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VAUGHN CLIMENHAGA

Disclaimer. These notes are my preliminary attempt to provide a little more detail
for my second lecture during the 2019 Dynamics Beyond Uniform Hyperbolicity
conference at CIRM, and are still quite informal and incomplete. The goal of this
second lecture is to describe “obstructions to expansivity” for partially hyperbolic
systems, and formulate a general uniqueness result. The third lecture will describe
further applications, including billiards and geodesic flows. Once again there is more
material here than I really expect to get through in 50 minutes, so there will be some
editing after the fact. . .

Correction: During the live lecture I made a remark that the role of expansivity was
to guarantee that for a fixed ε > 0, the set of Bowen balls {Bn(x, ε) : x ∈ X,n ∈ N}
generates the Borel σ-algebra. In fact this is not correct: for example, if f is a circle
rotation then Bn(x, ε) = B(x, ε) for all n, and these sets generate the Borel σ-algebra
because we can take intersections of them to obtain arbitrarily small balls. What I
should have said is that expansivity guarantees that every partition of sufficiently
small diameter is a generating partition for every invariant measure. Then one
observes that it suffices to be a generating partition for measures of large entropy,
and this motivates the definition of h⊥exp.

1. Uniformly hyperbolic systems

Now we describe how Bowen’s approach works when X is a transitive locally max-
imal hyperbolic set for a diffeomorphism f . First we recall some basic definitions.

1.1. Topological entropy.

Definition 1.1. Given n ∈ N, the nth dynamical metric on X is

(1.1) dn(x, y) := max{d(fkx, fky) : 0 ≤ k < n}.
The Bowen ball of order n and radius ε > 0 centered at x ∈ X is

(1.2) Bn(x, ε) := {y ∈ X : dn(x, y) < ε}.
A set E ⊂ X is called (n, ε)-separated if dn(x, y) > ε for all x, y ∈ E with x 6= y;
equivalently, if y /∈ Bn(x, ε) for all such x, y.
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2 VAUGHN CLIMENHAGA

We define entropy in a more general way than is standard, reflecting our focus on
the “space of finite-length orbit segments” X × N as the relevant object of study;
this replaces the language L that we used in the symbolic setting. The analogy is
that a cylinder [w] for a word in the language corresponds to a Bowen ball Bn(x, ε)
associated to an orbit segment (x, n) ∈ X × N, where we reiterate that (x, n) ∈
X×N should be thought of as representing the orbit segment (x, fx, f 2x, . . . , fn−1x).
Given a collection of orbit segments D ⊂ X × N, for each n ∈ N we write

(1.3) Dn := {x ∈ X : (x, n) ∈ D}
for the collection of points that begin a length-n orbit segment in D.

Definition 1.2 (Topological entropy). Given a collection of orbit segments D ⊂
X × N, the entropy of D at scale ε > 0 is

(1.4) h(D, ε) := lim
n→∞

1

n
log max{#E : E ⊂ Dn is (n, ε)-separated},

and the entropy of D is

(1.5) h(D) := lim
ε→0

h(D, ε).

When D = Y ×N for some Y ⊂ X, we write htop(Y, ε) = h(Y ×N, ε) and htop(Y ) =
limε→0 htop(Y, ε). In particular, when D = X × N we write htop(X, f) = htop(X) =
h(X × N) for the topological entropy of f : X → X.

When different orbit segments in D are given weights according to their ergodic
sum w.r.t. a given potential ϕ, we obtain a notion of topological pressure, which we
will discuss in a later lecture.

Theorem 1.3 (Variational principle). Let X be a compact metric space and f : X →
X a continuous map. Then

(1.6) htop(X, f) = sup
µ∈Mf (X)

hµ(f).

The following construction forms one half of the proof of the variational principle.

Proposition 1.4 (Building a measure of almost maximal entropy). With X, f as
above, fix ε > 0, and for each n ∈ N, let En ⊂ X be an (n, ε)-separated set. Consider
the Borel probability measures

(1.7) νn :=
1

#En

∑
x∈En

δx, µn :=
1

n

n−1∑
k=0

fk∗ νn =
1

n

n−1∑
k=0

νn ◦ f−k.

Let µnj
be any subsequence that converges in the weak*-topology to a limiting measure

µ. Then µ ∈Mf (X) and

(1.8) hµ(f) ≥ lim
j→∞

1

nj
log #Enj

.

In particular, for every δ > 0 there exists µ ∈Mf (X) such that hµ(f) ≥ htop(X, f, δ).
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Proof. See [Wal82, Theorem 8.6]. �

Corollary 1.5. Let X, f be as above, and suppose that there is δ > 0 such that
htop(X, f, δ) = htop(X, f). Then there exists a measure of maximal entropy for
(X, f). Indeed, given any sequence {En ⊂ X}∞n=1 of maximal (n, δ)-separated sets,
every weak*-limit point of the sequence µn from (1.7) is an MME.

In our applications, it will often be relatively easy to verify that htop(X, f, δ) =
htop(X, f) for some δ > 0, and so Corollary 1.5 establishes existence of a measure of
maximal entropy. Thus the real challenge is to prove uniqueness, and this will be
our focus.

1.2. Expansivity and specification. Now we formulate two crucial properties
that are satisfied by uniformly hyperbolic systems.

Definition 1.6 (Expansivity). Given x ∈ X and ε > 0, let

(1.9) Γ+
ε (x) := {y ∈ X : d(fny, fnx) < ε for all n ≥ 0} =

⋂
n∈N

Bn(x, ε)

be the forward infinite Bowen ball. If f is invertible, let

(1.10) Γ−ε (x) := {y ∈ X : d(fny, fnx) < ε for all n ≥ 0}
be the backward infinite Bowen ball, and let

(1.11) Γε(x) := Γ+
ε (x) ∩ Γ−ε (x) = {y ∈ X : d(fny, fnx) < ε for all n ∈ Z}

be the bi-infinite Bowen ball. The system (X, f) is positively expansive at scale
ε > 0 if Γ+

ε (x) = {x} for all x ∈ X, and (two-sided) expansive at scale ε > 0 if
Γε(x) = {x}. The system is (positively) expansive if there exists ε > 0 such that it
is (positively) expansive at scale ε.

Proposition 1.7. If X is a locally maximal hyperbolic set for a diffeomorphism f ,
then (X, f) is expansive.

Sketch of proof. Choose ε > 0 small enough that given any x, y ∈ X with d(x, y) < ε,
the local leaves W s(x) and W u(y) intersect in a unique point [x, y] ∈ X. Write

du(x, y) = d(x, [x, y]) and ds(x, y) = d(y, [x, y]).

Hyperbolicity1 gives λ > 0 such that

du(fnx, fny) ≥ eλndu(x, y) if d(fkx, fky) < ε for all 0 ≤ k ≤ n,(1.12)

ds(f−nx, f−ny) ≥ eλnds(x, y) if d(f−kx, f−ky) < ε for all 0 ≤ k ≤ n.(1.13)

In particular, if y ∈ Γε(x) then du(fnx, fny) is uniformly bounded for all n, so
du(x, y) = 0, and similarly for ds, which implies that x = [x, y] = y. �

One important consequence of expansivity is the following.

Proposition 1.8. If (X, f) is expansive at scale ε, then htop(X, f, ε) = htop(X, f).

1In an adapted metric, if necessary.
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As with entropy, the following formulation of the specification property is given
for a collection of orbit segments D ⊂ X × N, and thus is not quite the classical
one, but reduces to (a version of) the classical definition when we take D = X ×N.
Observe that when X is a shift space and we associate to each (x, n) the word
x[1,n] ∈ L(X), the following agrees with the definition from last time.

Definition 1.9 (Specification). A collection of orbit segments D ⊂ X × N has
the specification property at scale δ > 0 if there exists τ ∈ N such that for every
(x1, n1), . . . , (xk, nk) ∈ D, there exist 0 = T1 < T2 < · · · < Tk ∈ N and y ∈ X such
that

fTi(y) ∈ Bni
(xi, δ) for all 1 ≤ i ≤ k,

so that starting from time Ti the orbit of y shadows the orbit of xi, and writing
si = Ti + ni for the time at which this shadowing ends, we have

si ≤ Ti+1 ≤ si + τ for all 1 ≤ i < k;

see Figure 1. We say that D has the specification property if the above holds for
every δ > 0. We say that (X, f) has the specification property if X × N does.

. . .

. . .

T1 T2 T3 Tk
s1 s2 s3 sk

x1 x2 x3 xk

y

n1 n2 n3 nk
≤ τ ≤ τ

Figure 1. Bookkeeping in the specification property.

Proposition 1.10. If X is a topologically transitive locally maximal hyperbolic set
for a diffeomorphism f , then (X, f) has the specification property.

Sketch of proof. Given δ > 0, let W s
δ (x) and W u

δ (x) denote the stable and unstable
leaves through x of size δ. Topological transitivity and compactness give τ ∈ N such
that for every x, y ∈ X there is t ∈ {0, 1, . . . , τ} with f t(W u

δ (x))∩W s
δ (y) 6= ∅. Given

(x1, n1), . . . , (xk, nk) ∈ X×N, we construct iteratively yj ∈ X and Tj ∈ N such that
yj has the desired shadowing property for all 1 ≤ i ≤ j: that is, fTi(yj) ∈ Bni

(xi, δ)
for all 1 ≤ i ≤ j. Then taking y = yk suffices. See Figure 2 for a visual guide to the
following estimates.

Start by putting y1 = x and T1 = 0. Given yj and Tj write sj := Tj+nj and choose
tj ∈ {0, 1, . . . , τ} such that f tj(W u

δ (f sj(yj)) ∩W s
δ (xj+1) 6= ∅. Write Tj+1 = sj + tj

and let yj+1 be such that fTj+1(yj+1) lies in this intersection; that is,

f sj(yj+1) ∈ W u
δ (f sj(yj)) and fTj+1(yj+1) ∈ W s

δ (xj+1).

By hyperbolicity we have

(1.14) W s
δ (xj+1) ⊂ Bnj+1

(xj+1, δ) ⇒ dnj+1
(xj+1, f

Tj+1yj+1) < δ,

which we use in the form

(1.15) dni
(xi, f

Tiyi) < δ for all i.
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x1 fn1x1
x2 fn2x2

x3 fn3x3
x4 fn4x4

y2

y3

y4

f s2y2

f s2y4

fT3y3

f s3y3

f s3y4

< δ

< δe−λ

< δe−2λ

< δ

< δ

< δe−λ

< δ

< δ

< δ

Figure 2. Specification for a uniformly hyperbolic set.

Moreover, for i ≤ j we have

dni
(fTi(yj), f

Ti(yi)) ≤ du(f si(yj), f
si(yi)) ≤

j−1∑
`=i

du(f si(y`), f
si(y`+1))

≤
j−1∑
`=i

e−λ(s`−si)du(f s`y`, f
s`y`+1) ≤

j−1∑
`=i

e−λ(`−i)δ <
δ

1− e−λ .

Together with (1.15) this gives

dni
(xi, f

Tiyj) ≤ dni
(xi, f

Tiyi) + dni
(fTiyi, f

Tiyj) ≤ δ +
δ

1− e−λ =: δ′,

which proves specification at scale δ′. �

Remark 1.11. The fact that f−1 contracts uniformly along W u was used in an
essential way in the proof, in order to guarantee convergence of the geometric series.
However, contraction of f along W s was only used to establish the inclusion in
(1.14), and in particular it would suffice to know that ‖Df |Es‖ ≤ 1.

Bowen’s original uniqueness result [Bow75], which we outlined last time, was
actually given not for shift spaces, but for more general expansive systems.

Theorem 1.12: Expansivity and specification (Bowen)

Let X be a compact metric space and f : X → X a continuous map. Suppose
that ε > 28δ > 0 are such that f has expansivity at scale ε and the specification
property at scale δ. Then (X, f) has a unique measure of maximal entropy.

Remark 1.13. If f has both specification and expansivity at scale δ, then it has
specification at all scales, and this is the hypothesis in Bowen’s original paper. The
proof only uses specification at a fixed scale, and we formulate the result this way in
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preparation for our generalization, which uses a weaker expansivity property that
does not let the specification property be transmitted to smaller scales.

2. Role of expansivity

The proof of Theorem 1.12 mirrors the strategy in the symbolic case:

(1) show that the usual construction of an MME gives an ergodic Gibbs measure;
(2) prove that an ergodic Gibbs measure must be the unique MME.

Now we examine the role played by expansivity.

2.1. Construction of a Gibbs measure. In the symbolic setting, the first step
to building a Gibbs measure was to prove the following counting bounds :

(2.1) enhtop(X) ≤ #Ln ≤ Qenhtop(X).

Then one considered measures νn giving equal weight to every n-cylinder, and proved
a Gibbs property for any limit point of the measures µn = 1

n

∑n−1
k=0 σ

k
∗νn. For non-

symbolic systems, the role of cylinders is played by Bowen balls, and one proves the
following.

Proposition 2.1. Let X be a compact metric space and f : X → X a continuous
map with the specification property at scale δ > 0. Let En ⊂ X be a maximal
(n, δ)-separated set for each n, and consider the measures

(2.2) µn :=
1

#En

∑
x∈En

1

n

n−1∑
k=0

δfkx.

Then there is K ≥ 1 such that every weak* limit point µ of the sequence µn is
f -invariant and satisfies

(2.3) K−1e−nhtop(X,f,7δ) ≤ µ(Bn(x, 7δ)) ≤ Ke−nhtop(X,f,7δ) for all x ∈ X,n ∈ N.

Remark 2.2. Our formulation here differs from that of Bowen in that we do not
assume specification at all small scales, merely at scale δ. Note that this means
we get a Gibbs property at scale 7δ, but not necessarily at smaller scales. The
multiple scales appearing in Proposition 2.1 arise because Bowen balls can overlap
without being nested. In the symbolic setting, if δ = 1

4
and y ∈ Bn(x, δ), then

Bn(y, δ) = Bn(x, δ) = [w] where w := y[1,n] = x[1,n].
2 In the non-symbolic setting, if

y ∈ Bn(x, δ) then the most we can say is that Bn(y, δ) ⊂ Bn(x, 2δ), and vice versa.
Thus the various counting arguments that mimic (2.1), and other arguments using
the specification property, require us to change scales several times. We will skip
the details of this here, though, and merely state the conclusions.

Corollary 2.3. Let X, f be as above and suppose that htop(X, f, 7δ) = htop(X, f).
Then every µ as above satisfies the Gibbs property

(2.4) K−1e−nhtop(X,f) ≤ µ(Bn(x, 7δ)) ≤ Ke−nhtop(X,f).
2In other words, in a shift space, each dn is an ultrametric, for which the triangle inequality is

strengthened to dn(x, z) ≤ max{dn(x, y), dn(y, z)}.
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In particular, if f has specification at scale δ and is expansive at scale 7δ, then
Corollary 2.3 applies, thanks to the following.

Proposition 2.4. If (X, f) is expansive at scale ε, then htop(X, f, ε) = htop(X, f).

Two proof ideas. We outline two proofs in the positively expansive case.
One argument uses a compactness argument to show that for every 0 < δ < ε,

there is N ∈ N such that BN(x, ε) ⊂ B(x, δ) for all x ∈ X. This implies that
Bn+N(x, ε) ⊂ Bn(x, δ) for all x, and then one can show that the definition of topo-
logical entropy via (n, ε)-separated sets gives the same value at δ as at ε.

Another method, which is better for our purposes, is to observe that since ε-
expansivity gives

⋂
nBn(x, ε) = {x} for all x, one can easily show that for every

ν ∈Mf (X), we have:

(2.5) if β is a partition with dn-diameter < ε, then β is generating for (fn, ν).

Given a maximal (n, ε)-separated set En, we can choose a partition βn such that
each element of βn is contained in Bn(x, ε) for some x ∈ En, so βn has exactly #En
elements. Then we have

(2.6) hµ(f) =
1

n
hµ(fn) =

1

n
hµ(fn, βn) ≤ 1

n
Hµ(βn) ≤ 1

n
log #En.

Sending n → ∞ gives hµ(f) ≤ htop(X, f, ε), and taking a supremum over all µ ∈
Mf (X) proves that htop(X, f, ε) = htop(X, f). �

2.2. Ergodicity. Observe that we have not yet claimed anything about ergodicity
of the Gibbs measure µ. In the symbolic case, the argument for the Gibbs property
can be used to deduce that there is c > 0 and k ∈ N such that for every v, w ∈ L
and j ≥ |v|+ k, we have Not quite this...

only for a sequence
of j with bounded

gaps.

µ([v] ∩ σ−j[w]) ≥ cµ[v]µ[w].

Since any Borel set can be approximated (w.r.t. µ) by unions of cylinders, this in
turn implies that

lim
j→∞

µ(V ∩ σ−jW ) ≥ cµ(V )µ(W )

for all V,W ⊂ X, which gives ergodicity. In the non-symbolic setting, one can still
mimic the Gibbs argument to prove that for every (x, n), (y,m) ∈ X × N and any
j ≥ n+ k, we have

(2.7) µ(Bn(x, 7δ) ∩ f−jBm(y, 7δ)) ≥ cµ(Bn(x, 7δ))µ(Bm(y, 7δ)).

To establish ergodicity from this one needs to approximate arbitrary Borel sets by
sets whose µ-measure we control; this can be done by using a sequence of adapted
partitions βn, for which each element of βn contains a Bowen ball Bn(x, 7δ) and is
contained inside a Bowen ball Bn(x, 14δ). Expansivity implies that this sequence
of partitions is generating w.r.t. µ, so the rest of the argument goes through as
before, and establishes ergodicity. As we saw in the proof of Proposition 2.4, this
is also enough to guarantee that htop(X, f, 7δ) = htop(X, f). We summarize our
conclusions as follows.
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Proposition 2.5. Let X, f, δ, µ be as in Proposition 2.1. Suppose that f is expansive
at scale 28δ. Then µ is ergodic and satisfies the (true) Gibbs property (2.4).

2.3. Adapted partitions and uniqueness. The proof that an ergodic Gibbs mea-
sure is the unique MME has the following generalization to the non-symbolic setting.

Proposition 2.6. Let X be a compact metric space, f : X → X a continuous map,
and µ an ergodic f -invariant measure on X. Suppose that there is ρ > 0 such that

• f is expansive (or positively expansive) at scale 4ρ;
• there is K ≥ 1 such that µ satisfies the lower Gibbs bound µ(Bn(x, ρ)) ≥
K−1e−nhtop(X,f) for every x ∈ X, n ∈ N.

Then µ is the unique MME for (X, f).

Outline of proof. As before, the first step is to reduce to proving that an invariant
measure ν ⊥ µ must have hν(f) < hµ(f); this is unchanged from the symbolic case.
The next step there was to choose D ⊂ X with µ(D) = 1 and ν(D) = 0, and
approximate D by a union of cylinders; then writing3

(2.8) nhν(f) = hν(f
n) = hν(f

n, αn−10 ) ≤ Hν(α
n−1
0 ) =

∑
w∈Ln

−ν[w] log ν[w],

and splitting the sum between cylinders in Dn and those in Dc
n, one eventually

proves that hν(f) < hµ(f) by using the Gibbs bound µ[w] ≥ e−|w|htop(X).
In the non-symbolic setting, the approximation of D follows just as in the para-

graph after (2.7). Moreover, we can obtain an analogue of (2.8) by replacing αn−10

with a partition βn such that every element of βn is contained in Bn(x, 2ρ) for some
point x in a maximal (n, 2ρ)-separated set En. Finally, as long as we also arrange
that each element of βn contain Bn(x, ρ),4 we can use the lower Gibbs bound to
complete the proof just as in the symbolic case. �

Remark 2.7. In the two-sided expansive case, the same argument works, replacing
dn and Bn with their two-sided versions.

3. Obstructions to expansivity

As explained in the previous section, the role of expansivity in the proof of The-
orem 1.12 is to guarantee that certain sequences of partitions are generating with
respect to every invariant ν. In fact, in every place where this property is used, it
is enough to know that this holds for all ν with sufficiently large entropy.

More precisely, at the end of the proof, in (the analogue of) (2.8), it suffices to
know that αn−10 is generating for (fn, ν) when ν is an arbitrary MME, because if
ν is not an MME then we already have hν < hµ, which was the goal. This is also
sufficient for the approximation of D by elements of the partitions βn, and thus
Proposition 2.6 remains true if we replace expansivity with the assumption that for
every MME ν, we have Γε(x) = {x} for ν-a.e. x.

3Observe the similarity between (2.6) and (2.8).
4Such a βn is called an adapted partition.
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In Proposition 2.1, the argument for ergodicity required a similar generating prop-
erty. Finally, in Proposition 2.4, it suffices to have this generating property w.r.t. a
family of measures ν over which supν hν(f) = htop(X, f).

With these observations in mind, we make the following definitions.

Definition 3.1 ([BF13]). An f -invariant measure µ is almost expansive at scale ε
if Γε(x) = {x} for µ-a.e. x; equivalently, if the non-expansive set NE(ε) = {x ∈ X :
Γε(x) 6= {x}} has µ(NE(ε)) = 0. Replacing Γε by Γ+

ε gives NE+ and a notion of
almost positively expansive.

Definition 3.2 ([CT14]). The entropy of obstructions to expansivity at scale ε is

h⊥exp(X, f, ε) := sup{hµ(f) : µ ∈Me
f (X) is not almost expansive at scale ε}

= sup{hµ(f) : µ ∈Me
f (X) and µ(NE(ε)) > 0}.

We write h⊥exp(X, f) = limε→0 h
⊥
exp(X, f, ε) for the entropy of obstructions to expan-

sivity, without reference to scale. The entropy of obstructions to positive expansivity
h⊥exp+ is defined analogously.

From the discussion above, we see that in Proposition 2.5 we can replace the
assumption of expansivity with the assumption that h⊥exp(X, f, 7δ) < htop(X, f),

since then every ergodic ν with hν(f) > h⊥exp(X, f, 7δ) is almost expansive, so the

Proposition goes through.5 Similarly in Proposition 2.6, it suffices to assume that
h⊥exp(X, f, 4ρ) < htop(X, f).

Now we have all the pieces for a uniqueness result using non-uniform expansivity.

Theorem 3.3: Small obstructions to expansivity [CT14]

Let X be a compact metric space and f : X → X a continuous map. Suppose
that ε > 28δ > 0 are such that h⊥exp(X, f, ε) < htop(X, f), and that f has
the specification property at scale δ. Then (X, f) has a unique measure of
maximal entropy.

Remark 3.4. As in the symbolic case, if specification is upgraded to periodic specifi-
cation, then provided one excludes “non-expansive” periodic orbits, we get uniform
counting bounds on the number of periodic orbits, and the unique MME is their
limiting distribution.

4. Derived-from-Anosov systems

We describe a class of smooth systems for which expansivity fails but the entropy
of obstructions to expansivity is small.6 The following example is due to Mañé
[Mañ78]; we primarily follow the discussion in [CFT19], and refer to that paper for
further details and references.

5See [CT14, Proposition 2.7] for a detailed proof that htop(X, f, 7δ) = htop(X, f) in this case.
6This section was omitted from the live lecture due to time constraints.
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4.1. Construction of the Mañé example. Fix a matrix A ∈ SL(3,Z) with
simple real eigenvalues λu > 1 > λs > λss > 0, and corresponding eigenspaces
F u,s,ss ⊂ R3. Let f0 : T3 → T3 be the hyperbolic toral automorphism defined by A,
and let Fu,s,ss be the corresponding foliations of T3. Define a perturbation f of f0
as follows.

F s

F ss

F u

q

B(q, ρ)

f0
W c

W ss

W u

qp
f

Figure 3. Mañé’s construction.

Fix ρ > ρ′ > 0 such that f0 is expansive at scale ρ. Let q ∈ T3 be a fixed point of
f , and set f = f0 outside of B(q, ρ). Inside B(q, ρ), perform a pitchfork bifurcation
in the center direction as shown in Figure 3, in such a way that

• the foliation W c := F s remains f -invariant, and we write Ec = TW c;
• the cones around F u and F ss remain invariant and uniformly expanding for
Df and Df−1, respectively, so they contain Df -invariant distributions Eu,ss

that integrate to f -invariant foliations W u,ss;
• Ecs = Ec ⊕ Ess integrates to a foliation W cs;
• outside of B(q, ρ′), we have ‖Df |Ecs‖ ≤ λs < 1.

Thus f is partially hyperbolic with TT3 = Eu⊕Ec⊕Ess = Eu⊕Ecs. Observe that

(4.1) λc(f) := sup{‖Df |Ecs(x)‖ : x ∈ T3} > 1

because the center direction is expanding at q.
Now consider a diffeomorphism g : T3 → T3 that is C1-close to f . Such a g

remains partially hyperbolic, with

(4.2) λc(g) > 1 > λs(g) := sup{‖Df |Ecs(x)‖ : x ∈ T3 \B(q, ρ′)}.

Existence of a unique MME was proved for such g by Ures [Ure12] and by Buzzi,
Fisher, Sambarino, and Vásquez [BFSV12], using the fact that there is a semiconju-
gacy from g back to the hyperbolic toral automorphism f0. We outline an alternate
proof using Theorem 3.3, which has the benefit of extending to class of nonzero
potential functions as well [CFT19].
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4.2. Estimating the entropy of obstructions. At first glance, the approach via
expansivity and specification looks problematic: although the map g behaves as if it
is uniformly hyperbolic outside of B(q, ρ), the presence of fixed points with different
indices inside this ball causes expansivity to fail. Indeed, let p denote one of the two
fixed points created via the pitchfork bifurcation, and let x be any point on the leaf
of W c that connects p to q. Then for every ε > 0, the bi-infinite Bowen ball Γε(x)
is a non-trivial curve in W c, rather than a single point.

However, with a little more care we see that this failure of expansivity can only
happen for points whose orbits satisfy rather severe restrictions.

Lemma 4.1. Let g be a partially hyperbolic diffeomorphism with a splitting Eu ⊕
Ec ⊕ Es such that Ec is 1-dimensional and integrable. Then there is ε0 > 0 such
that Γε0(x) ⊂ W c(x) for every x. Moreover, for every λ > 0 there is ε > 0 such that

(4.3) lim
n→∞

1

n
log ‖Dg−n|Ec(x)‖ > λ ⇒ Γε(x) = {x}.

Sketch of proof. Following the argument for expansivity in the uniformly hyperbolic
setting, we choose ε0 such that whenever d(x, y) < ε0, we can get from x to y by
moving a distance ds along a leaf of W s, then a distance dc along a leaf of W c, then
a distance du along a leaf of W u. The argument given there shows that if y ∈ Γε0(x)
then we must have ds(x, y) = du(x, y) = 0, which implies that y ∈ W c(x). For (4.3),
we observe that if the condition on Dg−n is satisfied, then there are arbitrarily large
n such that

(4.4) ‖Dg−n|Ec(x)‖ > ceλn.

Choosing ε > 0 sufficiently small that | log ‖Dg|Ec(z)‖− log ‖Dg|Ec(z′)‖| < λ/2 when-
ever d(z, z′) < ε, we see that any y ∈ Γε(x) satisfies

(4.5) d(g−nx, g−ny) ≥ ceλn/2d(x, y)

for all n satisfying (4.4). Since n can become arbitrarily large, this implies that
d(x, y) = 0. �

Remark 4.2. Replacing backwards time with forwards time, the analogous result
for positive Lyapunov exponents is also true: lim 1

n
log ‖Dgn|Ec(x)‖ > λ implies that

Γε(x) = {x}.
For the Mañé examples, we can use (4.2) to control ‖Dg−n|Ec(x)‖ in terms of

how much time the orbit of x spends outside B(q, ρ); together with Lemma 4.1, this
allows us to estimate the entropy of NE(ε). To formalize this, we write χ = 1T3\B(q,ρ)

and observe that by the definition of λc(g) and λs(g) in (4.1) and (4.2), we have

‖Dg−n|Ec(x)‖ ≥ λs(g)−sn(x)λc(g)−(n−sn(x)) where sn(x) :=
n−1∑
k=0

χ(g−kx).

It follows that

(4.6) lim
n→∞

1

n
log ‖Dg−n|Ec(x)‖ ≥ −(r(x) log λs(g) + (1− r(x)) log λc(g))
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where we write

r(x) = lim
n→∞

1

n
sn(x) = lim

n→∞
1

n

n−1∑
k=0

χ(g−kx).

Fix λ ∈ (0,− log λs(g)) and let r > 0 satisfy −(r log λs(g) + (1 − r) log λc(g)) > λ.
Then Lemma 4.1 and (4.6) show that for a sufficiently small ε > 0, we have

(4.7) NE(ε) ⊂ {x : r(x) < r}.
Recalling that the uniform counting bounds in (2.1) (or rather, their analogue for
non-symbolic systems) give Λsep

n (X, f0) ≤ Qenhtop(X,f0) for some constant L that is
independent of n, one can use this characterization of non-expansive points to prove
the following.

Lemma 4.3 ([CFT18, §3.4]). Writing H(t) = −t log t − (1 − t) log(1 − t) for the
usual bipartite entropy function, the Mañé examples satisfy

h⊥exp(g, ε) < r(htop(X, f0) + logQ) +H(2r).

Idea of proof. Given an ergodic measure µ that satisfies µ(NE(ε)) and thus satisfies
lim 1

n
Snχ(g−nx) ≤ r for µ-a.e. x, the Katok entropy formula [Kat80] can be used to

show that hµ(f) ≤ h(C), where

(4.8) C := {(x, n) ∈ T3 × N : Snχ(x) ≤ rn}.
To estimate h(C), the idea is to partition an orbit segment (x, n) ∈ C into pieces
lying entirely inside or outside of B(q, ρ). There can be at most rn pieces lying
outside, so the number of transition times between inside and outside is at most
2rn. The number of ways of choosing these transition times is thus at most(

n

2rn

)
=

n!

(2rn)!((1− 2r)n)!
≈ eH(2r)n,

where the approximation can be made more precise using Stirling’s formula or a
rougher elementary integral estimate. This contribues the H(2r) term to the esti-
mate; the remaining terms are roughly due to the observation that given a pattern of
transition times for which the segments lying outside B(q, ρ) have lengths k1, . . . , km,
the number of ε-separated orbit segments in C associated to this pattern is at most

m∏
j=1

Λsep
ki

(X, f0, ε) ≤
m∏
j=1

Qekihtop(X,f0) ≤ Qmernhtop(X,f0) ≤ (Qehtop(X,f0))rn,

since no entropy is produced by the sojourns inside B(q, ρ). �

Since there is a semi-conjugacy from g to f0, we have htop(X, g) ≥ htop(X, f0).
Thus we have h⊥exp(g) < htop(g) whenever r satisfies

(4.9) r(htop(X, f0) + logQ) +H(2r) < htop(X, f0).

Recall that r must be chosen large enough such that λs(g)rλc(g)1−r < 1. Equiva-
lently, for a given value of r, the perturbation must be chosen small enough for this
to hold (that is, λc must be close enough to 1). Thus given f0, we can find r small
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enough such that (4.9) holds, and then for any sufficiently small perturbation the
above argument guarantees that h⊥exp(X, g) < htop(X, g).

Remark 4.4. Since Γε(x) ⊂ W c(x), which is one-dimensional, it is not hard to show
that htop(W c(x)) = 0, and thus htop(Γε(x)) = 0 [CY05, CFT19]; in other words,
f is entropy expansive. Entropy expansivity implies that htop(X, f, ε) = htop(X, f)
[Bow72], which is sufficient for the construction of a Gibbs measure in Proposition
2.1.7 However, there does not seem to be any way to use entropy expansivity to
carry out the arguments for ergodicity and uniqueness, since we have no way to
conclude that the Bowen balls generate the Borels on any sufficiently large set. In
fact, for the Bonatti–Viana examples introduced in [BV00],8 entropy expansivity
can fail [BF13] even while the condition h⊥exp < htop is satisfied [CFT18].

4.3. Coarse specification. In order to apply Theorem 3.3 to the Mañé examples,
one must investigate the specification property. In fact, recalling the uniformly
hyperbolic proof, we see that the only thing we are missing is uniform contraction
along W cs, which is replacing W s from that proof. But this contraction would enter
the proof of specification only by guaranteeing that

(4.10) W cs
δ (x) ⊂ Bn(x, δ) for all x.

Since contraction inW cs can fail for the Mañé example only inB(q, ρ′), one can easily
show that (4.10) continues to hold as long as δ > 2ρ′, and thus g has specification
at these scales. Choosing ρ′ to be small enough relative to ρ, Theorem 3.3 applies
and establishes existence of a unique MME.

Remark 4.5. It is essential here that we only require specification at a fixed finite
scale, because it fails at sufficiently small scales. Indeed, observe that for sufficiently
small δ > 0, the forward infinite Bowen ball Γ+

δ (q) is the 1-dimensional local stable
leaf W ss

δ (q). Suppose that g has specification at scale δ with gap size τ , and let x
be any point whose orbit never enters B(q, ρ). Specification gives y ∈ W u

δ (x) and
0 ≤ k ≤ τ such that fk(y) ∈ W ss

δ (q);9 In other words, f−τ (W ss
δ (q)) intersects every

local unstable leaf associated to an orbit that avoids B(q, ρ). But this is impossible
because the dimensions are wrong.10

5. The general result

Even though the Mañé example has specification at a suitable scale, it is still useful
to formulate a general result that combines the symbolic result using decompositions

7This comes with the caveat that Proposition 2.1 also requires the specification property, which
we have not discussed yet for these examples.

8These are 4-dimensional analogues of the Mañé examples that involve two separate perturba-
tions and have a dominated splitting TT4 = Ecu ⊕ Ecs but are not partially hyperbolic.

9Use specification to get yn ∈ fn(Bn(x, δ))∩ f−kn(Bn(q, δ)) for 0 ≤ kn ≤ τ , choose k such that
kn = k for infinitely many values of n, and let y be a limit point of the corresponding yn.

10Note that f−τ (W ss
δ (q)) intersects a local leaf of W cu in at most finitely many points, and

thus thus intersects at most finitely many of the corresponding local leaves of Wu; however, there
are uncountably many of these corresponding to points that never enter B(q, ρ).
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with Theorem 3.3 by allowing both expansivity and specification to fail, provided
the obstructions have small entropy. This allows us to cover some new classes of
examples, as we will see later, and is also important in dealing with nonzero potential
functions, an issue which will be explored further in Dan Thompson’s lectures next
week.

Recall that a decomposition of the language L of a shift space consists of Cp,G, Cs ⊂
L such that every w ∈ L can be written as w = upvus where up ∈ Cp, v ∈ G, and
us ∈ Cs. For non-symbolic systems, we replace L with the space of orbit segments
X × N and make the following definition.

Definition 5.1. A decomposition for X ×N consists of three collections Cp,G, Cs ⊂
X × N0 for which there exist three functions p, g, s : X × N → N0 such that for
every (x, n) ∈ X × N, the values p = p(x, n), g = g(x, n), and s = s(x, n) satisfy
p+ g + s = n, and

(x, p) ∈ Cp, (fpx, g) ∈ G, (fp+sx, s) ∈ Cs.
Given a decomposition, for each M ∈ N we write

GM := {(x, n) ∈ X × N : p(x, n) ≤M and s(x, n) ≤M}.

Theorem 5.2: Small obstructions to expansivity [CT16]

Let X be a compact metric space and f : X → X a continuous map. Suppose
that ε > 28δ > 0 are such that h⊥exp(X, f, ε) < htop(X, f), and that the space
of orbit segments X × N admits a decomposition CpGCs such that

(I) every collection GM has specification at scale δ, and
(II) h(Cp ∪ Cs, δ) < htop(X, f).

Then (X, f) has a unique measure of maximal entropy.

Remark 5.3. If G has specification at all scales, then a short continuity argument
proves that every GM does as well, which establishes (I).
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