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VAUGHN CLIMENHAGA

Disclaimer. These notes are my preliminary attempt to provide a little more detail
for my first lecture during the 2019 Dynamics Beyond Uniform Hyperbolicity confer-
ence at CIRM. There will be three lectures by myself and then three by Dan Thomp-
son on our joint project to study existence and uniqueness of measures of maximal
entropy and equilibrium states in non-uniform hyperbolicity using weakened versions
of specification and expansivity. Eventually our notes from all six lectures will be
combined into a coherent document that tells the whole story as we understand it
so far. In the meantime, these hastily prepared notes will have to do. In particu-
lar I stress that these notes make no attempt to survey the vast literature on the
use of specification and its relatives to study other properties besides existence and
uniqueness, or on the use of other techniques to study existence and uniqueness.

The goal of this first lecture is to describe the general principles behind the use of
“decompositions” for shift spaces, which help quantify “obstructions to specification”,
and to give an application to β-shifts. The discussion of β-shifts did not appear in
the lecture itself but is useful reading for anyone new to this area. The outline of the
proof of Theorem 3.5 was also omitted from the live lecture, and I will sketch it at the
start of the second lecture. That second lecture will also describe “obstructions to
expansivity” for partially hyperbolic systems, and formulate a more general unique-
ness result. The third lecture will describe further applications, including billiards
and geodesic flows.

Preamble: entropy of probability vectors

Consider a probability vector ~p = (p1, . . . , pN), where pi ≥ 0 and
∑
pi = 1.

The entropy of ~p is H(~p) =
∑

i−pi log pi. It is a calculus exercise to show that
max~pH(~p) = logN , and that this is achieved if and only if pi = 1

N
for all i; equiva-

lently, if pi = pj for all i, j.
Although our results will be in a more complicated dynamical setting, the general

principle from this simple example carries through: there is a function called ‘entropy’
that we wish to maximize; it is maximized at a unique point; and that point is
characterized by an equidistribution property. Later, this will appear as the fact that
for a broad class of dynamical systems, there is a unique measure of maximal entropy,
which satisfies a Gibbs property (equidistribution).
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2 VAUGHN CLIMENHAGA

1. Thermodynamic formalism

Let X be a compact metric space and f : X → X a continuous map. This gives a
discrete-time topological dynamical system. Later we will also consider continuous-
time systems given by a flow ft : X → X. In both discrete and continuous time, we
are often interested in the case when X is a smooth manifold. In discrete time, we
will also consider the case when (X, f) is a shift space.

For now we focus on the discrete-time case; the continuous-time case is largely anal-
ogous, though there are a few subtleties that we mention later on. LetMf (X) denote
the space of Borel f -invariant probability measures on X. When f exhibits some
hyperbolic behavior, Mf (X) is typically extremely large – an infinite-dimensional
simplex – and it becomes important to identify certain “distinguished measures” in
Mf (X). This includes SRB measures, measures of maximal entropy, and more gen-
erally, equilibrium measures.

Now we need some standard definitions; we refer to [DGS76, Wal82, Pet89, VO16]
for further details and properties.

Definition 1.1 (Measure-theoretic Kolmogorov–Sinai entropy). Fix µ ∈ Mf (X).
Given a countable partition α of X into Borel sets, write

(1.1) Hµ(α) :=
∑
A∈α

−µ(A) log µ(A) =

∫
− log µ(α(x)) dµ(x)

for the static entropy of α, where we write α(x) for the element of α containing x.1

Given j ≤ k, the corresponding dynamical refinement of α records which elements of
α the iterates f jx, . . . , fkx lie in:

(1.2) αkj =
k∨
i=j

f−iα ⇔ αkj (x) =
k⋂
i=j

f−i(α(f ix)).

A standard short argument shows that

(1.3) Hµ(αn+m−10 ) ≤ Hµ(αn−10 ) +Hµ(αn+m−1n ) = Hµ(αn−10 ) +Hµ(α0+m−1
0 ),

so that the sequence cn = Hµ(αn−10 ) is subadditive: cn+m ≤ cn + cm. Then Fekete’s
lemma2 implies that lim cn

n
exists. Thus we can define the dynamical entropy of α

with respect to f to be

(1.4) hµ(f, α) := lim
n→∞

1

n
Hµ(αn−10 ) = inf

n∈N

1

n
Hµ(αn−10 ).

The measure-theoretic (Kolmogorov–Sinai) entropy of (X, f, µ) is

(1.5) hµ(f) = sup
α
hµ(f, α),

where the supremum is taken over all partitions α as above for which Hµ(α) <∞.

1One can interpret Hµ(α) as the expected amount of information gained by observing which
partition element a point x ∈ X lies in.

2This result dates back at least to [Fek23] and states that subadditivity implies lim cn
n = inf cnn ;

the proof is a short exercise.
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The variational principle states that

(1.6) sup
µ∈Mf (X)

hµ(f) = htop(X, f),

where htop(X, f) is the topological entropy of f : X → X, which we will define more
carefully below (Definition ??).

Now we define the central object of our study (at least for the first three lectures).

Definition 1.2 (MMEs). A measure µ ∈ Mf (X) is a measure of maximal entropy
(MME) for (X, f) if hµ(f) = htop(X, f); equivalently, if hν(f) ≤ hµ(f) for every
ν ∈Mf (X).

For uniformly hyperbolic systems, the following (classical) theorem gives a fairly
complete picture regarding equilibrium measures.

Theorem 1.3: Existence and Uniqueness

Suppose that we are in one of the following situations.

(1) (X, f = σ) is a transitive shift of finite type (SFT).
(2) f : M →M is a C1 diffeomorphism andX ⊂M is a compact f -invariant

topologically transitive locally maximal hyperbolic set.a

Then there exists a unique measure of maximal entropy µ for (X, f).

aIn particular, this holds if X = M is compact and f is a transitive Anosov diffeomorphism.

Remark 1.4. The unique MME can be thought of as the ‘most complex’ invariant
measure for a system, and often encodes dynamically relevant information such as
the distribution and asymptotic behavior of the set of periodic points. It is also inter-
esting to maximize the quantity hµ(f)+

∫
ϕdµ for some potential function ϕ : X → R;

in the setting of Theorem 1.3, there is a unique maximizing measure, called an equi-
librium state, whenever ϕ is Hölder continuous. For example, if f is a C1+α Anosov
diffeomorphism (or if X is an Axiom A attractor) then the unique equilibrium state for
the geometric potential ϕ(x) = − log | detDf |Eu(x)| is the physically relevant Sinai–
Ruelle–Bowen (SRB) measure.

Remark 1.5. One can also show that the unique MME (or more generally, the unique
equilibrium state) has strong ergodic and statistical properties such as Bernoullicity,
large deviations, central limit theorem, exponential decay of correlations, etc., but we
will not pursue this for the time being.

2. Uniqueness for shift spaces with specification

Following Bowen, we outline a proof of Theorem 1.3 in the first case, when (X, σ)
is a transitive SFT. The original construction of the MME in this setting is due to
Parry and uses the transition matrix. Bowen’s proof works for a broader class of
systems, which we now describe.
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Fix a finite set A (the alphabet), let σ : AN → AN be the shift map σ(x1x2 . . . ) =
x2x3 . . . , and let X ⊂ AN be closed and σ-invariant: σ(X) = X. Here AN (and hence
X) is equipped with the metric d(x, y) = 2−min{n:xn 6=yn}. We refer to X as a one-sided
shift space.3 Note that so far we do not assume that X is an SFT or anything of the
sort.

Given x ∈ AN and i < j, we write x[i,j] = xixi+1 · · ·xj for the word that appears
in positions i through j. We use similar notation to denote subwords of a word
w ∈ A∗ :=

⋃
nA

n. Given w, we write [w] = {x ∈ X : x[1,n] = w} for the cylinder of
[w]. We write

(2.1) Ln := {w ∈ An : [w] 6= ∅}, L :=
⋃
n≥0

Ln,

and refer to L as the language of X.

Definition 2.1. The topological entropy of X is htop(X) = limn→∞
1
n

log #Ln.4

It is a simple exercise to verify that every transitive SFT has the following property:
there is τ ∈ N such that for every v, w ∈ L there is u ∈ L with |u| ≤ τ such that
vuw ∈ L. Iterating this, we see that

(2.2)
for every w1, . . . , wk ∈ L there are u1, . . . , uk−1 ∈ L
such that |ui| ≤ τ for all i, and w1u1w2u2 · · ·uk−1wk ∈ L.

A shift space whose language satisfies (2.2) is said to have the specification property.

Theorem 2.2: Shift spaces with specification (Bowen)

Let (X, σ) be a shift space with the specification property. Then there is a
unique measure of maximal entropy on X.

In §§2.1–2.2 we outline the two main steps in the proof of Theorem 2.2.

2.1. The lower Gibbs bound as the mechanism for uniqueness. It follows
from the Shannon–McMillan–Breiman theorem that if µ is an ergodic shift-invariant
measure, then for µ-a.e. x we have

− 1

n
log µ[x[1,n]]→ hµ(σ) as n→∞.

This can be rewritten as

− 1

n
log
(µ[x[1,n]]

enhµ(σ)

)
→ 0;

in other words, the ratio µ[x[1,n]]/e
nhµ(σ) behaves subexponentially in n for µ-a.e. x;

it does not approach either 0 or ∞ exponentially quickly. The crucial observation
vis-à-vis uniqueness is that if this ratio is actually uniformly bounded away from 0,

3One could just as well consider two-sided shift spaces by replacing N with Z, and all the results
below would be the same.

4In the lecture I often write h(X) for brevity. The limit exists by Fekete’s lemma using the fact
that log #Ln is subadditive, which we prove in Lemma 2.6 below.
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then µ is the unique MME for (suppµ, σ). The following argument goes back (in a
mildly different form) to Bowen [Bow74].

Proposition 2.3. Let µ be an ergodic σ-invariant measure on AN, and suppose that
there is K ≥ 1 such that for µ-a.e. x and every n ∈ N, we have the lower Gibbs
bound

(2.3) µ[x[1,n]] ≥ K−1e−nhµ(σ).

Let X = suppµ. Then µ is the unique measure of maximal entropy for (X, σ).

Remark 2.4. It is more standard to state the lower Gibbs bound as “µ[x[1,n]] ≥
K−1e−nhtop(X,σ) for all x ∈ X”; see Proposition 2.5 below. In fact the two formulations
are equivalent, as we will see in the proof. I have stated the bound in this form to
emphasize the general principle that existence and uniqueness results in this area
typically go hand-in-hand with the following phenomenon: there is some quantity
that grows or decays at most subexponentially by general principles (such as an
ergodic theorem), which in the case of the unique MME can be shown to be bounded
away from 0 and ∞.

Proof of Proposition 2.3. We prove that given any ν ∈ Mσ(X) with ν 6= µ, we have
hν(σ) < hµ(σ); by the variational principle, this implies that µ is an MME, and thus
it is the unique MME. First observe that if ν � µ then ν = µ by ergodicity. Thus
by the Lebesgue decomposition theorem if ν 6= µ then ν = tν1 + (1 − t)ν2 where
ν1, ν2 ∈Mf (X) and ν1 ⊥ µ. Since hν(σ) = thν1(σ)+(1− t)hν2(σ), it suffices to prove
that hν(σ) < hµ(σ) whenever ν ⊥ µ.

To this end, choose D ⊂ X such that µ(D) = 1 and ν(D) = 0. Since cylinders
generate the σ-algebra, there is D ⊂ L(X) such that µ(Dn) → 1 and ν(Dn) → 0,
where µ(Dn) := µ

(⋃
w∈Dn [w]

)
. Then writing α for the (generating) partition into

1-cylinders, we have

(2.4) nhν(σ) = hν(σ
n) = hν(σ

n, αn−10 ) ≤ Hν(α
n−1
0 ) =

∑
w∈Ln

−ν[w] log ν[w].

We break the sum into two pieces, one over Dn and one over Dcn = Ln \ Dn. Observe
that ∑

w∈Dn

−ν[w] log ν[w] =
∑
w∈Dn

−ν[w]
(

log
ν[w]

ν(Dn)
+ log ν(Dn)

)
=
(
ν(Dn)

∑
w∈Dn

− ν[w]

ν(Dn)
log

ν[w]

ν(Dn)

)
− ν(Dn) log ν(Dn)

≤ (ν(Dn) log #Dn) + 1,

where the last line uses the fact that
∑k

i=1−pi log pi ≤ log k whenever pi ≥ 0,
∑
pi =

1, as well as the fact that −t log t ≤ 1 for all t ∈ [0, 1]. A similar computation holds
for Dcn, and together with (2.4) this gives

(2.5) nhν(σ) ≤ 2 + ν(Dn) log #Dn + ν(Dcn) log #Dcn.
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Let Z = {x :(2.3) holds for all n}. Since X = suppµ, for every w ∈ Ln there exists
xw ∈ Z ∩ [w], and thus Condition (2.3) gives µ[w] ≥ K−1e−nhµ(σ). Summing over Dn
gives

µ(Dn) =
∑
w∈Dn

µ[w] ≥ K−1e−nhµ(σ)#Dn ⇒ #Dn ≤ Kenhµ(σ)µ(Dn),

and similarly for Dcn, so (2.5) gives

nhν(σ) ≤ 2 + ν(Dn)
(

logK + nhµ(σ) + log µ(Dn)
)

+ ν(Dcn)
(

logK + nhµ(σ) + log µ(Dcn)
)

= 2 + logK + nhµ(σ) + ν(Dn) log µ(Dn) + ν(Dcn) log µ(Dcn).

Rewriting this as

n(hν(σ)− hµ(σ)) ≤ 2 + logK + ν(Dn) log µ(Dn) + ν(Dcn) log µ(Dcn),

we see that the right-hand side goes to −∞ as n → ∞, since ν(Dn) → 0 and
µ(Dn)→ 1, so the left-hand side must be negative for large enough n, which implies
that hν(σ) < hµ(σ) and completes the proof. �

2.2. Building a Gibbs measure. Now the question becomes how to build an er-
godic measure satisfying the lower Gibbs bound. It turns out that when (X, σ) is a
shift space with the specification property, the construction of an MME in Propo-
sition ?? does the job. In this setting, that construction takes the following form:
let νn be any measure on X such that νn[w] = 1/#Ln for every w ∈ Ln, and then
consider the measures

(2.6) µn :=
1

n

n−1∑
k=0

σk∗νn =
1

n

n−1∑
k=0

νn ◦ σ−k.

A general argument (which appears in the proof of the variational principle, see for
example [Wal82, Theorem 8.6]) shows that any weak* limit point of the sequence µn
is an MME. In fact, one can prove more.

Proposition 2.5. Let (X, σ) be a shift space with the specification property, let µn be
given by (2.6), and suppose that µnj → µ in the weak* topology. Then µ is σ-invariant,
ergodic, and there is K ≥ 1 such that µ satisfies the following Gibbs property:5

(2.7) K−1e−nhtop(X) ≤ µ[w] ≤ Ke−nhtop(X) for all w ∈ Ln.

We omit the full proof of Proposition 2.5, and highlight only the most important
part of the associated counting estimates.

Lemma 2.6. Let (X, σ) be a shift space with the specification property, with gap size
τ . Then for every n ∈ N, we have

(2.8) enhtop(X) ≤ #Ln ≤ Qenhtop(X), where Q = (τ + 1)eτhtop(X).

5Note that (2.7) implies that suppµ = X.
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Proof. For every m,n ∈ N, there is an injective map Lm+n → Lm × Ln defined by
w 7→ (w[1,m], w[m+1,m+n]), so #Lm+n ≤ #Lm#Ln. Iterating this gives

#Lkn ≤ (#Ln)k ⇒ 1

kn
log #Lkn ≤

1

n
log #Ln,

and sending k → ∞ we get htop(X) ≤ 1
n

log #Ln for all n, which proves the lower
bound. For the upper bound we observe that specification gives a map Lm × Ln →
Lm+n+τ defined by mapping (v, w) to vuwu′, where u = u(v, w) ∈ L with |u| ≤ τ
is the ‘gluing word’ provided by the specification property, and u′ is any word of
length τ − |u| that can legally follow vuw. This map may not be injective because w
can appear in different positions, but each word in Lm+n can have at most (τ + 1)
preimages, since v, w are completely determined by vuwu′ and the length of u. This
shows that

#Lm+n+τ ≥
1

τ + 1
#Lm#Ln ⇒ #Lk(n+τ) ≥

(#Ln
τ + 1

)k
.

Taking logs and dividing by k(n+ τ) gives

1

k(n+ τ)
#Lk(n+τ) ≥

1

n+ τ

(
log #Ln − log(τ + 1)

)
.

Sending k →∞ and rearranging gives log #Ln ≤ log(τ + 1) +(n+ τ)htop(X). Taking
an exponential proves the upper bound. �

With Lemma 2.6 in hand, the idea of Proposition 2.5 is to first prove the bounds on
µ[w] by estimating, for each n� |w| and k ∈ {1, . . . , n− |w|}, the number of words
u ∈ Ln for which w appears in position k; see Figure 1. By considering the subwords
of u lying before and after w, one sees that there are at most (#Lk)(#Ln−k−|w|) such
words, as in the proof of Lemma 2.6, and thus the bounds from that lemma give

νn(σ−k[w]) ≤
(#Lk)(#Ln−k−|w|)

#Ln
≤ Qekhtop(X)Qe(n−k−|w|)htop(X)

enhtop(X)
= Q2e−|w|htop(X,σ);

averaging over k gives the upper Gibbs bound, and the lower Gibbs bound follows
from a similar estimate that uses the specification property.

w

#Ln

#Lk #Ln−k−|w|

Figure 1. Estimating νn(σ−k[w]).

Next, one can use similar arguments to produce c > 0 such that, for each pair of
words v, w, there are arbitrarily large j ∈ N such that µ([v] ∩ σ−j[w]) ≥ cµ[v]µ[w];
this is once again done by counting the number of long words that have v, w in the
appropriate positions.
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Since any measurable sets V and W can be approximated by unions of cylinders,
one can use this to prove that limn µ(V ∩ σ−nW ) ≥ cµ(V )µ(W ). Considering the
case when V = W is σ-invariant demonstrates that µ is ergodic.

Together, Propositions 2.3 and 2.5 prove Theorem 2.2, that a shift space with
specification has a unique MME.

In later lectures we will discuss extensions of Theorem 2.2 to non-symbolic sys-
tems and to equilibrium measures for nonzero potential functions. Now, though, we
turn to the central topic of these lectures by describing a non-uniform version of the
specification property that also implies uniqueness.

3. Decompositions

Let X be a shift space on a finite alphabet, and L its language. We consider the
following more general version of (2.2).

Definition 3.1. A collection of words G ⊂ L has specification if there exists τ ∈ N
such that for every finite set of words w1, . . . , wk ∈ G, there are u1, . . . , uk−1 ∈ L with
|ui| ≤ τ such that w1u1w2u2 · · ·uk−1wk ∈ L.

The only difference between this definition and (2.2) is that here we only require
the gluing property to hold for words in G, not for all words.

Remark 3.2. In particular, G has specification if there is τ ∈ N such that for every
v, w ∈ G, there is u ∈ L with |u| ≤ τ and vuw ∈ G, because iterating this property
gives the one stated above. The property above, which is sufficient for our uniqueness
results, is a priori more general because the concatenated word is not required to lie
in G.

Now we need a way to say that a collection G on which specification holds is
sufficiently large.

Definition 3.3. A decomposition of the language L consists of three collections of
words Cp,G, Cs ⊂ L with the property that

(3.1) for every w ∈ L, there are up ∈ Cp, v ∈ G, us ∈ Cs such that w = upvus.

Given a decomposition of L, we also consider for each M ∈ N the collection of words

(3.2) GM := {upvus ∈ L : up ∈ Cp, v ∈ G, us ∈ Cs, |up|, |us| ≤M}.

If each GM has specification, then the set Cp ∪ Cs can be thought of as the set of
obstructions to the specification property.

Definition 3.4. The entropy of a collection of words C ⊂ L is

(3.3) h(C) = lim
n→∞

1

n
log #Cn.
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Theorem 3.5: Uniqueness using a decomposition [CT12]

Let X be a shift space on a finite alphabet, and suppose that the language L
of X admits a decomposition CpGCs such that

(I) every collection GM has specification, and
(II) h(Cp ∪ Cs) < h(X).

Then (X, σ) has a unique MME µ.

Remark 3.6. Note that L =
⋃
M∈N GM ; the sets GM play a similar role to the regular

level sets that appear in Pesin theory. The gap size τ appearing in the specification
property for GM is allowed to depend on M , just as the constants appearing in the
definition of hyperbolicity are allowed to depend on which regular level set a point
lies in. Similarly, for the unique MME µ one can prove that limM→∞ µ(GM) = 1,
which mirrors a standard result for hyperbolic measures and Pesin sets.

Remark 3.7. In fact we do not quite need every w ∈ L to admit a decomposition
as in (3.1). It is enough to have Cp,G, Cs ⊂ L such that h(L \ (CpGCs)) < h(X), in
addition to the conditions above [Cli18].

We outline the proof of Theorem 3.5. The idea is to mimic Bowen’s proof using
Propositions 2.3 and 2.5 by completing the following steps.

(1) Prove uniform counting bounds as in Lemma 2.6.
(2) Use these to establish the following non-uniform Gibbs property for any limit

point µ of the sequence of measures in (2.6): there are constants K,KM ≥ 1
such that

(3.4) K−1M e−|w|htop(X) ≤ µ[w] ≤ Ke−|w|htop(X) for all M ∈ N and w ∈ GM .
(3) Give a similar argument for ergodicity, and then prove that the non-uniform

lower Gibbs bound in (3.4) still gives uniqueness as in Proposition 2.3.

Once the uniform counting bounds are established, the proof of (3.4) follows the same
approach as before. The third step, establishing ergodicity and uniqueness, involves
some unilluminating technicalities and we will not discuss it further.

For the counting bounds in the first step, we start by observing that the bound
#Ln ≥ enhtop(X) did not require any hypotheses on X and thus continues to hold.
The argument for the upper bound in Lemma 2.6 can be easily adapted to show that
there is a constant Q such that #Gn ≤ Qenhtop(X) for all n. Then the desired upper
bound for #Ln is a consequence of the following.

Lemma 3.8. For any r ∈ (0, 1), there is M such that #GMn ≥ r#Ln for all n.

Proof. Let ai = #(Cpi ∪ Csi )e−ihtop(X), so that in particular
∑
ai < ∞ by (II). Since

any w ∈ Ln can be written as w = upvus for some u ∈ Cpi , v ∈ Gj, and w ∈ Csk with
i+ j + k = n, we have

#Ln ≤ #GMn +
∑

i+j+k=n
max(i,k)>M

(#Cpi )(#Gj)(#Csk) ≤ #GMn +
∑

i+j+k=n
max(i,k)>M

aiakQe
nhtop(X),
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where the second inequality uses the upper bound #Gj ≤ Qejhtop(X). Since
∑
ai <∞,

there is M such that∑
i+j+k=n

max(i,k)>M

aiakQe
nhtop(X) < (1− r)enhtop(X) ≤ (1− r)#Ln,

where the second inequality uses the lower bound #Ln ≥ enhtop(X). Combining these
estimates gives #Ln ≤ #GMn + (1− r)#Ln, which proves the lemma. �

The same specification argument that gives the upper bound on #Gn gives a cor-
responding upper bound on GMn (with a different constant), and thus we deduce the
following consequence of Lemma 3.8.

Corollary 3.9. There are constants a,A > 0 and M ∈ N such that

enhtop(X) ≤ #Ln ≤ Aenhtop(X) and #GMn ≥ aenhtop(X) for all n ∈ N.

Remark 3.10. In fact, the proof of Lemma 3.8 can easily be adapted to show a
stronger result: given any γ > 0 and r ∈ (0, 1), there is M such that if Dn ⊂ Ln has
#Dn ≥ γenhtop(X), then #(Dn ∩ GMn ) ≥ r#Dn. These types of estimates are what
lie behind the claim in Remark 3.6 that the (non-uniform) Gibbs property implies
µ(GM)→ 1 as M →∞.

4. An example: beta shifts

Given a real number β > 1, the corresponding β-transformation f : [0, 1) → [0, 1)
is f(x) = βx (mod 1). Let A = {0, 1, . . . , dβe − 1}; then every x ∈ [0, 1) admits a
coding y = π(x) ∈ AN defined by yn = bβfn−1(x)c, and we have π ◦ f = σ ◦ π, where
σ : AN → AN is the left shift. Observe that π(x)n = a if and only if fn−1(x) ∈ Ia,
where the intervals Ia are as shown in Figure 2.6 Given n ∈ N and w ∈ An, let

I(w) :=
n⋂
k=1

f−(k−1)(Iwk)

be the interval in [0, 1) containing all points x for which the first n iterates are coded
by w. The figure shows an example for which fn(I(w)) is not the whole interval [0, 1);
it is worth checking some other examples and seeing if you can tell for which words
fn(I(w)) is equal to the whole interval. Observe that if β is an integer then this is
true for every word.

Definition 4.1. The β-shift Xβ is the closure of the image of π, and is σ-invariant.
Equivalently, Xβ is the shift space whose language L is the set of all w ∈ A∗ such
that I(w) 6= ∅; thus y ∈ AN is in Xβ if and only if I(y1 · · · yn) 6= ∅ for all n ∈ N.

6Formally, Ia = {x ∈ [0, 1) : bβxc = a}, so Ia = [ aβ ,
a+1
β ) if a < dβe − 1, and Ia = [ aβ , 1) if

a = dβe − 1.
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I0 I1 I2 I(21)f(I(21))f 2(I(21))

Figure 2. Coding a β-transformation.

For further background on the β-shifts, see [Rén57, Par60, Bla89]. We summarize
the properties relevant for our purposes.

Write � for the lexicographic order on AN and observe that π is order-preserving.
Let z = limx↗1 π(x) denote the supremum of Xβ in this ordering. It will be convenient
to extend � to A∗, writing v � w if for n = min(|v|, |w|) we have v[1,n] � w[1,n].

Remark 4.2. Observe that on A∗∪AN, � is only a pre-order, because there are v 6= w
such that v � w and w � v; this occurs whenever one of v, w is a prefix of the other.

The β-shift can be described in terms of the lexicographic ordering, or in terms of
the following countable-state graph:

• the vertex set is N0 = {0, 1, 2, 3, . . . };
• the vertex n has 1 + zn+1 outgoing edges, labeled with {0, 1, . . . , zn+1}; the

edge labeled zn+1 goes to n+ 1, and the rest go to the ‘base’ vertex 0.

Figure 3 shows (part of) the graph when z = 2102001 . . . , as in Figure 2.

0 1 2 3 4 5 6
2 1 0 2 0 0 1

0

1
0

1

0

0

Figure 3. A graph representation of Xβ.

Proposition 4.3. Given n ∈ N and w ∈ An, the following are equivalent.

(1) I(w) 6= ∅ (which is equivalent to w ∈ L(Xβ) by definition).
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(2) w[j,n] � z for every 1 ≤ j ≤ n.
(3) w labels the edges of a path on the graph that starts at the base vertex 0.

Idea of proof. Using induction, check that the following are equivalent for every n ∈
N, 0 ≤ k ≤ n, and w ∈ An.

(1) fn(I(w)) = fk(I(z[1,k]), where we write I(z[1,0]) := [0, 1).
(2) w[j,n] � z for every 1 ≤ j ≤ n, and k is maximal such that w[n−k+1,n] = z[1,k].
(3) w labels the edges of a path on the graph that starts at the base vertex 0 and

ends at the vertex k. �

Corollary 4.4. Given x ∈ AN, the following are equivalent.

(1) x ∈ Xβ.
(2) σn(x) � z for every n.
(3) x labels the edges of an infinite path of the graph starting at the vertex 0.

Exercise 4.5. Prove that Xβ has the specification property if and only if z does not
contain arbitrarily long strings of 0s.

In fact, Schmeling showed [Sch97] that for Lebesgue-a.e. β > 1, the β-shift Xβ does
not have the specification property. Nevertheless, every β-shift has a unique MME.
This was originally proved by Hofbauer [Hof78] and Walters [Wal78] using techniques
not based on specification. Theorem 3.5 gives an alternate proof: writing G for the
set of words that label a path starting and ending at the base vertex, and Cs for the
set or words that label a path starting at the base vertex and never returning to it,
one quickly deduces the following.

• GCs is a decomposition of L.
• GM is the set of words labeling a path starting at the base vertex and ending

somewhere in the first M vertices; writing τ for the maximum graph distance
from such a vertex to the base vertex, GM has specification with gap size τ .
• #Csn = 1 for every n, and thus h(Cs) = 0 < htop(Xβ) = log β.

This verifies the conditions of Theorem 3.5 and thus provides another proof of unique-
ness of the MME.

Remark 4.6. Because the earlier proofs of uniqueness did not pass to subshift factors of
β-shifts, it was for several years an open problem (posed by Klaus Thomsen) whether
such factors still had a unique MME. The inclusion of this problem in Mike Boyle’s
article “Open problems in symbolic dynamics” [Boy08] was our original motivation for
studying uniqueness using non-uniform versions of the specification property, which
led us to formulate the conditions in Theorem 3.5; these can be shown to pass to
factors, providing a positive answer to Thomsen’s question [CT12].

5. Periodic points

It is often the case that one can prove a stronger version of specification, for exam-
ple, when X is a mixing SFT.
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Definition 5.1. Say that G ⊂ L has periodic specification if there exists τ ∈ N such
that for all w1, . . . , wk ∈ G, there are u1, . . . , uk ∈ Lτ such that v := w1u1 · · ·wkuk ∈
L, and moreover x = vvvvv · · · ∈ X.

There are two strengthenings of specification here; first, we are assuming that the
gap size is equal to τ , not just ≤ τ , and second, we are assuming that the “glued
word” can be extended periodically after adding τ more symbols.

If we replace specification in Theorem 3.5 with periodic specification for each GM ,
then the counting estimates in Lemma 2.6 immediately lead to the following estimates
on the number of periodic points: writing Pern = {x ∈ X : σnx = x}, we have7

(5.1) C−1enhtop(X) ≤ # Pern ≤ Cenhtop(X).

Using this fact and the construction of the unique MME given just before Proposition
2.5, one can also conclude that the unique MME µ is the limiting distribution of
periodic orbits in the following sense:

(5.2)
1

# Pern

∑
x∈Pern

δx
weak*−−−→ µ as n→∞.

References

[Bla89] F. Blanchard, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989),
no. 2, 131–141. MR 1020481

[Bow74] Rufus Bowen, Maximizing entropy for a hyperbolic flow, Math. Systems Theory 7 (1974),
no. 4, 300–303. MR 0385928

[Boy08] Mike Boyle, Open problems in symbolic dynamics, Geometric and probabilistic structures in
dynamics, Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 69–118.
MR 2478466

[Cli18] Vaughn Climenhaga, Specification and towers in shift spaces, Comm. Math. Phys. 364
(2018), no. 2, 441–504. MR 3869435

[CT12] Vaughn Climenhaga and Daniel J. Thompson, Intrinsic ergodicity beyond specification:
β-shifts, S-gap shifts, and their factors, Israel J. Math. 192 (2012), no. 2, 785–817.
MR 3009742

[DGS76] Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact
spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976.
MR 0457675
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