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What is ACSV?

ACSV =

Analytic Combinatorics in Several Variables

= Anacomb++
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Analytic Combinatorics

Generating functions code arrays such as {an : n ∈ Z+} or
{ar : r ∈ (Z+)d} into power series f(z) =

∑
n anz

n or in the
multivariate case, ∑

r

arz
r =

∑
r

arz
r1
1 · · · z

rd
d .

When the coefficients obey recursions, this
coding often produces power series that
represent nice objects in the analytic sense:
functions that are rational, algebraic, or solve
linear differential equations with polynomial
coefficients.

Analytic Combinatorics is the study of how to
get information back out of this encoding when
the generating function is a nice function.
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Plan

ACSV considers specifically coefficient arrays
of more than one dimension.

PLAN:

I Remind why ACSV is interesting for AofA crowd

II Possible behaviors of coefficients of rational multivariate GF’s

III How multivariate coefficients are extracted

IV Topology: a story in pictures

V New effective algorithms
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Multivariate generating functions are used

I to count combinatorial classes

I to compute recursively defined probabilities

I to encode “integrable” ensembles

Applications of interest include: Queuing theory,
lattice point enumeration, enumeration and analysis of search
trees, transfer matrices, lattice paths, quantum walks,
sequence alignment and matching, special functions and
random tilings.
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Queuing theory

Determination of the stationary distribution of a system of d
queues is useful for the analysis of algorithms. Encoding this
as a d-variate probability generating function, the queuing
recursion can lead to a number of types of function.

One possibility (see Bertozzi and McKenna) is a function of
the form

e`0(z)∏m
j=1 `j(z)

where `0, . . . , `m are affine functions of z1, . . . , zd .

Many other outcomes are possible, even when d = 2. The
ramifications of various boundary conditions are discussed in
Random walks in the quarter plane (Fayolle et al.).
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Enumeration of lattice points in polytopes

Efficiently counting integer points that satisfy a set of
inequalities is a classic problem, related to the volume
computation for the Birkhoff polytope.

This may be an end in itself, or a tool in the analysis of an
algorithm that explores this set of points.

The generating function will be a sum of relatively simple
rational functions of the form (see DeLoera et al.)

zm∏
j(1− zb(j))

.
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Trees

Many types of trees can be counted by generating functions.
For example, bivariate generating functions counting by path
length and height satisfy the implicit equations

Q(u, z) =
z

1− Q(z , zu)
trees

Q(u, z) = zQ(u, zu)2 binary trees

∂

∂z
Q(u, z) = Q(u, zu)2 binary search trees
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Lattice paths

Let ars count the
number of lattice
paths from the
origin to (r , s)
with steps in a
prescribed set,
such as { N, E,
NE }.

One of 19,825 lattice paths from the origin to (6,7)
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Transfer matrices

Lattice path enumeration is a special case of the so-called
transfer matrix method.

Let M be a k × k matrix whose entries are monomials λz r .
Then (I − tM)−1 is the sum over chains i = x0, x1, . . . , x` = j
of νt`zm where the weight ν is the product of the constants λ
for the matrix entries Mxp ,xp+1 along the chain and the index m
is the sum of the indices r along the chain.
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Quantum computing

A proposed building block for quantum computation is the
quantum random walk. Given a k × k unitary matrix U and k
lattice steps m(1), . . . ,m(k) in Zd , there is a quantum walk
with those steps, whose amplitudes are determined by
repeated applications of the unitary operator.

The multivariate generating function for the amplitude an,i ,j of
going from state i to state j in n steps with displacement r is
given by

P(z)ij =
∑
n,r

an,i ,jz
r tn = (I − tDU)−1 .
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Sequence alignment and matching

Given k sequences on a finite alphabet, what is the optimal
alignment, and is this better than what one would get for k
independent random sequences of the same lengths? The
answer is not well understood when k > 2.

Distributions of statistics of the optimal alignment require one
to count non-isomorphic alignments. The generating function
for number of non-isomorphic alignments of sequences of
lengths i , j and k with minimum block size b is given by

1 + (xyz)n

1−xyz

1− ((1 + x)(1 + y)(1 + z)− 1− xyz)
(

1 + (xyz)b

−xyz+1

) .
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Special functions

Nonnegativity and asymptotics of coefficients of many classes
of generating functions have been studied from the points of
view of special functions and statistical physics.

Szegö showed that the −β power of the (d − 1)st elementary
symmetric function of 1− x1, . . . , 1− xd has nonnegative
coefficients when β ≥ 1/2.

Scott and Sokal vastly generalized this to negative powers of
the Tutte polynomials on classes of graphs including
series-parallel graphs.

Other such families were studied by Lewy and Askey, then in
greater generality by Kauers and Zeilberger. One interesting
class is the Gillis-Reznick-Zeilberger class

Fc,d(z) =
1

1− x1 − x2 − · · · − xd + c(x1x2 · · · xd)
.
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Random tilings

Let an,i ,j be the num-
ber of domino tilings
of the order-n Aztec
diamond, in which
(i , j) is paired with its
North neighbor.

The generating function is given by

F (x , y , z) =
∑

an,i ,jx
iy jzn =

yz/2

1− (x + x−1 + y + y−1)z/2 + z2
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II: Phenomena
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Scope of ACSV

ACSV extends the ideas of univariate singularity analysis to
multivariate generating functions.

Much of the ACSV literature concentrates on rational
functions.

This loses less generality than you would think because all
algebraic functions and many D-finite functions are
representable as generalized diagonals of rational functions
(see Wilson and Raichev 2007, 2012).

Also, there are direct results for algebraic functions (see
Greenwood 2018).

Research area: How can one do singularity analysis on
implicitly defined multivariate functions such as search

trees?
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Example of diagonal representation

Let
f (x , y) = x

√
1− x − y .

Then [x iy j ]f = [x i+jy jz i ]g , where

g(x , y , z) =
xz(2 + x + xy + 3z + z3)

2 + x + xy + z
.
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Pole variety

Restricting to the rational case, the most important aspect of a
multivariate generating function is the pole variety, that is the
complex algebraic variety V where the denominator vanishes.

Analytic methods will be discussed in detail later.

For now, keep in mind that the multivariate generalization of
singularity analysis has to do with the geometry of V .

By asymptotics “in the direction r̂” we mean asymptotic
behavior of r as |r | → ∞ with the normalized vector r/|r |
converging to the unit vector r̂ .

18 / 70



Univariate methods for multivariate generating functions

Unlike the univariate case, where rational functions can only
generate quasi-polynomials, phenomena for multivariate
rational functions are quite varied.

Essentialy, only one multivariate behavior can be computed by
univariate methods. GF-sequence methods (see Bender,
Richmond, Gao, Hwang, etc.) represent

F (z) =
∞∑
n=0

Gn(z1, . . . , zd−1)znd

and rely on establishing the asymptotic equivalence in a
suitable region: Gn ∼ A(z2, . . . , z

d)g(z1, . . . , zd−1)n.

When this holds, the coefficients {ar} obey a Gaussian limit.
Because this was the only known method, almost all the
multivariate asymptotic results you will find in the literature
between 1986 and 2006 are Gaussian limit theorems.
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Smooth case

ACSV shows the Gaussian case to be a corollary of smoothness
of V ; therefore we will refer to this as the smooth case.

y

x
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Smooth case = Gaussian case = GF-sequence case

The behavior of {ar} is then given by a Central Limit and
Local Large Deviation estimate.

Multivariate methods show the following asymptotic behavior
when V is smooth (and under a few further conditions):

ar ∼ Cr̂ |r |(1−d)/2z∗(r̂)−r .

The formula holds piecewise over a finite collection of cones in
r -space. This is simultaneously a central limit theorem and a
local large deviation estimate.

This was known to physicists in some form thirty years ago.
See, e.g., Chayes2 1986 on “Ornstein-Zernicke behavior”.
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Normal intersections

When V is the union of smooth sheets intersecting transversely
(left), or is locally such a union (right), the coefficients have
different formulas on different cones in r -space.
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Counting integer solutions

For example, the generating function 1/
∏5

j=1(1− zb
(j)

) counts

solutions to Ax = r when b(j) are the columns of

A :=

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 and r varies over (Z+)3.

The counts grow like five different polynomials in 5 conical
regions of (Z+)3 (see De Loera and Sturmfels).

The stationary probabilities of points in the system of d
queues introduced by Bertozzi and McKenna behave very
similarly, due to the similar form of their generating functions.
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Ensembles

In many applications, d-variate coefficients represent d − 1
aspects of a large probability ensemble, with the last variable
counting the system size.

As the size n goes to infinity, there is a feasible region where
the probability of individual points is of order n−p for some p,
and an infeasible region where the probability of points is
exponentially small.

24 / 70



Some ensembles with limit shapes

For example, random tilings such as the Aztec Diamond
pictured earlier, or diabolo tilings, or cube groves, or double
dimer configurations, etc., look like these respective samples.

The feasible regions are already visible even when n is small,
around 30 for most of these pictures.
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Cone points

In the geometry of the generating function, in all of these
cases, the asymptotics are driven by a cone point at (1, 1, 1).

This is an isolated singularity where in local, rotated
coordinates, the denominator looks like the quadratic

x2
1 −

d∑
j−2

a2
j x

2
j .

In one of the four cases, namely the second one, the cone is
not quadratic but quartic.
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Phase transitions

Cone points are not generic. In a family of generating
functions with a free parameter, a finite number of parameter
values will exhibit this behavior.

For example, in the GRZ family, this left-hand picture of V
shows the geometry at criticality, transitioning between the
two noncritical geometries in the middle and right figure.

Topology at criticality is particularly interesting!
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Similar phenomenon, different class of generating function

When V is smooth but has high contact with the unit torus,
coefficients can also behave this way. For example the
quantum walk in d + 1 spacetime variables always has V
intersecting T d+1 in a manifold of dimension d rather than
d − 1. The feasible region is parametrized by this intersection,
typically producing intensities like this.
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III: Analytic machinery

(How coefficients are extracted)

29 / 70



Getting from F (X ) to asymptotics for aR

We begin with Cauchy’s multivariate integral formula:

aR =

(
1

2πi

)d ∫
T

Z−RF (Z )
dZ

Z
.

Here T is a small torus, a product of circles winding once
about the origin in each coordinate direction.
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Domain of analyticity

If the generating function F (Z ) = P(Z )/Q(Z ) is rational then
F is analytic away from the singular variety

V := {Z : Q(Z ) = 0} .

More generally, one might have F (Z ) = G (Q(Z )α) or
F (Z ) = G (logQ(Z )), where G is analytic but there is a
branch singularity on V .
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Moving the chain of integration

We can move the contour of integration freely within the
manifold M := (V ∪ {

∏d
i=1 zi = 0})c .

T’

T

y

x

Once we cross V , we pick up a residue.
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Residue identity

The topological intersection of the d-cycle T with the variety
V is a (d − 1)-cycle C, well defined at the level of homology.

The residue of the integrand ω := z−rF (z)dz/z is a
(d − 1)-form Res(ω).
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The Cauchy integral reduces to an integral over C:

(2πi)daR =

∫
T

ω =

∫
C
Res(ω) .
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IV: Topological machinery

(How coefficients are extracted, part II)
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We just saw that

(2πi)daR =

∫
T

ω =

∫
C
Res(ω) .

The residue Res(ω) is easily found via computer algebra.

The cycle C ⊆ V is a topological invariant no matter how the
original torus T is expanded across V . We begin with a
canonical expansion, say we expand the first coordinate to
infinity while keeping the others fixed.

x

y

We now redraw this using
a height function.

35 / 70



Height function

To evaluate an integral containing the monomial z−r

asymptotically as r →∞, we need to push the contour
“down” in the sense of making the term z−r as small as
possible.

Equivalently, we want a contour minimizing the maximum
value of

h(z) := −r · (log |z1|, . . . , log |zd |) .

same as minimizing: h(z) := −r̂ · (log |z1|, . . . , log |zd |) .

In the next few pictures, V is drawn so that the height h
decreases as you move down the screen.
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V pictured by height

Where V intersects
the x- or y -axis,
height is infinite.

Expanding the 2-torus
along the x-axis cre-
ates a ring (a 1-torus)
around each such
infinite height peak.

yx x
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Pushing down = stationary phase

Pushing the contour down as far as it will go produces a
stationary phase integral.

σ

h

C

New chain

.

height view

σ

x

y

regular view

The minimax is always located at critical point σ of h on V .
The phase of the integrand is h, hence is stationary at σ.
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Computer algebra

The critical points solve polynomial equations. Simplest case:

Q(z) = 0

rdz1
∂Q

∂z1
(z) = r1zd

∂Q

∂zd
(z)

...
...

rdzd−1
∂Q

∂zd−1
(z) = rd−1zd

∂Q

∂zd
(z) .

Computer algebra can easily:

I Find the critical points.
I Compute the expansions of the residue form there.
I In most cases, read off asymptotic expressions such as∫

near σ
∼

(√
r2 + s2 − s

r

)−r

·
(√

r2 + s2 − r

s

)−s

·
√

1

2π

√
rs

√
r2 + s2(r + s −

√
r2 + s2)2
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What’s left to do

There may be many critical points.

1. How can we be certain the contour can be deformed to
hang from a critical point?

2. To which such point(s) can the contour be deformed?

3. Once it gets into this position, what does the contour
look like?

These questions are the province of Morse Theory.

Morse lemma: Let h : V → R be a proper
(stratified) Morse function1. Then the (stratified)
downward gradient flow pushes any contour down to
an attachment cycle at a critical point.

1Plus some other technical assumptions.
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Properness

There are some technical assumptions too, but the worst one
is that h is proper. In the picture on the left, h is proper.

h h = c

But in higher dimensions, the picture on the right is more
typical. When c ∈ (a, b), the inverse image of h[a, b] is no
longer compact. This means that the downward gradient flow
could experience...
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Shooting off to infinity

To infinity, and beyond!

WHEE !

The cycle goes to infinity before ever getting down to height
c , and it never reaches a stationary phase point.
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When can this happen?

This can happen. In some contexts it happens a lot!

For example, the algebraic function F̃ (x , y) = x/
√

1− x − y ,
is a diagonal of P/Q where

Q(x , y , z) = 2 + x + xy − z + 2xz + 2xyz + z2x + z2xy .

All downward flows on VQ get forced to infinity.

This sort of obstruction can only occur when there is a critical
point at infinity.
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Critical points at infinity

A critical point at infinity in direction r is a point at infinity of
the projective variety Ṽ which is the limit of points z (n) that
are critical points for the height function −r (n) · z where
r (n) → r as n→∞.

PC
d−1

C
d

A critical point at ∞
is a point at infinity on
the closure of the rela-
tion over V :

z is critical in dir. r
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Computability of critical points at infinity

Fortunately, computer algebra can detect critical points at
infinity. The following algorithm produces an ideal identifying
critical points at infinity in the given direction r .

Algorithm 1 (Find critical points at infinity)

code posted on Melczer’s website

1. Projectivize Q

2. Let I be the projectivized ideal for the critical point
equations as functions of both z and r

3. Saturate I by the projectivizing variable

4. Set the projectivizing variable to zero

5. Substitute to specify the r variables
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The algorithm

What this algorithm does is to check for sequences of pairs
(z (n), r (n)) in the affine variety such that z (n) →∞, r (n) → r ,
and zn is a critical point for hr (n) .

Saturation ensures the approximating points z (n) are not
already at infinity; setting the saturating variable to zero then
restricts to limit points of these that are indeed at infinity.
The result is a projective point at infinity which is a limit point
of points critical in directions converging to r .

This may be taken as a definition of a critical point at infinity
in direction r .
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Consequences of Morse theory

This algorithm effectively takes care of Question #1,

How can we be certain the contour can be deformed
to hang from a critical point?

and leads to the following result.

Theorem 2

If there are no critical points at infinity, then “Morse theory
works.” In other words, cycles can be pushed down (deformed)
until they hit stratified critical points for h. Furthermore, a
cycle can be pushed past a critical point unless there is a
topological obstruction: the cycle projects to something
nonzero in the attachment homology there.
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V: Some effective algorithms
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Which point(s)?

Question # 2 asked how to compute which critical point or
points “catch” the contour:

Find the critical point(s) σ on which the pushed
down contour will hang.

We have effective algorithms for this only in some cases.

In this picture, for example, can you tell?

yx x
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Two variables, V is smooth

Algorithm 3 (Find dominant critical point in 2D)

1. Order the saddles by height.

2. Beginning with the highest, follow the two ascent paths.
Each path must end at a pole or another saddle.

3. If both paths to a point marked x, then mark the saddle
as x and continue; do similarly with a double y .

4. If one goes to x and one goes to y , you are done: output
that saddle, as well as any of equal height that also go to
x and y.

done!

x x y

x

yx
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Bi-colored supertrees

This algorithm handles, for example, the generating function
for bi-colored supertrees, whose generating function has
denominator

Q(x , y) := x5y 2 + 2x2y − 2x3y + 4y + x − 2 .

Critical points in the main diagonal direction, from highest to
lowest, are

σ1 :=

(
1 +
√

5,
3−
√

5

16

)

σ2 :=

(
2,

1

8

)
σ3 :=

(
1−
√

5,
3 +
√

5

16

)
The algorithm shows the contour bypasses σ1 and settles at σ2.
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Explanation

What this algorithm really does is to compute a cell complex
representation of V .

Zero-cells are critical points, including those on the axes
(height +∞) and a compactifying point at −∞.

One-cells are ascent paths.

Problem: Compute the cell decomposition when d = 3, adding
2-cells in such a way that we can compute which saddles are
topological obstacles.

There is much more to be said about why the 2-D algorithm
works, but no time, so ask me later on, if interested.
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A more difficult case

Consider the GRZ denominator
Q(x , y , z ,w) = 1− x − y − z − w + C x y z w .

In the subcritical case C < 27, there are real
critical points (α, α, α, α) and (β, β, β, β)
with α < 1/3 < β. As C increases through
27, these merge and split into two complex
conjugate critical points.

β

α
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We would like to prove the topological identity C ∼ Cα + C∗,
where Cα is the saddle point contour through (α, α, α, α) and
C∗ is a contour whose height does not exceed that of the next
highest critical point (β, β, β, β).

This topological fact would follow from a geometric
proposition, namely that (α, α, α, α) is minimal, meaning that
V intersects the polydisk of radius 2α only at this one point.

This is in principle decidable by real algebraic geometry.
However in 4 complex variables = 8 real variables, Maple
computations typically will not halt.

We would like to take advantage of the symmetric nature of
Q, but unfortunately, Gröbner basis computations do not
handle symmetric functions particularly well.
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Symmetric multilinear case

Theorem 4

Suppose Q is symmetric and multilinear. Let q be the
univariate polynomial q(z) := Q(z , . . . , z) and suppose z is a
minimal modulus root of q. Then z† := (z , . . . , z) is a
minimal point, meaning that z† is a critical point in the
diagonal direction and the set of minimal points in the
diagonal direction is the intersection of the critical point set
with the torus {z : |zj | ≤ |z |, 1 ≤ j ≤ d}.

As a consequence, the points (α, α, α, α) are all
minimal when C ≤ 27 and the two conjugate
complex points are minimal when C > 27. β

α
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Higher order terms

As a consequence of Theorem 2 “Morse theory works in the
absence of critical points at infinity,” the cycle C is in principle
completely described as a sum of cycles hanging from critical
points. This is better than just pushing C down to the
dominant critical point and showing that the topological
leftovers live strictly further down.

In pictures, writing C = Cα + Cβ is
better than knowing only:

C = Cα + C∗ where C∗ has maximum
height less than the height of α.

β

α
C

C

A complete decomposition of C in this manner would lead to a
complete asymptotic transseries for the coefficients, and also
allow one to compute behavior as C → 27.
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The product-linear case

One case where we have an algorithm for a complete
topological description if C is when Q is the product of real
linear functions

Q(z) =
m∏
j=1

1− b(j) · z .

The variety V is an affine hyperplane arrangement. Each flat
has precisely one critical point. Pictured: in two variables the
flats are just lines and intersection points. Each intersection is
critical. Each line has precisely one critical point, which occurs
in the orthant on which the line is bounded.
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Homology bases

The imaginary fibers over cham-
bers of the real arrangement form
a homology basis.

tot

Morse theory tells us
that the linking tori
form another basis.
These are the alter-
nating sums of imag-
inary fibers at each
critical point.
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Change of basis

In the fiber basis, C is the alternating sum at the origin (not a
linking torus because linking tori occur only at critical points).

Theorem 5

In the linking torus basis {γσ : σ critical}

C =
∑
σ

δσγσ

where δσ = 1 if r is in the positive hull of the normal vectors
to the hyperplanes meeting at σ and zero otherwise.

The missing dot in-
dicates that δσ = 0
when σ is the left-
most intersection.
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Exact sum of stationary phase integrals

The linking tori are so named because the Cauchy integral
over γσ is already in stationary phase. Thus,

(2πi)dar =
∑
σ

δσ

∫
γσ

ω .

Furthermore,

I The set of critical points σ is effectively computable via
the critical point equations

I The coefficients δσ are zero or one and effectively
computed via Theorem 5

I The integrals are automatically computable in terms of
the coefficients b(j) of the linear factors of Q.
code posted on Melczer’s website
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VI: Ad hoc computations
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4-variable critical GRZ function

Let Q(x , y , z ,w) = 1− x − y − z − w + C xyzw be the
4-variable GRZ denominator. The critical value is C = 27.

Our analysis of the coefficients
of 1/Q is in some sense just a
case study, but it gives a couple
of very important lessons.

From diagonal analysis, one can establish that the diagonal
coefficients an,n,n,n grow at rate 9n at criticality, whereas they
grow at rate θ(C )n when C 6= 27, with θ(C )→ 81 as C → 27.

In other words, the exponential growth rate experiences a
sudden drop exactly at criticality.
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Topological explanation

The first interesting thing is the topological explanation.

Taking a residue gives a 3-dimensional in-
tersection cycle. Imagine we rotate so
that the tangent cone at the singular point
is x2−y 2−z2−w 2 with the x-coordinate
pointing upward.

Perturbing Q to Q + ε resolves the
cone into a hyperboloid, with two critical
points.

The intersection cycle in hard to draw
but it lives in this union of conics,
where the two nodes are the two crit-
ical points for the perturbed variety.
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Vanishing cycle

For the perturbed variety, the intersection cycle is the union of
a sphere, living inside the sphere pictured, and a hyperboloid,
hanging from the lower of the two nodes, and living in the
downward hyperbola pictured.

As ε → 0, the sphere
shrinks to a point. Dimen-
sional analysis shows that
the integral goes to zero.

The hyperboloid is not
what it looks like, but
rather a double cover in op-
posite directions.
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Double cover

The hyperboloid originates in the one-sheeted hyperboloid
part of the cycle and can then be folded down as shown.
Locally, where the tangent cone approximation is good, the
hyperboloid can be made to cancel itself exactly, resulting in
a cycle whose highest point is lower than the lower node.

Checking that there are no critical points at infinity, Morse
theory then implies that this contour can be pushed down to
the next critical point, yielding exponential order 9n.
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Using topology to rigorize numerics

A second interesting feature is the use of topology to rigorize
numerics. Numeric homotopy continuation methods for
univariate D-finite functions get you this far and no farther:

Lemma 6

an,n,n,n ∼ Cn−3/29n, with C determined to arbitrary precision.

With topological methods we can determine C and extend to
a neighborhood of the diagonal.

Theorem 7

annnn = 3
√

27
4
√

72
cos(nΨ + `)

(4πn)3/2
9n + O(n−5/29n)

in a neighborhood of the diagonal.
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Proof of Theorem 7

1. Topological methods show the cycle can be pushed below
the singular point.

2. There remain one conjugate pair of critical points.

3. Theorem 2 shows that smooth point asymptotics must
hold there, with undetermined integer multiplicity.

4. Combined with Lemma 6, the integer is shown to be 3.

Note the interplay between:

Morse theoretic methods (steps 1 and 3) and

Computer algebra methods (Lemma 6): diagonal extraction
and homotopy continuation methods for D-finite functions.
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