
RIGIDITY LECTURE NOTES II

ANDREY GOGOLEV

Today we will discuss rigidity of toral automorphisms similarly to rigidity of
expanding maps and Anosov diffeos discussed last time. Any matrix L ∈ SL(d,Z)
induces a torus automorphism L : Td → Td. If L is hyperbolic and f : Td → Td is
an Anosov diffeo which is homotopic to L then, by work of Franks and Manning, f
is conjugate to L, h ◦ f = L ◦ h. We are interested in higher regularity of h. Recall
that the obstructions are carried by periodic orbits

∀p = fkp ∃C : Dfk(p) = CLkC−1 (?)

Recall that if d = 2 then vanishing of obstructions implies that h is as regular as f
by work of de la Llave-Marco-Moriyon.

1. Periodic data rigidity in dimension 3. There are two cases to consider for 3-
dimensional automorphisms with 2-dimensional unstable subbundle: the comformal
case of a pair complex conjugate eigenvalues and the case when unstable subbundle
admits a dominated splitting.

Theorem (Kalinin-Sadovskaya). Assume that L : T3 → T3 has a pair of complex
eigenvalue with 0 < λ1 < 1 < |λ2| = |λ3| and that Cr Anosov diffeomorphism f is
conjugate to L, h ◦ f = L ◦ h. If (?) then h is Cr−ε.

Theorem (A.G. – Guysinsky). Assume that L : T3 → T3 has real spectrum 0 <
λ1 < 1 < λ2 < λ3. Consider Cr smooth Anosov diffeomorphism f , which is
conjugate to L; h ◦ f = L ◦ h. If (?) then h is Cr−ε.1

The bootsrap of regularity of h is carried out in several steps: to Lipschitz,
to C1 and then to Cr−ε. In the conformal case Kalinin and Sadovskaya built an
invariant conformal structure on the unstable subbundle of f . Then presence of
the conformal structure allows to employ apply one-dimensional techniques to the
2-dimensional problem and obtain regularity along the unstable foliation.

2. De la Llave counterexample for dimensions ≥ 4. In general, rigidity of
automorphism in dimensions ≥ 4 is false. The following example is due to de la
Llave.

Let A and B be hyperbolic automorphisms of T2 with Av = λv and Bu = µu
where µ > λ > 1. Consider the product automorphism L(x, y) = (Ax,By) and its
perturbation

f(x, y) = (Ax+ ϕ(y)v,By),

where ϕ(y) = sin(2πy1). Then the conjugacy h has the form

h(x, y) = (x+ ψ(y)v, y)
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1To obtain the global version one needs to use, additionally, more recent results of Wang-Sun

on approximation of Lyapunov exponents, Velozo on SL(2,R) cocycles and also thesis of Potrie.
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and can be calculated explicitly in the form of series. Let r0 = log λ/ logµ. Note
that r0 < 1. One can then check that ψ is Cr0 , but no more regular.

3. Lyapunov spectrum rigidity. Let L : Td → Td be an automorphism and let
f : Td → Td be a volume preserving C1 small perturbation of L, h ◦ f = L ◦ h.
Instead of assuming that the Lyapunov exponents at periodic match we can make
the same assumption for volume Lyapunov exponents, that is,

χfi = χLi , i = 1, . . . d (?)

If f is not ergodic we can take average Lyapunov exponent.

3.1. Dimension 2. If d = 2 then

hvol(f) = χf = χL = hvol(L) = hh∗vol(f)

Hence, by uniqueness of the measure of maximal entropy we have h∗vol = vol.
Then one concludes that h is smooth following the proof in Lecture 1.

3.2. Dimension 3.

Theorem (Saghin-Yang). Assume that L : T3 → T3 has real spectrum 0 < λ1 <
1 < λ2 < λ3. Assume that f is a C1 small perturbation of L which satisfies (?).
Then f is smoothly conjugate to L.

Proof. Similarly to the 2-dimensional case one can use Pesin’s formula to obtain
h∗vol = vol. Then, just as in the 2-dimensional case, h ∈ C∞s (T3), that is, h is
smooth along the stable foliation. By, comparing the rates at which points diverge
in the universal cover, one has h(Wwu

f ) = Wwu
L . However, one cannot conclude

smoothness along Wwu
f because the conditional measures of volume typically fail

to be absolutely continuous. This is the main issue and we need the following
lemma to overcome it.

Lemma (Ledrappier). Let W be a uniformly expanding foliation for a preserving
diffeomorphism f : M → M . Let m be an ergodic invariant measure. Let ξ be a
measurable, Markov partition subordinate to W . Denote by mξ(x) the conditional

measures on ξ(x). Conditional entropy H(f−1ξ|ξ) is defined by

H(f−1ξ|ξ) =

∫
M

− logmξ(x)(f
−1(ξ(fx))dm

Then the conditional measures mξ are absolutely continuous if and only if

H(f−1ξ|ξ) =

∫
M

log Jac(f |W )dm

We can apply the lemma to Wwu
f and vol. Indeed,

H(f−1ξ|ξ) = H(L−1(h(ξ))|h(ξ)) = log λ2

and ∫
T3

log Jacwu(f)dvol = χwuf = log λ2

hence Wwu
f is absolutely continuous and the rest of the proof proceeds in the same

way as for periodic data rigidity. �

Theorem (AG-Kalinin-Sadovskaya). Assume that L : T3 → T3 has a pair of com-
plex eigenvalues 0 < λ1 < 1 < |λ2| = |λ3|. Assume that f is a C1 small perturbation
of L which satisfies (?). Then f is smoothly conjugate to L.
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Proof. The challenge here is to establish regularity of h along the two dimensional
unstable foliation. To do that we need to control two pieces of data for f : jacobian
and quasi-conformal distortion.

• The unstable jacobian Jacu(f) is continuously cohomologous to constant

Jacu(f) =
ρ(fx)

ρ(x)
|λ2|2

The proof uses absolute continuity of Wu and then the measurable Livshits
theorem for scalar cocycles.

• There exists a Hölder continuous Riemannian metric on Eu such that Df |Eu

is conformal
‖Dfvx‖ = a(x)‖vx‖, ∀vx ∈ Eu

The tool for proving this is the trichotomy of Kalinin-Sadovskaya. Namely,
if 2× 2 matrix cocycle over f has only one volume exponent then:

1. the cocycle is conformal;
2. the cocycle admits a continuous invariant line bundle;
3. the cocycle admits an invariant pair of transverse line bundles;

Note that in our setting we have that at the fixed point p, Df |Eu(p) is close
to an irrational rotation which eliminates possibilities 2 and 3.

• The conjugacy h is Lipschitz along Wu.
We approximate h by an h0 which is C1 along Wu. Then define

hn = Ln ◦ h ◦ f−n

By using conformality and the fact that a(x) is cohomologous to a constant
it is easy to check that hn are uniformly bounded in C1 topology and, in
fact converge to h.

• It follows from the Rademacher theorem that h is differentiable almost ev-
erywhere along Wu, that is,

Duh ◦Duf = DuL ◦Duh

has a measurable solution Duh. Then by a result of Sadovskaya it must have
a continuous version and hence, h ∈ C1+(Wu). After that the classical de
la Llave bootsrap argument kicks in.

�

Combining the above techniques yields a higher dimensional result.

Theorem (Saghin-Yang/ AG-Kalinin-Sadovskaya). Let f be a C1 small perturba-
tion of L : Td → Td, where L4 is a hyperbolic irreducible automorphism such that no
three eigenvalues have the same absolute value. Then the conjugacy h ∈ C1+Holder.

Remark. In contrast to periodic data rigidity, the Lyapunov spectrum rigidity is an
“extremal” property of the automorphism. It is easy to produce non-linear Anosov
diffeomorphisms with the same Lyapunov spectrum which are not C1 conjugate.
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4. Rigidity of partially hyperbolic automorphisms.

4.1. Dimension 3.

Theorem (Saghin-Yang). Let L : T3 → T3 be the product partially hyperbolic au-
tomorphism

L(x, y, z) = (A(x, y), z)

and let f be a volume preserving perturbation with the same (average) Lyapunov
exponents (?). Then f is smoothly conjugate to

L′(x, y, z) = (A(x, y), z + α(x, y))

Proof. Consider the semi-conjugacy h : T3 → T2, h ◦ f = A ◦ h. Let ξ be a measur-
able, Markov partition partition subordinate to Wu

f (by pulling-back the Markov

partition h(ξ) for A).
Invariance Principle. (Avila-Viana, Tahzibi-Yang)

Hvol(f
−1(ξ)|ξ) ≤ Hh∗vol(A

−1(h(ξ))|h(ξ))

and the equality holds if and only if the conditional measures are invariant under
the center holonomy. We have

χuuf = Hvol(f
−1ξ|ξ) ≤ Hh∗vol(A

−1(h(ξ))|h(ξ)) ≤ χuuL = χuuA

By the assumption on the Lyapunov spectrum (?) we have that both inequalities
above are, in fact, equalities. Hence, the center holonomy is absolutely continuous,
hence, smooth, both within W cu and W cs. Therefore W c is a smooth circle fibra-
tion. Straightening this fibration we can conjugate f to a diffeomorphism of the
form

(x, y, z) 7→ (g(x, y), α(x,y)(z))

Then applying the earlier 2-dimensional argument to A and g we obtain that g is
smoothly conjugate to A. �

4.2. Dimension 4.

Theorem. Let L : T4 → T4 be an irreducible partially hyperbolic diffeomorphism,
λ1 < |λ2| = |λ3| = 1 < λ4. And let f be a volume preserving Cinfty small
perturbation with the same Lyapunov exponents (?). Then f is smoothly conjugate
to L.

This relies on two big reults:

F. Rodriguez Hertz dichotomy: Either

1. f is conjugate to L (and conjugacy is smooth along W c via a KAM argu-
ment); or

2. f is accessible.

Avila-Viana: If f is accessible then f has at least one non-zero center exponent.
Combining this with (?) we have that f is conjugate to L. We only need to check

smoothness along stable and unstable foliations. Berg proved that volume is the
unique measure of maximal entropy for L. As before we have:

hh∗vol(L) = hvol(f) = χuuf = χuuL = hvol(L)

Hence, the same argument as in dimension 2, we obtain smoothness along Wuu,
and, similarly, along W ss.


