
RIGIDITY LECTURE NOTES III

ANDREY GOGOLEV

This lecture is entirely based on a joint work with F. Rodriguez Hertz, under
preparation.

1. Otal-Croke marked length spectrum rigidity. Let (S, g1) and (S, g2) be
negatively curved surfaces. Denote by [γ] the free homotopy class loops S1 → S.
For any non-trivial [γ] consider the unique geodesic representatives γ1 ∈ [γ] and
γ2 ∈ [γ] for g1 and g2, correspondingly and assume that

`g1(γ1) = `g2(γ2) (�)

Then there exists an isometry σ : (S, g1)→ (S, g2).

2. Khalil-Lafont question. Consider additional data: two positive smooth func-
tions ϕ1, ϕ2 : S → R. Instead of (�) assume that

∀[γ]

∫
γ1

ϕ1(γ(t))dt =

∫
γ2

ϕ2(γ(t))dt (♥)

Does it follow that (S, g1) and (S, g2) are homothetic? That is, does there exists a
constant c > 0 and an isometry σ : (S, g1)→ (S, c2g2).
Note that if ϕ1 = ϕ2 = 1 then this is precisely MLS rigidity. Also note that if
g1 = c2g2 then (ϕ1, ϕ2) = (ϕ, cϕ) verify (♥).

3. Sharpened MLS rigidity. Let (S, g1) and (S, g2) be negatively curved surfaces.
Let ϕi : T 1S → R be smooth functions such that ϕ1 is not an abelian coboundary.
Assume that for every homologically trivial homotopy class of loops [γ] ∈ π1(S),
[γ] 6= 0, we have ∫

γ1

ϕ1 =

∫
γ2

ϕ2

Then there exists a constant c > 0 and an isometry σ : (S, g1)→ (S, c2g2).

4. Examples of non abelian coboundaries. Let X be an Anosov vector field on
a closed manifold M . A Hölder continuous function ϕ : M → R is called an abelian
coboundary if there exists a closed 1-form ω and a Hölder function (differentiable
along X) such that

ϕ = Xu+ ω(X)

Notice that the decomposition ϕ = Xu+ω(X) is highly non-unique because we can
change ω by any an exact 1-form. Indeed given any smooth function v : M → R we
can write a different decomposition

ϕ = (ω + dv)(X) +X(u− v)

IfX is the geodesic flow on (S, g1) then there two classes of non abelian coboundaries
(to which Sharpened MLS rigidity would apply).
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1. Function ϕ : T 1S → R is not an abelian coboundary if it is non-negative and
takes at least one positive value.

2. Function ϕ : T 1S → R is not an abelian coboundary if it is a pullback of a
non-zero function on the surface, in other words, ϕ(v, x) = ϕ(x).

5. An example without rigidity. Let S be a surface equipped with a coho-
mologically non-trivial closed 1−form ω : TS → R. Consider two non-isometric
Riemannian metrics g1 and g2 on S. Then the corresponding unit tangent bundles
are naturally embedded in the full tangent bundle T 1

giS ⊂ TS and we can define

ϕi : T 1
giS → R by ϕi(x, v) = ωx(v). Let γi ⊂ T 1

giS be homotopic unit-speed closed
gi-geodesics. Then∫

γ1

ϕ1(γ1(s))ds =

∫
γ1

ω(γ1(s))ds = 〈[ω], [γ]〉 =

∫
γ2

ω(γ2(s))ds =

∫
γ2

ϕ2(γ2(s))ds

where [ω] is the cohomology class of ω and [γ] is the homology class of γi, i = 1, 2.

6. Abelian Livshits theorem. We follow Sharp and say that a transitive Anosov
flow Xt : M → M is homologically full if every integral homology class contains a
closed orbit of Xt.

Theorem. Assume that Xt : M →M is a homologically full transitive Anosov flow
and let ϕ ∈ Cr(M), r > 0, ϕ : M → R such that∫

γ

ϕ = 0

for all homologically trivial closed orbits γ. Then there is a C∞ smooth closed 1-
form ω on M and a function u ∈ Cr−ε(M), where ε > 0 is arbitrarily small, such
that

ϕ = Xu+ ω(X)

Proof. By work of Sharp homologically trivial orbits equidistribute according to
a certain equilibrium state. In particular, it follows that the homologically trivial
orbits are dense. However, one can avoid using Sharp’s machinery and give a simpler
proof by using shadowing.

Let M̂ be the universal abelian cover of M , that is, the cover which corresponds
to the commutator subgroup [π1M,π1M ]. Note that homologically trivial periodic

orbits in M lift to periodic orbits in M̂ . Hence periodic orbits of the lifted flow
are dense in M̂ and, by applying the standard Smale argument we conclude that
Xt : M̂ → M̂ is a transitive flow. Hence we can carry out the standard proof of
Livshits theorem on M̂ . The conclusion is that the lift ϕ̂ : M̂ → R is a coboundary
(in the usual sense), which translates into ϕ being an abelian coboundary. �

7. Matching rigidity for Anosov flows.

Theorem. Let Xt
i : M → M , i = 1, 2 be C1+α 3-dimensional transitive Anosov

flows. Assume they are orbit equivalent via H : M → M . Let ϕi : M → R be
C1 functions. If

∫
γ1
ϕ1 =

∫
H∗γ1

ϕ2 for every X1−closed orbit γ1, then one of the

following holds:

1. ϕi are Xi abelian coboundary;
2. H is C1 after adjusting it through a time change.
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8. Another application to 3-dimensional Anosov flows. Recall from the first
lecture.

Theorem (de la Llave-Moriyon, Pollicott). Assume that Xt
1 and Xt

2 are orbit
equivalent 3-dimensional transitive Anosov flows. Assume

∀p ∈ Per(X1) : Tp = perX1
(p) = perX2

(h(p)) = Th(p) (A1)

Also assume that the differentials of Poincaré return maps for all periodic points
are conjugate:

∀p ∈ Per(X1) ∃C : DX
Tp
1 (p) = C ◦DXTh(p)

2 (h(p)) ◦ C−1 (A2)

Then Xt
1 and Xt

2 are smoothly conjugate.

In the first lecture we discussed what happens if (A2) is dropped.
If one drops the assumption (A1) and, keeps (A2) instead, then the matching

theorem could be applied to infinitesimal stable and unstable jacobians yields the
following.

Theorem. Assume that Xt
1 and Xt

2 are orbit equivalent 3-dimensional transitive
Anosov flows. Assume that the differentials of Poincaré return maps for all periodic
points are conjugate (A2). Then Xt

1 and Xt
2 are smoothly orbit equivalent.

9. Outline of the proof of Sharpened MLS rigidity.

9.1. Reduction to a reparametrization. Applying the Matching Theorem to the ge-
odesic flows X1 and X2 we obtain a C1+ orbit equivalence H. Let

X̃1 = DH(X1)

Then obviously,

X̃1 = ρX2, ρ > 0

that is X̃1 is a C1 flow which is reparametrization of X2. Our goal is to prove that
X̃t

1 and X2/c are conjugate.

9.2. Matching of homologically trivial spectra. Both flows X̃1 and X2 are contact.
Denote by α and β the contact 1−forms for X2 and X̃1, respectively. Then we have
that dα is an exact X2-invariant 2−form. On the other hand, by using Cartan’s
formula, dβ is also X2-invariant. Hamenstädt proved that such form is unique, that
is dβ = cdα, c > 0. Hence the 1−form

µ = β − cα
is closed. Plugging X2 yields a formula for ρ in terms of µ

ρ =
1

c+ µ(X2)

9.3. Sharpening the reparametrization. Our goal now is to show that µ is exact.
Then the periods of Y1 = cX̃1 and Y2 = X2 match and we would conclude that Y1
and Y2 are conjugate. To do this we rely on work of R. Sharp, which is based on
earlier work of Katsuda-Sunada.

If Y t : M →M is a homologically full Anosov flow then the functional β : H1(M,R)→
R given by

β([θ]) = PY (θ(Y )) = sup
µ
{hµ +

∫
M

θ(Y )dµ}
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attains a unique minimum at ξY ∈ H1(M,R). Geodesic flows are special among
homologically full flows:

Fact 1. If Y is a geodesic flow then ξY = 0;
Using the minimizer property it is not hard to study the behavior of the mini-

mizer under the reparametrizations.
Fact 2. If Y1 = Y2/(1 + ω(Y2)) then

ξ1 = ξ2 + β(ξ2)[ω]

Since both Y1 and Y2 come from geodesic flows this boils down to β(ξ2)[ω] = 0.
But one can also check that β(ξ2) = hµξ2 (Y2) > 0. Hence ω = dv.

We conclude that Y1 and Y2 are conjugate and, hence, we can apply Otal-Croke
theorem to obtain the posited isometry σ : (S, g1)→ (S, c2g2).


