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1. Introduction

I will not have the possibility to provide any notes. Here are complements to the videos:
The main references are listed below, including [DZ1] and [BD], as well as the book [CM].
In lecture III, on May 17, I forgot to write that hµ∗ = h∗ in Theorem 1.
The main idea to show that the entropy of µ∗ is greater than or equal to h∗ is the Brin–Katok local

entropy theorem [BK], using [DWY] to forego continuity. (In the paper [BD], we prove ergodicity
first but this is not needed.) In order to apply Brin–Katok, one has to prove an upper bound on
the measure of Bowen balls. This is the easy “Gibbs bound.” (There are confusing typos in v1 of
arXiv:1807.02330: On page 45, the sentence before Corollary 7.17 should be "Now that we know
that µ∗ is ergodic, Proposition 7.12 will easily imply that hµ∗(T ) = h∗." In footnote 33, same page,
one should replace (7.25) by (7.24).)

We also show a (hard) “lower Gibbs bound” in [BD], using the consequence of the key lemma on
the measure of neighbourhoods of singularity curves and Borel–Cantelli. Our lower bound allows
us to find a necessary condition for µSRB = µ∗, but we are not able to get the exact e−nh∗ rate
which would allow us to show uniqueness of the measure by [Bo2].

The key results we use (in §5.3 and §7.3 of [BD]) about Markov rectangles are Lemmas 7.87
and 7.90 in [CM]. Another ingredient to show absolute continuity of µ∗ in §7.3 of [BD] is the control
of smoothness of the Jacobian of holonomy maps obtained in Lemmas 6.6 and 6.8 of [BDL].

I did not have the time to define the norms of [BD] in the last lecture. The difference between
these norms and the ones in [DZ1] presented in lecture II are:

(1) the weight cosW is removed everywhere (nonessential, due to the use of dx instead of dµSRB
as reference);

(2) |W |1/p is replaced by | log |W ||−γ , for γ > 1 so that 2s0γ < eh∗ , in the strong stable norm
(due to the new growth lemma);

(3) ε−ζ is replaced by | log ε|ζ in the strong unstable norm (due to the new strong stable norm).

Finally, there is a “leafwise” interpretation of the distributions in our Banach spaces, given in
§7.2 of [BD].
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