ = lim
r→0

H(br−1Xc)
log r−1

provided the limit exists, where H(·) stands for the Shannon entropy
of a discrete random variable. The function x 7→ br−1xc is constant
on intervals of length r, so the above formula involves the entropy of µ
with respect to a partition of R to intervals of length r.

We leave it as an exercise to show that for exact dimensional mea-
sures, the limit in the definition of entropy dimension exists and equals
to its dimension as defined in the previous lecture. In the proof of
Theorem 9 we will work with this notion of dimension.

2.2. Entropy of measures at scales. The quantity H(br−1Xc) that
appears in the definition of entropy dimension has a significant draw-
back; it is not translation invariant. A simple way to fix this issue is
to average it over translations. This turns out to be very useful.

Let µ be a compactly supported probability measure on R and let
X be a random variable with distribution µ. The entropy of µ and X
at scale r is defined as

H(µ; r) = H(X; r) =

∫ 1

0

H(br−1X + tc)dt.
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We also define the conditional entropy between two scales by

H(µ; r1|r2) = H(X; r1|r2) = H(X; r1)−H(X; r2).

If the ratio of the scales r2/r1 is an integer, we can realize this as the
average of conditional Shannon entropies

H(X; r1|r2) =

∫ r2

0

H(br−1
1 (X + t)c|br−1

2 (X + t)c)dt.

Indeed, in this case, br−1
2 (X + t)c is a function of br−1

1 (X + t)c, so the
conditional entropy is just the difference of the entropies. We leave the
verification of the details to the interested reader.

A similar averaging procedure was employed by Wang in [20] in his
study of quantitative density of orbits of some groups of toral auto-
morphisms.

2.3. Properties of entropy. In this section we record some facts
without proof about entropies at scales, which we will use later. For
proofs and further details see [19, Section 2].

(1) Translation invariance. We have

H(X; r) = H(X + t; r), H(X; r1|r2) = H(X + t; r1|r2).

(2) Concavity. Let µ1, . . . , µk be probability measures and let p1, . . . , pk
be a probability vector. Write µ = p1µ1 + . . .+ pkµk. Then

H(µ; r) ≥ p1H(µ1; r) + . . .+ pkH(µk; r)

and

H(µ; r1|r2) ≥ p1H(µ1; r1|r2) + . . .+ pkH(µk; r1|r2)

provided r2/r1 ∈ Z. This last inequality does not hold in gen-
eral if the ratio of the scales is not an integer.

(3) Convolution may only increase entropy. As a corollary of the
above two items, we get

H(µ ∗ ν; r) ≥ H(µ; r)

and

H(µ ∗ ν; r1|r2) ≥ H(µ; r1|r2)

provided r2/r1 ∈ Z. Again, the integrality of the ratio of the
scales is important.

(4) Scaling. We have

H(X; r) = H(sX; sr), H(X; r1|r2) = H(sX; sr1|sr2).
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(5) Continuity. The function ρ 7→ H(µ; exp(−ρ)) is a monotone
increasing Lipschitz function, moreover, we have

0 ≤ H(µ; r1|r2) ≤ min(2 log r2/r1, log r2/r1 + log 2).

If r2/r1 ∈ Z we even have

H(µ; r1|r2) ≤ log r2/r1.

2.4. Proof of Theorem 9. We prove Theorem 9 by contradiction.
Suppose that dim νλ < 1 for some λ ∈ [1/2, 1). Fix C and let n be
a sufficiently large integer. Suppose to the contrary that there is no
η ∈ C that is a root of a polynomial in Pn and |η − λ| < C−n.

Fix ε > 0 small enough. As we remarked above, the dimension of νλ
equals its entropy dimension, hence we have

(3)
∣∣∣H(νλ;λ

l|1)

l log λ−1
− dim νλ

∣∣∣ < ε

provided l is large enough. This means, in particular, that

H(νλ;λ
n|1) > (dim νλ − ε)n log λ

and if we are able to show that

(4) H(νλ;λ
m|λn) > (dim νλ + 3ε)(m− n) log λ

for some m ≥ 2n, then we get

H(νλ;λ
m|1) > (dim νλ + ε)m log λ,

which contradicts (3).
To prove (4), we decompose νλ as a convolution of measures in a

suitable way. For I ⊂ (0, 1], we write νIλ for the law of the random
variable ∑

j:λj∈I

±λj.

With this notation, we have νλ = ν
(0,1]
λ and we have νI∪Jλ = νIλ ∗ µJλ for

two disjoint sets I, J ⊂ (0, 1].

Now we observe that νλ = ν
(0,λn]
λ ∗ ν(λn,1]

λ . Using the scaling property
of entropy and (3), we can write

(5) H(ν
(0,λn]
λ ;λm|λn) = H(νλ;λ

m−n|1) > (dim νλ − ε)(m− n) log λ.

We only need a very small improvement over this to achieve (4).
We have already discussed that entropy cannot decrease if we take

convolution of measures. (Strictly speaking this is true only if the ratio
of scales is integral, but it still holds with a small error in general.) Now
we want to argue that under suitable conditions, entropy increases if



BERNOULLI CONVOLUTIONS 9

we take a convolution. This would enable us to improve the bound in

(5) to (4) when we convolve the measure ν
(0,λn]
λ with ν

(λn,1]
λ to get νλ.

We are going to use the following result.

Theorem 10 (Varjú [19, Theorem 3]). For every α ∈ (0, 1/2], there
is a number c > 0 such that the following holds. Let µ and ν be two
bounded probability measures on R. Let 0 < s1 < s2 and β ∈ (0, 1/2]
be numbers. Suppose that

H(µ; s|2s) ≤ log 2− α
for all s ∈ R>0 and

H(ν; s1|s2) ≥ β log(s2/s1).

Then

H(µ ∗ ν; s1|s2) ≥ H(µ; s1|s2) + cβ(log β−1)−1 log s2/s1 − c−1.

We apply this theorem with µ = ν
(0,λn]
λ , ν = ν

(λn,1]
λ , s1 = λm (with a

suitable choice of m) and s2 = λn. If we can show that the conditions
of the theorem hold with some α > 0 and β > 0 independently of n,
then we can achieve (4) by choosing some

ε < cβ(log β−1)−1/4.

The first condition of the theorem follows from the following.

Lemma 11. Let λ ∈ [1/2, 1) be such that dim νλ < 1. Then there is a
number α > 0 such that

H(νIλ; r|2r) < log 2− α
for all I ⊂ (0, 1].

We first observe that it is enough to prove this lemma for I = (0, 1],

because νλ = νIλ ∗ ν
(0,1]\I
λ and convolution may only increase entropy

between scales of integral ratio. For the rest of the proof we refer to
[4, Lemma 13]. We just mention here the following observation, which
plays an important role in the proof. Using the scaling property of
entropies and the fact that convolution may only increase entropy we
can write

H(νλ; r|2r) = H(ν
(0,λ]
λ ;λr|2λr) ≤ H(νλ;λr|2λr).

If H(νλ; r|2r) is very close to log 2 for some scale r, then we can use
the above observation to produce many more scales with this property.
Together with some additional ideas this can be used to show that the
entropy dimension of νλ is very close to 1.

The second condition in Theorem 10 can be verified using the hy-
pothesis that there is no η ∈ C that is a root of a polynomial in Pn and



BERNOULLI CONVOLUTIONS 10

|η − λ| < C−n. We first observe that there is a number C̃ depending

only on λ and C such that |P (λ)| > C̃−n for all 0 6= P ∈ Pn. Indeed,
write

|P (λ)| =
n∏
j=1

|λ− ηj|,

where ηj are the roots of P . By the hypothesis, |λ − ηj| > C−n for
all j. It follows from Jensen’s formula (see e.g. [4, Lemma 26] for
details) that there are at most K roots of P of absolute value less than
1− (1− λ)/2 for some K depending only on λ. This shows

|P (λ)| > C−Kn
(1− λ

2

)n
,

so the claim holds indeed with C̃ = CK(1− λ)/2.

Now we choose m so that λm < C̃−n and observe that the 2n points

in the support of ν
(λn,1]
λ are separated by a distance of at least λm

pairwise. This means that H(bλ−mY + tc) = n log 2 for all t and hence

H(ν
(λn,1]
λ ;λm) = n log 2.

Now we can write

H(ν
(λn,1]
λ ;λm|λn) ≥ H(ν

(λn,1]
λ ;λm)−H(ν

(λn,1]
λ ;λn|1)−H(ν

(λn,1]
λ ; 1)

≥ n log 2− n log λ−1 − log 2−H(νλ; 1).

From this we see that the second condition in Theorem 10 holds indeed
for ν

(λn,1]
λ with some β that depends only on λ and the constant C in

the indirect hypothesis.

2.5. Concluding remarks. Theorem 10 appeared in [19] after Hochman’s
work [9]. Hochman formulated and proved a similar result for estimat-
ing the entropy of convolutions. His version does not give an explicit
estimate for the entropy gain in terms of the parameters of the prob-
lem. As it is clear form the above discussion, such explicit estimates
are not needed for the application in the proof of Theorem 9. How-
ever, these are absolutely critical in the proof of Theorem 8, which
we mentioned in Lecture 4. Hochman also did not used the averaging
procedure under translations.

The proof of Theorem 8 is beyond the scope of these notes, and we
only make a few comments about it. The proof is again by contra-
diction, so we assume that dim νλ < 1 for some λ ∈ [1/2, 1), but the
conclusion of Theorem 8 does not hold for λ. Using these assumptions,
we find a disjoint collection of sets I1, . . . , Ik ⊂ (0, 1] such that we can
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obtain some lower bound on H(ν
Ij
λ ; s1|s2) for some appropriately cho-

sen scales s1 < s2. Now we apply Theorem 10 repeatedly to obtain an
even stronger lower bound on

H(νI1∪...∪Ikλ ; s1|s2),

which will contradict the universal upper bound log(s2/s1) + log 2. In
these applications of Theorem 10, we always have a good control on α,
it depends only on λ. However, the parameter β may take very small
values depending on how well λ is approximated by roots of polynomials
in Pn and for which n’s. Therefore, the quantitative aspects of Theorem
10 are very crucial. For more details, we refer to the original paper [4].

3. Lecture 6

The aim of this lecture is to discuss the connection between dim νλ
and Mahler measure M(λ) for algebraic parameters. More specifically,
we want to get an upper bound for M(λ) in terms of 1 − dim νλ for
λ ∈ [1/2, 1) ∩Q.

3.1. Dimension of Bernoulli convolutions for algebraic param-
eters and Garsia entropy. Beside Theorem 4, which we discussed
in the previous lecture, Hochman’s results [9] also imply a formula for
dim νλ for algebraic parameters. This formula is in terms of a quantity,
which was introduced by Garsia [7].

Definition 12. Let λ ∈ C. The Garsia entropy of λ is the number

h(λ) = dimn→∞
1

n
H
( n−1∑
j=0

±λj
)
,

where H(·) is the Shannon entropy of a discrete random variable.

Theorem 13 (Hochman). Let λ ∈ [1/2, 1) ∩Q. Then

dim νλ = min(h(λ)/ log λ−1, 1).

This result is not stated explicitly in [9], but it is an immediate
consequence of the main result of that paper. See [3, Section 3.4] for
the details.

As we discussed in Lecture 4, the iterated function system underlying
νλ has exact overlaps when λ is the root of a polynomial with ±1, 0
coefficients. In that case, νλ can be realized as a self-similar measure
defined by other iterated function systems, such that the right hand of
(2) is smaller than it is in the case of the standard iterated function
system x 7→ λx ± 1. It is not too difficult to see that the infimum of
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the right hand side of (2) over all iterated function systems realizing
νλ is precisely the formula for dim νλ in Theorem 13 above.

3.2. Garsia entropy and Mahler measure. Theorem 13 reduces
the problem of computing the dimension of Bernoulli convolutions for
algebraic parameters to computing the quantity h(λ). There has been
much work on this issue recently. Akiyama, Feng, Kempton and Pers-
son [1] gave a general algorithm to compute h(λ) to arbitrary precision
for given λ. Feng and Feng developed further algorithms and carried
out extensive numerical calculations. Here are a few sample results
they obtained. They showed that dim νλ ≥ 0.980368 for all λ ∈ [1/2, 1)
and the minimum of dim νλ for λ ∈ [1/2, 1) is obtained in the interval
λ0±10−4, where λ0 ≈ 0.5283 is a root of the polynomial x3 +x2 +x−1.
They also computed dim νλ0 = 0.98040931953± 10−11.

Breuillard and Varjú gave a general estimate for h(λ) in terms of the
Mahler measure.

Theorem 14 (Breuillard, Varjú[3]). Let λ be an algebraic number.
Then

(6) 0.4 min(logM(λ), log 2) ≤ h(λ) ≤ min(logM(λ), log 2).

Moreover, for every ε > 0, there is C such that h(λ) < log 2−ε implies
M(λ) < C.

Combining this result with Theorem 13 we get the following. For
every ε > 0, there is C such that dim νλ < 1 − ε implies M(λ) < C
for all λ ∈ [1/2, 1) ∩Q. This is precisely the result that is required to
complete the argument in Lecture 4.

The upper bound in (6) is easy to prove. By simple number theoret-
ical considerations it follows that the random variable

∑n−1
j=0 ±λj takes

at most CεM(λ)n+ε many different values, and it certainly cannot take
more than 2n. Now the upper bound follows from the fact that the
Shannon entropy of a random variable is at most the logarithm of the
number of values taken by the random variable.

The purpose of the rest of this lecture is to explain the proof of the
lower bound in (6) and the proof of the last claim, which was not stated
in [3], but it follows immediately from the same proof.

3.3. Entropy at scales with Gaussian smoothing. We introduce
a quantity that will play a prominent role in our proof.

Let µ be a compactly supported probability measure on Rd and let
X be a random vector with law µ. Let A ∈ GLd(R). In this lecture,
we define the entropy of µ and X at scale A to be

H(µ;A) = H(X;A) = H(X + AG)−H(AG),
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where G is a standard Gaussian that is independent of X and H(·)
is the differential entropy of an absolute continuous random variable.
That is, if f denotes the density of X + AG, then we have

H(µ;A) =

∫
Rd

f(x) log f(x)−1dx.

Informally one may think of H(µ;A) as the entropy of µ with respect
to a partition whose atoms are translates of the image of the unit ball
under A.

It is instructive to compare this quantity with what we used in the
previous lecture. It is easy to verify that with the notation of the
previous lecture

H(X; s) = H(X + sI)−H(sI),

where I is a uniform random variable on [0, 1] that is independent of X
and H(·) is differential entropy. Therefore, the difference between the
quantity we use now compared with that of the previous lecture is that
now we use Gaussian smoothing as opposed to a uniform distribution
on an interval. The properties of Gaussian smoothing will be critical
to the success of our argument, because we require estimates that are
independent of dimension and the Gaussian distribution behaves very
well in this regard.

The conditional entropy of µ and X between the scales A1, A2 ∈
GLd(R) is defined as

H(µ;A1|A2) = H(X;A1|A2) = H(X;A1)−H(X;A2).

We make a final comment on our notation. The expression H(·)
sometimes stands for Shannon and sometimes for differential entropy
depending on whether the random variable is discrete or absolutely
continuous. This should not cause confusion as the type of the random
variable will be always clear from the context.

3.4. Properties of entropy. We record a few key properties of en-
tropy at a scale defined above. The proofs may be found in [3, Section
2].

(1) If X is a discrete random vector, we have

0 ≤ H(X|A) ≤ H(X),

where H(·) is Shannon entropy on the right hand side.
(2) Let X1 and X2 be independent random vectors and let A1, A2 ∈

GLd(R) such that ‖AT1 x‖ ≤ ‖AT2 x‖ for all x ∈ Rd, then

0 ≤ H(X1;A1|A2) ≤ H(X1+X2;A1|A2) ≤ H(X1;A1|A2)+H(X2;A1|A2).
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The condition on A1 and A2 may be equivalently reformulated
as the image of the unite ball under A1 is contained in its image
under A2. This property implies that A2G can be realized as
the sum of two independent random vectors one of which has
the same distribution as A1G, and this plays a key role in the
proof.

(3) Scaling. For any B ∈ GLd(R), we have

H(BX;BA) = H(X;A), H(BX;BA1|BA2) = H(X;A1|A2).

3.5. Proof of Theorem 14. We follow [3]. Let A ∈ GLd(R) be a
diagonalizable matrix whose eigenvalues are the Galois conjugates of λ
with modulus less than 1 and let x ∈ Rd\{0}. We write

X
(m,n)
A,x =

n∑
i=m

±Aix.

Observe that

H(X0,n−1
A,x ) = H

( n−1∑
i=0

±λi
)
.

To see this, we may expand X0,n−1
A,x in an eigenbasis of A. Any coordi-

nate in this basis will be a constant multiple of a Galois conjugate of∑n−1
i=0 ±λi and hence the law of X0,n−1

A,x and
∑n−1

i=0 ±λi yield the same
probability vector.

Lemma 15. If ‖A‖ ≤ 1, then

hλ ≥ lim
l→∞

1

l
H(X

(0,∞)
A,x ;Al| Id).

The statement of this lemma is not surprising. Intuitively, we expect

that H(X
(0,∞)
A,x ;Al| Id) is close to H(X

(0,l−1)
A,x ;Al| Id), because the terms

±Ajx for j ≥ l should not change significantly entropy at scale Al.

On the other hand H(X
(0,l−1)
A,x ;Al| Id) is a lower bound for the Shannon

entropy H(X
(0,l−1)
A,x ), which equals to H(

∑l−1
i=0±λi), which appears in

the definition of h(λ). A formal proof follows.
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Proof. We can write

H
( l−1∑
i=0

±λi
)

=H(X
(0,l−1)
A,x )

≥H(X
(0,l−1)
A,x ;Al)

=H(X
(0,l−1)
A,x ;Al) +H(AlX

(0,∞)
A,x ;Al)−H(X

(0,∞)
A,x ; Id)

≥H(X
(0,∞)
A,x ;Al)−H(X

(0,∞)
A,x ; Id)

=H(X
(0,∞)
A,x ;Al| Id).

Now we can complete the proof if we divide both sides by l and take
the limit l→∞. �

In the next step, we reduce the estimate to a single conditional en-
tropy by a standard argument in entropy theory.

Lemma 16. Under the same assumptions as above, we have

h(λ) ≥ H(X
(0,∞)
A,x ;A| Id).

Proof. We can write

H(X
(0,∞)
A,x ;Al| Id) =

l−1∑
i=0

H(X
(0,∞)
A,x ;Ai+1|Ai).

We observe that

H(X
(0,∞)
A,x ;Ai+1|Ai) ≥ H(X

(i,∞)
A,x ;Ai+1|Ai) = H(X

(0,∞)
A,x ;A| Id),

so
1

l
H(X

(0,∞)
A,x ;Al| Id)

is the average of terms all of which are at least H(X
(0,∞)
A,x ;A| Id), and

this proves the claim in light of the previous lemma. �

The above estimates are not very wasteful, it seems very plausible
that the lover bound in the last lemma can be arbitrarily close to the
truth with a suitable choice of A and x. However, this estimate is not
very useful, because it involves the entropy of a very complicated mea-
sure in high dimension. The next step is very drastic and potentially
wasteful, but makes the problem much easier to study. We remove all

but one term from the infinite sum defining X
(0,∞)
A,x .

Lemma 17. Let x and A be as above and let U, V ∈ O(d) be arbitrary
orthogonal matrices.

h(λ) ≥ H(±x;UAV | Id).
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Proof. By the previous lemma, we immediately have

h(λ) ≥ H(X
(0,∞)
A,x ;A| Id) ≥ H(±x;A| Id).

Using the scaling property of entropy, we can write

h(λ) ≥ H(±Ux;UA|U Id).

Finally we note that by the rotational symmetry of the standard Gauss-
ian that is involved in the definition of entropy at scales, we can mul-
tiply any matrix scale from the right by an arbitrary rotation matrix
without changing entropy. This and the fact that x ∈ Rd\{0} is arbi-
trary completes the proof. �

Now we choose the parameters in the above lemma in a convenient
way. By a theorem of Horn (see [3, Proof of Proposition 13] for the
details), we can choose A in such a way that its eigenvalues are all the
conjugates of λ with modulus less than 1 and its singular values are
1, 1, . . . , 1,

∏
min(|λj|, 1), where λj runs through the Galois conjugates

of λ, so the last singular value equals the absolute value of the product
of the eigenvalues.

We note that we may assume that λ is an algebraic unit, that is
the leading and constant coefficients of its minimal polynomial are ±1.
Indeed, if this is not the case, we have h(λ) = log 2 always, because
only algebraic units can be roots of polynomials with coefficients ±1, 0.
Now it follows that∏

min(|λj|, 1) = 1/
∏

max(|λj|, 1) = M(λ)−1,

where the product runs over all Galois conjugates of λ.
We choose A in the above way and we choose U and V such that

UAV = diag(1, . . . , 1,M(λ)−1). Finally, we set x to be a constant
multiple of the last coordinate vector. With this choice, the last lemma
gives

h(λ) ≥ H(±ted; diag(1, . . . , 1,M(λ−1))| Id).

Now we can integrate out the first d − 1 coordinates and get the
following.

Lemma 18. We have for all t ∈ R>0

h(λ) ≥ H(±t;M(λ−1)|1).

The notation in the last lemma should not be confused with the
notation of the previous lecture, we still use Gaussian smoothing. Now
we reduced the problem to the estimation of a 1 dimensional integral,
which only involves the Mahler measure of λ. The proof of Theorem
14 is now just a calculus exercise, and we refer to [3, Section 3.2] and
[17, Theorem 9] for the details.
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4. Further reading

Peres, Schlag and Solomyak wrote a beautiful survey of Bernoulli
convolutions [14], which exposes the state of the art up until 1998.
Solomyak wrote another nice survey [16]. Surveys covering the more
recent developments are [18] and [8]. These also discuss new develop-
ments about absolute continuity, which we omitted completely.

The techniques of Hochman has been extended to more general set-
tings including self-similar measures in Rd [10], self-affine measures
[2, 11] and Furstenberg measures [12].
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