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VAUGHN CLIMENHAGA

Disclaimer. These notes are my preliminary attempt to provide a little more de-
tail for my third lecture during the 2019 Dynamics Beyond Uniform Hyperbolicity
conference at CIRM, and are still quite informal and incomplete. The goal of this
third lecture is to describe some applications of the general uniqueness result that
was introduced over the course of the first two lectures.

1. Recollection of general result

Let us recall the general definitions and abstract result from the previous lecture.
Here X is a compact metric space and f : X → X is a continuous map.

Definition 1.1 ([BF13]). An f -invariant measure µ is almost expansive at scale ε
if Γε(x) = {x} for µ-a.e. x; equivalently, if the non-expansive set NE(ε) = {x ∈ X :
Γε(x) 6= {x}} has µ(NE(ε)) = 0. Replacing Γε by Γ+

ε gives NE+ and a notion of
almost positively expansive.

Definition 1.2 ([CT14]). The entropy of obstructions to expansivity at scale ε is

h⊥exp(X, f, ε) := sup{hµ(f) : µ ∈Me
f (X) is not almost expansive at scale ε}

= sup{hµ(f) : µ ∈Me
f (X) and µ(NE(ε)) > 0}.

We write h⊥exp(X, f) = limε→0 h
⊥
exp(X, f, ε) for the entropy of obstructions to expan-

sivity, without reference to scale. The entropy of obstructions to positive expansivity
h⊥exp+ is defined analogously.

Definition 1.3. A decomposition for X ×N consists of three collections Cp,G, Cs ⊂
X × N0 for which there exist three functions p, g, s : X × N → N0 such that for
every (x, n) ∈ X × N, the values p = p(x, n), g = g(x, n), and s = s(x, n) satisfy
p+ g + s = n, and

(x, p) ∈ Cp, (fpx, g) ∈ G, (fp+sx, s) ∈ Cs.

Given a decomposition, for each M ∈ N we write

GM := {(x, n) ∈ X × N : p(x, n) ≤M and s(x, n) ≤M}.
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Theorem 1.4: Uniqueness with small obstructions [CT16]

Let X be a compact metric space and f : X → X a continuous map. Suppose
that ε > 28δ > 0 are such that h⊥exp(X, f, ε) < htop(X, f), and that the space
of orbit segments X × N admits a decomposition CpGCs such that

(I) every collection GM has specification at scale δ, and
(II) h(Cp ∪ Cs, δ) < htop(X, f).

Then (X, f) has a unique measure of maximal entropy.

Remark 1.5. If G has specification at all scales, then a short continuity argument
proves that every GM does as well, which establishes (I).

2. Partially hyperbolic systems

Theorem 1.4 can be applied to a broad class of partially hyperbolic systems, which
includes the Mañé examples.1

Theorem 2.1 (Not-yet-published result). Let f : M →M be a partially hyperbolic
diffeomorphism with TM = Eu ⊕Ec ⊕Es. Assume that dimEc = 1 and that every
leaf of the foliations W s and W u is dense in M .

Let ϕc(x) = log ‖Df |Ec(x)‖, and given µ ∈ Me
f (X), let λc(µ) =

∫
ϕc dµ be the

center Lyapunov exponent of µ. Consider the quantities

(2.1)
h+ := sup{hµ(f) : µ ∈Me

f (X), λc(µ) ≥ 0},
h− := sup{hµ(f) : µ ∈Me

f (X), λc(µ) ≤ 0}.

Suppose that h+ 6= h−. Then f has a unique MME.

Remark 2.2. One can obtain an analogous result for equilibrium states for general
Hölder potentials ϕ by replacing hµ(f) in (2.1) by hµ(f) +

∫
ϕdµ and using a

generalization of Theorem 1.4 that will be discussed in Dan Thompson’s lectures
next week.

Remark 2.3. Since htop(X, f) = max(h+, h−), the condition h+ = h− is equivalent
to the condition that either h+ < htop(X, f) or h− < htop(X, f). The only way for
this condition to fail is if there is an ergodic MME with λc = 0, or if there are (at
least) two ergodic MMEs for which λc takes both signs.

An elementary argument using properties of topological pressure shows that h+ =
h− if and only if the function t 7→ P (tϕc) has a global minimum at t = 0. Thus one
can restate the last line of Theorem 2.1 as the conclusion that f has a unique MME
if there is t 6= 0 such that P (tϕc) < P (0) = htop(f).

1The general result described here is still preliminary in the sense that while nearly all the
details have been written down in one form or another, there is no preprint on arXiv yet.
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First observe that arguments similar to those given for the Mañé example in
the previous lecture’s notes show that h⊥exp(f) ≤ min(h+, h−), so the condition

h⊥exp(f) < htop(f) is satisfied whenever h+ 6= h−.

Remark 2.4. The upper bound on h⊥exp for the Mañé examples in the last set of notes
is actually an upper bound on h+ in that setting, verifying that h+(g) < htop(g)
whenever the perturbation is small enough. Moreover, the leaves of W u are all dense
for these examples [PS06], so Theorem 2.1 applies to the Mañé examples.

The rest of the proof of Theorem 2.1 consists of finding a decomposition Cp,G, Cs
for X × N such that G has specification at all scales and h(Cp ∪ Cs) < htop(X, f).
We describe the general argument in the case when h+ < htop(f), so intuitively, all
of the large entropy parts of the system have negative central Lyapunov exponents.

2.1. A small collection of obstructions. We take Cs = ∅. To describe Cp, we
first observe that the condition h+ < htop(f) implies that

sup{hµ(f) : µ ∈Mf , λ
c(µ) ≥ 0} < htop(f),

where the difference is that now the supremum allows non-ergodic measures as well,
and then a weak*-continuity argument gives r > 0 such that

(2.2) sup{hµ(f) : µ ∈Mf , λ
c(µ) ≥ −r} < htop(f).

We can relate the left-hand side of (2.2) to h(Cp), where

Cp := {(x, n) ∈M × N : Snϕ
c(x) ≥ −rn}.

One relationship between these was mentioned when we bounded h⊥exp for the Mañé
example (though the function being summed there was different). Here we want to
go the other way and obtain an upper bound on h(Cp). For this we observe that if
we let En ⊂ Cpn be any (n, ε)-separated set, νn the equidistributed atomic measure
on En, and µn = 1

n

∑n−1
k=0 f

k
∗ νn, then half of the proof of the variational principle

[Wal82, Theorem 8.6] shows that any limit point of µn is f -invariant and has

hµ(f) ≥ h(Cp, ε).
Moreover, λc(µ) =

∫
ϕc dµ(x) ≥ −r by weak*-convergence and the definition of Cp.

Together with (2.2), we conclude that h(Cp) < htop(f).

2.2. A good collection with specification. Of course we have not yet defined
a decomposition because we did not say what G is, let alone prove that it has
specification!

To this end, take an arbitrary orbit segment (x, n) ∈ M × N, and remove the
longest possible element of Cp from its beginning. That is, let p = p(x, n) be
maximal with the property that (x, p) ∈ Cp. Then we have

Spϕ
c(x) ≥ −rp and Skϕ

c(x) < −rk for all p < k ≤ n.

Subtracting the first from the second gives

Sk−pϕ
c(fpx) = Skϕ

c(x)− Spϕc(x) < −r(k − p),
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which we can rewrite as

Sjϕ
c(f jx) < −rj for all 0 ≤ j ≤ n− p.

In other words, as shown in Figure 1, we have2

(fpx, n− p) ∈ G := {(y,m) : Sjϕ
c(y) < −rj for all 0 ≤ j ≤ m}.

x fn(x)

∈ Cp ∈ Gf p(x)

⇓

Skϕ
c < −kr

Skϕ
c ≥ −kr

Figure 1. A decomposition CpG of the space of orbit segments.

Moreover, by choosing δ > 0 sufficiently small that |ϕc(y)−ϕc(z)| < r/2 whenever
d(y, z) < δ, we see that if (y,m) ∈ G and z ∈ Bm(y, δ), then

(2.3) ‖Df j|Ecs(z)‖ ≤ e−rj/2 for all 0 ≤ j ≤ m.

This is enough to prove the specification property for G. If Ecs is integrable, then
one can simply use the proof from the uniformly hyperbolic case verbatim, using
(2.3) to guarantee that

(2.4) W cs
δ (x) ⊂ Bn(x, δ) whenever (x, n) ∈ G.

But even if Ecs is not integrable, it is sufficient to take an “admissible manifold”
through fn(x) that is tangent to the center-stable cone, then pull this manifold back
by f−n to obtain some W cs

δ (x) that still satisfies (2.4) and that intersects the image
under f t of the unstable leaf from the end of the previous orbit to which (x, n) is
being joined for specification.

3. Application to billiards: the Bunimovich stadium

Let Ω be a Bunimovich stadium with boundary

∂Ω = Γ1 ∪ Y1 ∪ Γ2 ∪ Y2,
where Γ1,Γ2 are semicircles, and Y1, Y2 are parallel line segments; see Figure 2.

We consider the billiard map F associated to this table, which takes a unit vector
pointing inwards from the boundary ∂Ω and moves along the associated direction
until the next encounter with the boundary, at which point it changes direction

2There is a clear analogy between what we are doing here and the notion of hyperbolic time
introduced by Alves [Alv00, ABV00].
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Γ1

Y1

Γ2

Y2 r

ϕ

F (r, ϕ)

Figure 2. The Bunimovich stadium.

according to the law of reflection: outgoing angle is equal to incoming angle. Thus
the phase space for F is given by

X := {x = (r, ϕ) : r ∈ ∂Ω, ϕ ∈ (−π/2, π/2)}.
As shown in Figure 2, (r, ϕ) represents the unit vector based at point r ∈ ∂Ω and
making an angle ϕ with the inward-pointing normal to ∂Ω. It is often convenient
to picture X as a rectangle by identifying ∂Ω with the interval [0, |∂Ω|], where the
endpoints are identified; see Figure 3.

r ∈ Γ1 r ∈ Y1 r ∈ Γ2 r ∈ Y2

r

ϕ

(r, ϕ)
F (r, ϕ)

Figure 3. Phase space for the Bunimovich stadium map.

Theorem 3.1 (Jianyu Chen, V.C., Hong-Kun Zhang3). The billiard map for the
Bunimovich stadium has a unique measure of maximal entropy.

Remark 3.2. As with the partially hyperbolic examples above, one can prove a
corresponding result for equilibrium states, but there are some limitations on the
class of potentials that can be considered: one needs ϕ to extend continuously to the

3This theorem is still preliminary in the sense that while nearly all the details have been written
down in one form or another, there is no preprint on arXiv yet.
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closure of the above rectangle in such a way that ϕ is constant on each component
of Yi × {±π/2},4 and one also needs to impose a certain “pressure gap” condition.

To deduce Theorem 3.1 from the abstract result Theorem 1.4, we first need to
compactify X so that F can be treated as a continuous map on a compact metric
space. The obvious compactification has four discontinuity points where r lies on
the intersection of Γi and Yj and ϕ = π/2 or −π/2, whichever points along Yj. To
work around this problem we instead consider the two-point compactification X in
which ∂Ω × {−π/2} and ∂Ω × {π/2} represent the two additional points (so X is
topologically a sphere), which are fixed by F . Equip X with a metric ρ such that

(3.1) ρ(x, y) ≤ d(x, y) for all x, y ∈ X,
and such that in addition, for every η > 0 there is C > 0 such that

(3.2) d(x, y) ≤ Cρ(x, y) for all x, y ∈ X(η) := {(r, ϕ) ∈ X : |ϕ| ≤ π/2− η}.
Using the bound in (3.1), specification w.r.t. d (which we will prove for an appropri-
ate G) implies specification w.r.t ρ (which we need to apply Theorem 1.4). Similarly,
(3.2) will allow us to obtain expansivity w.r.t. ρ.

The representation of X as a rectangle allows us to identify each tangent space
TxX with R2 in a canonical way, with basis given by partial derivatives w.r.t. r, ϕ.
Given v ∈ TxX, we write v = (dr, dϕ) for the representation of v w.r.t. this basis;
then we fix c > 0 and consider the following cones in R2 = TxX:

Ku := {v : −dr ≤ dϕ ≤ −c dr} and Ks := {c dr ≤ dϕ ≤ dr}.

Ku

Ks

dr

dϕ

Figure 4. Invariant cones for the stadium map.

Now we consider the regular set

R0 = (Γ1 ∪ Γ2)× (−π/2, π/2)

consisting of all collisions with one of the semi-circles. Say that an orbit seg-
ment (x, n) with endpoints in R0 crosses the stadium if it hits both semi-circles

4This also requires us to use a different compactification than the one described here.
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at least once; that is, if there are k1, k2 ∈ {0, 1, . . . , n − 1} such that F ki(xi) ∈
Γi × (−π/2, π/2). Let

G0 = {(x, n) ∈ X × N : x, F n−1(x) ∈ R0 and (x, n) crosses the stadium}.
The following uses properties of the Bunimovich stadium, and we omit the proof.

Lemma 3.3. There are Λ > 1 and c > 0 such that if (x, n) ∈ G0, then

DF n
x (Ku) ⊂ Ku and (DF n

x )−1(Ks) ⊂ Ks,

and for any vu ∈ Ku, vs ∈ Ks, we have

‖DF n
x v

u‖ ≥ Λ‖vu‖, and ‖(DF n
x )−1vs‖ ≥ Λ‖vs‖.

Now fix η > 0 and let

Rη = {(r, ϕ) ∈ X : d(r, Y ) ≥ η and |ϕ| ≤ π/2− η}.
Then consider the collection of orbit segments

Gη := {(x, n) ∈ X × N : x, F n−1(x) ∈ Rη and (x, n) crosses the stadium}.
Using Lemma 3.3 and replacing W s,W u with curves tangent to the cones Ks, Ku,

one can run the specification argument just as in the uniformly hyperbolic case and
use topological transitivity to deduce that

Lemma 3.4. For every η > 0, Gη has specification at all scales.

Moreover, writing

Bη = {(x, n) : F kx ∈ Rc
η = X \Rη for all 0 ≤ k < n},

it is easy to see that Bη,Gη,Bη gives a decomposition for the space of orbit segments
X × N: indeed, given (x, n) it suffices to take p, s ∈ {0, 1, . . . , n− 1} minimal such
that fp(x) ∈ Rη and fn−p(x) ∈ Rη; then clearly (x, p) ∈ Bη, (fpx, n− p− s) ∈ Gη,
and (fn−px, s) ∈ Bη.

Using arguments as in §2.1, one can make the following observations.

• If µη is a limit point of the usual maximizing measure construction for Bη,
then hµη(F ) ≥ h(Bη) and µη(R

c
η) = 1.

• If µ is a limit point of µη as η → 0, then µ(Rc
0) = 1 and thus hµ(f) = 0.

In particular, by upper semi-continuity of entropy (which takes a proof!),
hµη(f)→ 0 as η → 0.

Combining these gives limη→0 h(Bη) = 0, and in particular there is η > 0 such that
h(Bη) < htop(X,F ).

Finally, one can argue that any measure giving positive weight to some Rη is
expansive (use Poincaré recurrence to get infinitely many returns to Rη, each of
which gives a uniform amount of hyperbolicity), and thus h⊥exp(F ) = 0. This verifies

the hypotheses of Theorem 1.4 for (X,F ), and thus there is a unique MME.
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4. General result for flows

In order to state a version of Theorem 1.4 for flows, we need to give an appropriate
definition of expansivity. Given a continuous flow {ft : X → X}, for each x ∈ X
and ε > 0 we consider the set5

Γε(x) = {y ∈ X : d(ftx, fty) < ε for all t ∈ R}.
Definition 4.1. A flow-invariant measure µ is almost expansive at scale ε > 0 if for
µ-a.e. x ∈ X there is s > 0 such that Γε(x) ⊂ {ftx : t ∈ [−s, s]}.

Then we define the entropy of obstructions to expansivity in the same way as
before:

h⊥exp({ft}, ε) := sup{hµ(f1) : µ is not almost expansive at scale ε}.
Specification, decompositions, and entropy of a collection of orbit segments are
defined for flows in the obvious way, by adapting the discrete-time definitions.

Theorem 4.2: A general uniqueness result for flows [CT16]

Let X be a compact metric space and {ft} : X → X a continuous flow. Sup-
pose that ε > 40δ > 0 are such that h⊥exp(X, {ft}, ε) < htop(X, {ft}), and that
the space of orbit segments X × N admits a decomposition CpGCs such that

(I) every collection GM has specification at scale δ, and
(II) h(Cp ∪ Cs, δ) < htop(X, {ft}).

Then (X, {ft}) has a unique measure of maximal entropy.

5. Geodesic flows

Let M be a closed connected Riemannian manifold and F = {ft : T 1M →
T 1M}t∈R its geodesic flow; that is, ft(v) = ċv(t), where cv : R → M is the unique
unit speed geodesic with ċv(0) = v.

If all sectional curvatures of M are negative at every point, then F is a transitive
Anosov flow; in particular, it is expansive and has specification, and there is a unique
measure of maximal entropy.

To go beyond negative curvature, one generally needs the tools of non-uniform
hyperbolicity.6 There are three further classes of manifolds that generally exhibit
some kind of non-uniformly hyperbolic behaviour: nonpositive curvature; no focal
points; and no conjugate points. The relationships are as follows:

negative curv.⇒ nonpositive curv.⇒ no focal points⇒ no conjugate points.

5There is a difference between this and the original formulation of expansivity for flows by
Bowen and Walters: they allow reparametrizations and thus obtain a potentially larger set Γε.
Our definition of expansivity (even without the “almost everywhere” part) is weaker than theirs,
but is still sufficient for the uniqueness result.

6There are some examples of manifolds with some positive curvature where the geodesic flow is
still Anosov, but one should not expect this in general.
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The reverse implications all fail in general.
The definition of nonpositive curvature is easy: all sectional curvatures are ≤ 0 at

every point. No focal points and no conjugate points are defined in terms of Jacobi

fields. If we work in the universal cover M̃ , then no focal points is equivalent to
the condition that t 7→ d(c1(t), c2(t)) be nondecreasing whenever c1, c2 are geodesics
with c1(0) = c2(0), while no conjugate points is equivalent to the condition that
this function never vanish for t > 0; in other words, there is at most one geodesic

connecting any two points in M̃ .

5.1. Nonpositive curvature and no focal points. To prove uniqueness of the
MME in the setting of nonpositive curvature, one must first rule out counterexamples
such as direct products by imposing a “rank 1” condition; in dimension 2 this turns
out to be equivalent to asking that the genus be ≥ 2. Under this condition, Knieper
proved uniqueness of the MME in any dimension using Patterson–Sullivan measures
on the ideal boundary [Kni98]. His result has recently been extended to manifolds
with no focal points by Fei Liu, Fang Wang, and Weisheng Wu [LWW18].

An alternate proof of uniqueness of the MME for rank 1 manifolds with nonpos-
itive curvature was recently given using specification-based techniques [BCFT18];
this also established existence and uniqueness of a broad class of equilibrium states,
and will be the main focus of Dan Thompson’s talks next week. This approach
has been extended to surfaces without focal points by Dong Chen, Nyima Kao, and
Kiho Park [CKP18]. Another specification-based proof of uniqueness of the MME
for surfaces without focal points was given by Katrin Gelfert and Rafael Ruggiero
[GR19].

5.2. No conjugate points. When M is merely assumed to have no conjugate
points, life is substantially harder because many of the geometric tools used in the
previous settings are no long available, such as convexity of horospheres, monotonic-
ity of the distance function, and continuity of the stable and unstable foliations of
T 1M (cf. the “dinosaur” example of Ballmann, Brin, and Burns [BBB87]).

Under the additional (strong) assumption that the flow is expansive, uniqueness
of the MME was proved by Aurélien Bosché, a student of Knieper, in his Ph.D.
thesis [Bos18]. The following result says that at least in dimension 2, we can remove
the assumption of expansivity.

Theorem 5.1 (V.C., Gerhard Knieper, Khadim War [CKW19]). Let M be a closed
manifold of dimension 2, with genus ≥ 2, equipped with a smooth Riemannian metric
without conjugate points. Then the geodesic flow on T 1M has a unique measure of
maximal entropy.

Remark 5.2. A higher-dimensional version of Theorem 5.1 is available [CKW19],
but requires additional assumptions on M : existence of a ‘background’ metric with
negative curvature; the divergence property; residually finite fundamental group;
and a certain ‘entropy gap’ condition. All of these can be verified for every metric
without conjugate points on a surface of genus 2.
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Remark 5.3. It is a somewhat surprising consequence of the proof technique (to
be described momentarily) that we have no idea how to extend this result to any
nonzero potentials!

To prove Theorem 5.1, we will actually establish specification for the entire sys-
tem, without the need for passing to a subcollection of orbit segments. The key tool
is the Morse Lemma, which states that if g, g0 are two metrics on M such that g has
no conjugate points and g0 has negative curvature, then there is a constant R > 0
such that if c, α are geodesic segments w.r.t. g, g0, respectively, in the universal

cover M̃ that agree at their endpoints, then they remain within a distance R for
along their entire length.

Since M is a surface of genus ≥ 2, it admits a metric of negative curvature. Given
an orbit segment (v, t) ∈ T 1M × (0,∞) for the g-geodesic flow, let p, q be the start
and end points of some lift of the corresponding g-geodesic segment to the universal
cover. Let (w, s) ∈ T 1M × (0,∞) be the unique unit tangent vector that begins a
g0-geodesic segment starting at p and ending at q. Then E : (v, t) 7→ (w, s) defines
a map from the space of g-orbit segments to the space of g0-orbit segments with the
property that (v, t) and E(v, t) remain within R for their entire lengths.

Using this correspondence, one can take a finite sequence of g-orbit segments
(x1, t1), . . . , (xk, tk), find g0-orbit segments E(xi, ti) that remain withinR, and shadow
these (say, to within R) using the specification property for the (Anosov) g0-geodesic
flow by a single orbit segment (y, T ). Then E−1(y, T ) is a 3R-shadowing orbit (w.r.t.
g) for the original segments (xi, ti), for which the transition times are uniformly
bounded. This argument, when properly fleshed out, proves that the geodesic flow
for g has specification at scale 3R.7

Now all we need is to prove that obstructions to expansivity at scale 120R have
small entropy. The problem with this is that R itself, and especially 120R, is likely
much larger than the diameter of M . So at this point, it looks like the previous
paragraph is completely vacuous – any orbit segment of the appropriate length
shadows the (xi, ti) segments to within 3R.

The way out is to pass to a finite cover. By gluing together enough copies of
a fundamental domain for M ,8 one can find a finite covering manifold N whose
injectivity radius is > 360R. Observe that

• the geodesic flow on T 1M is a finite-to-1 factor of the geodesic flow on T 1N ,
so there is an entropy-preserving bijection between their spaces of invariant
measures, and in particular there is a unique MME for the geodesic flow over
M if and only if there is a unique MME over N ;
• the argument for specification that we gave above still works for the geodesic

flow on N , with the same scale, because this scale comes from the Morse
Lemma and is given at the level of the universal cover.

7In fact the scale ends up being a more complicated function of R, but the idea is the same.
8Formally, one needs to take a finite index subgroup of π1(M) that avoids all non-identity

elements corresponding to a large ball in M̃ ; this is possible because π1(M) is residually finite.
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So it only remains to argue that h⊥exp(120R) < htop for the geodesic flow on N .
This is done by observing that if d(ftv, ftw) < 120R for all t ∈ R but w does not lie

on the orbit of v, then lifting to geodesics on M̃ and using the fact that we are below
the injectivity radius of N allows us to conclude that the lifts of v, w are tangent to

distinct geodesics between the same pair of points on the ideal boundary ∂M̃ . Thus
if µ is any ergodic invariant measure that is not almost expansive at scale 120R,
then µ gives full weight to the set of vectors tangent to such “non-unique geodesics”.

On the other hand, if hµ > 0, then µ is a hyperbolic measure by the Margulis–
Ruelle inequality, and thus by Pesin theory, µ-a.e. v has transverse stable and un-
stable leaves. These leaves are the normal vector fields to the stable and unstable
horospheres, and thus these horospheres meet at a single point, meaning that the
geodesic through v is the unique geodesic between its endpoints on the ideal bound-
ary. By the previous paragraph, this means that µ is almost expansive. It follows
that h⊥exp(120R) = 0 < htop, and Theorem 4.2 establishes existence and uniqueness
of the MME.
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