
Realistic analysis of algorithms

Cyril Nicaud

LIGM – Université Paris-Est Marne-la-Vallée & CNRS

AofA 2019, june 25

Realistic?

1 Which algorithms are implemented in standard libraries and why?

I Java’s Dual-Pivot Quicksort
[C. Martínez, M. Nebel, R. Neininger, S. Wild, . . .]

I TimSort (Python, Java, . . .)
I . . .

2 How accurate is our model of computation? Can we improve it?

I External memory model
I Cache-oblivious model
I Branch predictions
I . . .

Realistic?

1 Which algorithms are implemented in standard libraries and why?
I Java’s Dual-Pivot Quicksort

[C. Martínez, M. Nebel, R. Neininger, S. Wild, . . .]
I TimSort (Python, Java, . . .)
I . . .

2 How accurate is our model of computation? Can we improve it?

I External memory model
I Cache-oblivious model
I Branch predictions
I . . .

Realistic?

1 Which algorithms are implemented in standard libraries and why?
I Java’s Dual-Pivot Quicksort

[C. Martínez, M. Nebel, R. Neininger, S. Wild, . . .]
I TimSort (Python, Java, . . .)
I . . .

2 How accurate is our model of computation? Can we improve it?
I External memory model
I Cache-oblivious model
I Branch predictions
I . . .

I. TimSort
with N. Auger, V. Jugé & C. Pivoteau

TimSort algorithm

a c t r b w k i e d u n

The input is split into runs, which are monotonic subsequences
Every discovered run is added to a stack, then some consecutive
runs can be merged (as in MergeSort) ← more details later

a c t a c t
b r

a c t
b r

d e i k w
d e i k w
a b c r t

When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don’t consider
here (especially in the merge procedure)

TimSort algorithm

a c t r b w k i e d u n

The input is split into runs, which are monotonic subsequences

Every discovered run is added to a stack, then some consecutive
runs can be merged (as in MergeSort) ← more details later

a c t a c t
b r

a c t
b r

d e i k w
d e i k w
a b c r t

When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don’t consider
here (especially in the merge procedure)

TimSort algorithm

a c t r b w k i e d u n

The input is split into runs, which are monotonic subsequences
Every discovered run is added to a stack, then some consecutive
runs can be merged (as in MergeSort) ← more details later

a c t a c t
b r

a c t
b r

d e i k w
d e i k w
a b c r t

When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don’t consider
here (especially in the merge procedure)

TimSort algorithm

a c t r b w k i e d u n

The input is split into runs, which are monotonic subsequences
Every discovered run is added to a stack, then some consecutive
runs can be merged (as in MergeSort) ← more details later

a c t a c t
b r

a c t
b r

d e i k w
d e i k w
a b c r t

When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don’t consider
here (especially in the merge procedure)

TimSort algorithm

a c t r b w k i e d u n

The input is split into runs, which are monotonic subsequences
Every discovered run is added to a stack, then some consecutive
runs can be merged (as in MergeSort) ← more details later

a c t a c t
b r

a c t
b r

d e i k w
d e i k w
a b c r t

When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don’t consider
here (especially in the merge procedure)

timsort.txt (from Tim Peters)

This describes an adaptive, stable, natural
mergesort, modestly called timsort (hey, I earned
it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than lg(N!)
comparisons needed, and as few as N-1), yet as fast
as Python’s previous highly tuned samplesort hybrid on
random arrays.

I believe that lists very often do have exploitable
partial order in real life, and this is the strongest
argument in favor of timsort

Running Time

In 2003, TimSort is announced to be in O(log n!), with no formal proof.

Theorem (Auger, Nicaud, Pivoteau 2015)
TimSort has a worst-case running time of O(n log n).

The proof is not very difficult, but hard to read (and to teach!)

Theorem (Folklore)
The running time of any sorting by comparisons algorithm is Ω(n log n).

So TimSort is optimal, as many other algorithms: it does not explain why
it is used in practice!

Parameterize Running Time

I believe that lists very often do have exploitable partial order in

real life, and this is the strongest argument in favor of timsort

Idea: add a parameter to describe the running time

First choice: the number of runs ρ.
It was conjectured that TimSort runs in O(n + n log ρ)

Better choice: the run lengths entropy H.
If the runs have size r1, . . . , rρ, then

H := −
ρ∑

i=1

ri
n
log2

ri
n

If the runs have sizes n
11 , . . .

n
11 : H = log2 11 ≈ 3.46

If the runs have sizes 90n
100 ,

n
100 . . .

n
100 : H ≈ 0.80

If the runs have sizes
√
n, . . .

√
n: H = 1

2 log2 n

Parameterize Running Time

I believe that lists very often do have exploitable partial order in

real life, and this is the strongest argument in favor of timsort

Idea: add a parameter to describe the running time
First choice: the number of runs ρ.
It was conjectured that TimSort runs in O(n + n log ρ)

Better choice: the run lengths entropy H.
If the runs have size r1, . . . , rρ, then

H := −
ρ∑

i=1

ri
n
log2

ri
n

If the runs have sizes n
11 , . . .

n
11 : H = log2 11 ≈ 3.46

If the runs have sizes 90n
100 ,

n
100 . . .

n
100 : H ≈ 0.80

If the runs have sizes
√
n, . . .

√
n: H = 1

2 log2 n

Parameterize Running Time

I believe that lists very often do have exploitable partial order in

real life, and this is the strongest argument in favor of timsort

Idea: add a parameter to describe the running time
First choice: the number of runs ρ.
It was conjectured that TimSort runs in O(n + n log ρ)

Better choice: the run lengths entropy H.
If the runs have size r1, . . . , rρ, then

H := −
ρ∑

i=1

ri
n
log2

ri
n

If the runs have sizes n
11 , . . .

n
11 : H = log2 11 ≈ 3.46

If the runs have sizes 90n
100 ,

n
100 . . .

n
100 : H ≈ 0.80

If the runs have sizes
√
n, . . .

√
n: H = 1

2 log2 n

Parameterize Running Time

I believe that lists very often do have exploitable partial order in

real life, and this is the strongest argument in favor of timsort

Idea: add a parameter to describe the running time
First choice: the number of runs ρ.
It was conjectured that TimSort runs in O(n + n log ρ)

Better choice: the run lengths entropy H.
If the runs have size r1, . . . , rρ, then

H := −
ρ∑

i=1

ri
n
log2

ri
n

If the runs have sizes n
11 , . . .

n
11 : H = log2 11 ≈ 3.46

If the runs have sizes 90n
100 ,

n
100 . . .

n
100 : H ≈ 0.80

If the runs have sizes
√
n, . . .

√
n: H = 1

2 log2 n

Our results

Theorem (Auger, Jugé, Nicaud, Pivoteau. ESA 2018)
TimSort has a worst-case running time of O(n + n log ρ).

Theorem (Auger, Jugé, Nicaud, Pivoteau. Talk ESA 2018)
TimSort has a worst-case running time of O(n + nH).

We always have H ≤ log2 ρ ≤ log2 n.

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019)
TimSort needs 1.5nH+O(n) comparisons in the worst case.

Theorem (Barbay, Navarro 2013)
Sorting by comparisons algorithms use more than nH−O(n) comparisons.

Optimal algorithms?

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019)
TimSort needs 1.5nH+O(n) comparisons in the worst case.

Theorem (Barbay, Navarro 2013)
Sorting by comparisons algorithms use more than nH−O(n) comparisons.

There is a gap, and in fact, TimSort is not optimal (for this parameter H).

Some optimal algorithms are known: Takaoka 2009, Barbay & Navarro
2013, Munro & Wild 2018.

So why analyzing TimSort? because it is used in Python, Java, . . .

Optimal algorithms?

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019)
TimSort needs 1.5nH+O(n) comparisons in the worst case.

Theorem (Barbay, Navarro 2013)
Sorting by comparisons algorithms use more than nH−O(n) comparisons.

There is a gap, and in fact, TimSort is not optimal (for this parameter H).

Some optimal algorithms are known: Takaoka 2009, Barbay & Navarro
2013, Munro & Wild 2018.

So why analyzing TimSort?

because it is used in Python, Java, . . .

Optimal algorithms?

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019)
TimSort needs 1.5nH+O(n) comparisons in the worst case.

Theorem (Barbay, Navarro 2013)
Sorting by comparisons algorithms use more than nH−O(n) comparisons.

There is a gap, and in fact, TimSort is not optimal (for this parameter H).

Some optimal algorithms are known: Takaoka 2009, Barbay & Navarro
2013, Munro & Wild 2018.

So why analyzing TimSort? because it is used in Python, Java, . . .

Back to TimSort
Recall:

monotonic runs are computed and added to a stack
some merges of consecutive runs may happen when a run is added
at the end, the remaining runs are merged top-down

Merges:
a b d c b

a b b c d

k `

≡

≡

3 2

5

1 Run merging algorithm: standard + many optimizations
I time O(k + `), using k + ` comparisons1
I memory O(min(k , `))

2 Policy for choosing runs to merge:
I depends on run lengths only

Let us forget array values – only remember run lengths!
1It is k + `− 1, but we’ll use k + ` to simplify.

TimSort’s Merging Rules

STACK

r1

r2

r3

...

ri

...

rh−2

rh−1

rh
Notations:

the run Ri has length ri

the stack has height h
the topmost run is Rh

Merges after adding a new run:
While true

I if rh > rh−2 then merge Rh−1 and Rh−2
I else if rh ≥ rh−1 then merge Rh and Rh−1
I else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
I else break

Remarks:
we only consider the three topmost runs
we only merge Rh and Rh−1, or Rh−1 and Rh−2

TimSort’s Merging Rules

STACK

r1

r2

r3

...

ri

...

rh−2

rh−1

rh Merges after adding a new run:
While true

I if rh > rh−2 then merge Rh−1 and Rh−2
I else if rh ≥ rh−1 then merge Rh and Rh−1
I else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
I else break

timsort.txt:
Note that, by induction, it implies the lengths
of pending runs form a decreasing sequence. It
implies that, reading the lengths right to left,
the pending-run lengths grow at least as fast as
the Fibonacci numbers. Therefore the stack can
never grow larger than about logφ(N) entries

TimSort’s Merging Rules

STACK

r1

r2

r3

...

ri

...

rh−2

rh−1

rh Merges after adding a new run:
While true

I if rh > rh−2 then merge Rh−1 and Rh−2
I else if rh ≥ rh−1 then merge Rh and Rh−1
I else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
I else break

timsort.txt:
Note that, by induction, it implies the lengths
of pending runs form a decreasing sequence. It
implies that, reading the lengths right to left,
the pending-run lengths grow at least as fast as
the Fibonacci numbers. Therefore the stack can
never grow larger than about logφ(N) entries

An error in timsort.txt

While true
I if rh > rh−2 then merge Rh−1 and Rh−2
I else if rh ≥ rh−1 then merge Rh and Rh−1
I else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
I else break

The invariant ri+2 + ri+1 < ri does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java’s Timsort, using KeY (verification tool for Java)

Is it a real problem?
In Python: not really, the algorithm is still efficient and correct
In Java: they use the invariant to fix the maximum size of the stack,
implemented with a static array ⇒ de Gouw et al (2015) built an array
that produces an error for Java’s sort()!

An error in timsort.txt

While true
I if rh > rh−2 then merge Rh−1 and Rh−2
I else if rh ≥ rh−1 then merge Rh and Rh−1
I else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
I else break

The invariant ri+2 + ri+1 < ri does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java’s Timsort, using KeY (verification tool for Java)

Is it a real problem?
In Python: not really, the algorithm is still efficient and correct
In Java: they use the invariant to fix the maximum size of the stack,
implemented with a static array ⇒ de Gouw et al (2015) built an array
that produces an error for Java’s sort()!

Two versions of TimSort

de Gouw et al (2015) proposed two solutions to fix the problem:

1. Adding a new rule (implemented in Python)
While true

I if rh > rh−2 then merge Rh−1 and Rh−2
I else if rh ≥ rh−1 then merge Rh and Rh−1
I else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1
I else if rh−1 + rh−2 ≥ rh−3 then merge Rh and Rh−1
I else break

The invariant now holds, the algorithm is certified in KeY.

2. Computing correct maximal heights for the stack (implemented in Java)

Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.

Running time analysis: O(n log n)
We focus on the main loop: other parts are done in O(n) comparisons.

While there are remaining runs
(#1) Add a new run to the stack

Repeat until stabilized
(#2) if rh > rh−2 then merge Rh−1 and Rh−2

(#3) else if rh ≥ rh−1 then merge Rh and Rh−1

(#4) else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1

(#5) else if rh−1 + rh−2 ≥ rh−3 then merge Rh and Rh−1

Amortized analysis:
♦-tokens and ♥-tokens are given to the elements of the input
tokens are used to pay for comparisons
the total number of tokens granted is our upper bound

Tokens’ rules: an element gets two ♦ and one ♥
when its run enters the stack
when its height in the stack decreases

Running time analysis: O(n log n), case #2

(#2) if rh > rh−2 then merge Rh−1 and Rh−2

Every element of Rh and Rh−1 pays one ♦: the merge cost is
rh−1 + rh−2 ≤ rh−1 + rh, hence it is fully paid.

Rh−2

Rh−1
Rh

R ′h
R ′h−1 ⊕ R ′h−2

The height of every element that paid one ♦ decreases by one: they all
gain two ♦ and one ♥

Running time analysis: O(n log n), case #3

(#3) else if rh ≥ rh−1 then merge Rh and Rh−1

Every element of Rh pays two ♦: the merge cost is rh + rh−1 ≤ 2rh, hence
it is fully paid.

Rh−2

Rh−1
Rh

R ′h−1 ⊕ R ′h
R ′h−2

The height of every element that paid two ♦ decreases by one: they all
gain two ♦ and one ♥

Running time analysis: O(n log n), case #4

(#4) else if rh + rh−1 ≥ rh−2 then merge Rh and Rh−1

Every element of Rh pays one ♦, every element of Rh−1 pays one ♥: the
merge cost is rh + rh−1, hence it is fully paid.

Rh−2

Rh−1
Rh

R ′h−1 ⊕ R ′h
R ′h−2

The height of the elements of Rh decreases by one: ok for ♦
Elements that paid one ♥ are now in the topmost run
Elements in the topmost run never pay with ♥
In the new stack, rh ≥ rh−1 so another merge is going to occur (#3)
The height of the new topmost run is going to decrease during this
new merge, its elements will get two ♦ and one ♥

Running time analysis: O(n log n), case #5

(#5) else if rh−1 + rh−2 ≥ rh−3 then merge Rh and Rh−1

Every element of Rh pays one ♦, every element of Rh−1 pays one ♥: the
merge cost is rh + rh−1, hence it is fully paid.

Rh−3

Rh−2

Rh−1
Rh

Rh−3

R ′h−1 ⊕ R ′h
R ′h−2

The height of the elements of Rh decreases by one: ok for ♦
Elements that paid one ♥ are now in the topmost run
Elements in the topmost run never pay with ♥
In the new stack, rh + rh−1 ≥ rh−2 so another merge is going to occur
(#4)
The height of the new topmost run is going to decrease during this
new merge, its elements will get two ♦ and one ♥

Running time analysis: O(n log n)
Summary:

Computing the run decomposition takes O(n)

For the main loop:
I each element gets 2♦ and 1♥ when entering the stack
I each merge is paid with ♦ and ♥
I when an element pays with ♦, it get it (them) back immediately after
I when an element pays with ♥, another merge occurs just after, during

which it get it back

The final merges are done in O(n) by direct computation

Lemma
At any moment during TimSort, the stack has height in O(log n).

Proof: the invariant holds.

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n log n).

Running time analysis: O(n + nH)
Recall: #1 is the insertion of a new run in the stack
Recall: H = −∑ ri

n log ri
n

We use the following decomposition of the sequence of events:

#1#2#2#2︸ ︷︷ ︸
starting sequence

pay with ♠

#3#4#2#5#3︸ ︷︷ ︸
ending sequence
pay with ♦and ♥

#1#2#2︸ ︷︷ ︸
starting sequence

pay with ♠

#4#2#2#3︸ ︷︷ ︸
ending sequence
pay with ♦and ♥

Two lemmas (both consequences of the invariant):
The total cost in ♠-tokens is linear
The height of the stack at the beginning of the ending sequence after
inserting a run of length r is O(log n

r).

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + nH).

Running time analysis: summary

We proved that for the “new” TimSort, we have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + nH).

This can be improved to:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2019)
TimSort needs at most 1.5nH+O(n) comparisons.

What about the Java’s version of TimSort? it is also in O(n + n log ρ), but
it is much more complicated to establish (no nice invariant).

but wait a minute . . .

Running time analysis: summary

We proved that for the “new” TimSort, we have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + nH).

This can be improved to:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2019)
TimSort needs at most 1.5nH+O(n) comparisons.

What about the Java’s version of TimSort? it is also in O(n + n log ρ), but
it is much more complicated to establish (no nice invariant).

but wait a minute . . .

Running time analysis: summary

We proved that for the “new” TimSort, we have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + nH).

This can be improved to:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2019)
TimSort needs at most 1.5nH+O(n) comparisons.

What about the Java’s version of TimSort? it is also in O(n + n log ρ), but
it is much more complicated to establish (no nice invariant).

but wait a minute . . .

Another bug in Java’s TimSort
Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.

The lemma is incorrect!
We built an array that produces an error to Java’s (patched) TimSort!

Another bug in Java’s TimSort
Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.

The lemma is incorrect!
We built an array that produces an error to Java’s (patched) TimSort!

Another bug in Java’s TimSort
Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.

The lemma is incorrect!
We built an array that produces an error to Java’s (patched) TimSort!

Another bug in Java’s TimSort
Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.

The lemma is incorrect!
We built an array that produces an error to Java’s (patched) TimSort!

Another bug in Java’s TimSort
Lemma
Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.

The lemma is incorrect!
We built an array that produces an error to Java’s (patched) TimSort!

Conclusion for TimSort

TimSort is an efficient algorithm, in theory and in practice
It is not entropy-optimal, but not far from it
There are many optimisation to build the runs, to perform the merges,
. . .

Its O(n log n) running time was proved more than 10 years after it was
announced
There were two consecutive bugs in Java’s version, due to improper
analysis of the algorithm

Every used algorithm deserves a fine grain analysis

Conclusion for TimSort

TimSort is an efficient algorithm, in theory and in practice
It is not entropy-optimal, but not far from it
There are many optimisation to build the runs, to perform the merges,
. . .

Its O(n log n) running time was proved more than 10 years after it was
announced
There were two consecutive bugs in Java’s version, due to improper
analysis of the algorithm

Every used algorithm deserves a fine grain analysis

Conclusion for TimSort

TimSort is an efficient algorithm, in theory and in practice
It is not entropy-optimal, but not far from it
There are many optimisation to build the runs, to perform the merges,
. . .

Its O(n log n) running time was proved more than 10 years after it was
announced
There were two consecutive bugs in Java’s version, due to improper
analysis of the algorithm

Every used algorithm deserves a fine grain analysis

II. Branch predictions
with N. Auger & C. Pivoteau

A toy example: looking for the min and the max

We want to find the minimum and the maximum of an array T of size n.

min = T[n-1];
max = T[n-1];
for(i=0; i<n-1; i++){

a = T[i];
if (a < min) min = a;
if (a > max) max = a;

}

Naive solution:
foreach element a of T , if a is smaller
than the current minimum, update the
minimum; if it is greater than the cur-
rent maximum, update the maximum.

Fact: the naive solution uses 2n − 2 ∼ 2n comparisons.

Can we do better?

Min & Max: Optimal Algorithm
Idea: take the elements by pairs (a1, a2), compare them, then compare the
smallest to the current min and the largest to the current max

min = max = T[n-1];
for(i=0; i<n-1; i+=2){

a1 = T[i];
a2 = T[i+1];
if (a1 < a2) {

if (a1 < min) min = a1;
if (a2 > max) max = a2;

}
else {

if (a2 < min) min = a2;
if (a1 > max) max = a1;

}
}

Number of comparisons:

∼ n
2 loop iterations

3 comparisons by iterations
number of comparisons: ∼ 3

2n

That’s better!

Theorem (Folklore)

At least ∼ 3
2n comparisons are needed to compute the min and the max.

Min & Max: Optimal Algorithm
Idea: take the elements by pairs (a1, a2), compare them, then compare the
smallest to the current min and the largest to the current max

min = max = T[n-1];
for(i=0; i<n-1; i+=2){

a1 = T[i];
a2 = T[i+1];
if (a1 < a2) {

if (a1 < min) min = a1;
if (a2 > max) max = a2;

}
else {

if (a2 < min) min = a2;
if (a1 > max) max = a1;

}
}

Number of comparisons:

∼ n
2 loop iterations

3 comparisons by iterations
number of comparisons: ∼ 3

2n

That’s better!

Theorem (Folklore)

At least ∼ 3
2n comparisons are needed to compute the min and the max.

Min & Max: experiments

Min & Max: experiments

The naive solution is more efficient in practice!

Pipeline
Notion of pipeline:

During the execution of a program, instructions are executed
sequentially: i=3, a<b, if (...), . . .
Instructions are divided into several sequential steps
Different steps can be handle in parallel by the processor

Example with 5 steps:

processor

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

5
5

5
5

instruction 1

instruction 2

instruction 3

instruction 4

It can be up to five time as fast

Pipeline and Branches

A branch is an instruction with several possible following instructions:
if, while, . . .
Branches constitute a problem for the pipeline:

processor

1
1

2
2

3
3

4
4

5
5

condition

instr. A or B?

if <condition>

<instruction A>;

else

<instruction B>;

We have to wait for the completion of all the stages of <condition>
to know whether it is followed by A or by B!

Solution: try to anticipate if condition = true or false

Pipeline and Branches

A branch is an instruction with several possible following instructions:
if, while, . . .
Branches constitute a problem for the pipeline:

processor

1
1

2
2

3
3

4
4

5
5

condition

instr. A or B?

if <condition>

<instruction A>;

else

<instruction B>;

We have to wait for the completion of all the stages of <condition>
to know whether it is followed by A or by B!

Solution: try to anticipate if condition = true or false

Branch predictions
Branches does not fit well with the pipeline
We try to anticipate whether the branch will be:

I Taken (T): when <condition> is true
I Not Taken (NT): when <condition> is false

We push the predicted next instruction in the pipeline:
I if the prediction is correct, we gain some time
I if it is incorrect, we have to undo what we did, we lose some time

A simple local predictor, the 2-bit predictor (one for each branch):

strongly
not taken

not taken taken
strongly
taken

T

NT

T

NT

T

NT

NT T

Back to the toy example
min = T[n-1];
max = T[n-1];
for(i=0; i<n-1; i++){

a = T[i];
if (a < min) min = a;
if (a > max) max = a;

}

The condition if (a < min) is true when
there is a min-record, and false otherwise.

T

NT

T

NT

T

NT

NT T

We have a pure AofA exercise:
Start at any state, draw a uniform random permutation
Scan it from left to right: when there is a min-record, go to the right
in the automaton (if possible), otherwise go to the left
What is the expected number of mispredictions?

Lemma
The expected number of mispredictions produced by each if in the naive
solution is asymptotically equivalent to log n.

Back to the toy example
min = T[n-1];
max = T[n-1];
for(i=0; i<n-1; i++){

a = T[i];
if (a < min) min = a;
if (a > max) max = a;

}

The condition if (a < min) is true when
there is a min-record, and false otherwise.

T

NT

T

NT

T

NT

NT T

We have a pure AofA exercise:
Start at any state, draw a uniform random permutation
Scan it from left to right: when there is a min-record, go to the right
in the automaton (if possible), otherwise go to the left
What is the expected number of mispredictions?

Lemma
The expected number of mispredictions produced by each if in the naive
solution is asymptotically equivalent to log n.

What About the Optimal Algorithm?

Idea: take the elements by pairs (a1, a2), compare them, then compare the
smallest to the current min and the largest to the current max

min = max = T[n-1];
for(i=0; i<n-1; i+=2){

a1 = T[i];
a2 = T[i+1];
if (a1 < a2) {

if (a1 < min) min = a1;
if (a2 > max) max = a2;

}
else {

if (a2 < min) min = a2;
if (a1 > max) max = a1;

}
}

The first branch: if (a1 < a2) is
true with probability 1

2 for uniform
random permutations.
This cannot be well predicted:
there is a misprediction here with
probability 1

2 for each loop iteration
The expected number of
mispredictions is asymptotically n

4 !

Toy example: conclusion

We proposed to solutions to this simple problem
For uniform random permutations, in expectation:

I The naive algorithm uses 2n comparisons and 2 log n mispredictions
I The optimal algorithm uses 3

2n comparisons and 1
4n mispredictions

I Experimentally, the naive algorithm is more efficient!

We have to add branch predictors to our model of computation (RAM
model) to fully describe the complexity of some algorithms.

Toy example: conclusion

We proposed to solutions to this simple problem
For uniform random permutations, in expectation:

I The naive algorithm uses 2n comparisons and 2 log n mispredictions
I The optimal algorithm uses 3

2n comparisons and 1
4n mispredictions

I Experimentally, the naive algorithm is more efficient!

We have to add branch predictors to our model of computation (RAM
model) to fully describe the complexity of some algorithms.

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

An Experimental Study of Sorting and Branch
Prediction

PAUL BIGGAR1, NICHOLAS NASH1, KEVIN WILLIAMS2 and DAVID GREGG

Trinity College Dublin

Sorting is one of the most important and well studied problems in Computer Science. Many good
algorithms are known which offer various trade-offs in efficiency, simplicity, memory use, and
other factors. However, these algorithms do not take into account features of modern computer
architectures that significantly influence performance. Caches and branch predictors are two such
features, and while there has been a significant amount of research into the cache performance
of general purpose sorting algorithms, there has been little research on their branch prediction
properties. In this paper we empirically examine the behaviour of the branches in all the most
common sorting algorithms. We also consider the interaction of cache optimization on the pre-
dictability of the branches in these algorithms. We find insertion sort to have the fewest branch
mispredictions of any comparison-based sorting algorithm, that bubble and shaker sort operate
in a fashion which makes their branches highly unpredictable, that the unpredictability of shell-
sort’s branches improves its caching behaviour and that several cache optimizations have little
effect on mergesort’s branch mispredictions. We find also that optimizations to quicksort – for
example the choice of pivot – have a strong influence on the predictability of its branches. We
point out a simple way of removing branch instructions from a classic heapsort implementation,
and show also that unrolling a loop in a cache optimized heapsort implementation improves the
predicitability of its branches. Finally, we note that when sorting random data two-level adaptive
branch predictors are usually no better than simpler bimodal predictors. This is despite the fact
that two-level adaptive predictors are almost always superior to bimodal predictors in general.

Categories and Subject Descriptors: E.5 [Data]: Files—Sorting/Searching; C.1.1 [Computer
Systems Organization]: Processor Architectures, Other Architecture Styles—Pipeline proces-
sors

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Sorting, Branch Prediction, Pipeline Architectures, Caching

1. MOTIVATION

Classical analyses of algorithms make simplifying assumptions about the cost of
different machine instructions. For example, the RAM model used for establishing

1Supported by the Irish Research Council for Science, Engineering and Technology (IRCSET).
2Supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) and
IBM.

Corresponding author’s address: David Gregg, Department of Computer Science, University of
Dublin, Trinity College, Dublin 2, Ireland. David.Gregg@cs.tcd.ie.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–38.

20 ·

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2097152 524288 131072 32768 8192

In
st

ru
ct

io
ns

 p
er

 k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

 0

 2

 4

 6

 8

 10

 12

 2097152 524288 131072 32768 8192

Br
an

ch
 m

is
pr

ed
ic

tio
ns

 p
er

 k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort (bimodal)
Insertion multi-mergesort (two-level adaptive)

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2097152 524288 131072 32768 8192

Le
ve

l 2
 m

is
se

s
pe

r k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2097152 524288 131072 32768 8192

C
yc

le
s

pe
r k

ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

(c) (d)

Fig. 8. (a) Shows the instruction counts for the insertion d-way mergesort algorithms, for a variety
of values of d. It also shows the much lower instruction count of our cache-optimized insertion
multi-mergesort variation compared to these algorithms. (b) Shows the branch mispredictions
per key for the algorithms, all results show bimodal predictor results, except for cache-optimized
insertion multi-mergesort, for which we also show results when using a two-level adaptive predictor
with a 10-bit history register and 4096 table entries, since for this algorithm the two-level adaptive
predictor is significantly better than the bimodal predictor. (c) Shows the level 2 cache misses of
the algorithms when operating on a 2 MB direct mapped cache with 32-byte cache lines. These
results were gathered using sim-cache and sim-bpred. Finally (d) shows the cycles per key of the
algorithms, measured using Pentium 4 hardware performance counters. Despite cache-optimized
insertion multi-mergesort’s heightened cache misses and branch mispredictions, its low instruction
count enables it to out-perform the insertion d-way mergesort algorithms.

substantially mitigate the high instruction count of the technique by varying the
value of d depending on the number of keys which remain to be sorted. In addition,
for small values of d the insertion merge should be special-cased. It is also likely that
the cache performance of the algorithm could be substantially improved by copying
blocks of keys (for example, as many keys as fit in a cache-line) to small buffers
when appending keys from subarrays to the destination buffer. We leave a fuller
investigation into determining the best trade-offs between reducing the instruction
count of the algorithm, improving its locality and maintaining a modest number of
branch mispredictions to future work.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

0

20

40

60

80

100

medianinsertionji

%
 B

ra
nc

he
s

Correct
Taken

0

20

40

60

80

100

insertionji

%
 B

ra
nc

he
s

Correct
Taken

(a) Basic quicksort (b) Memory-tuned quicksort

0

20

40

60

80

100

insertionbinary rightbinary leftji

%
 B

ra
nc

he
s

Correct
Taken

0

20

40

60

80

100

sequentialinsertionji

%
 B

ra
nc

he
s

Correct
Taken

(c) Multi-quicksort (binary search) (d) Multi-quicksort (sequential search)

Fig. 9. Overview of branch prediction behaviour in our quicksort implementations. Every figure
shows the behaviour of the i and j branches when using a median-of-3 pivot. As described in
Section 8.2, these branches are about 60% biased and 64% predictable when using the median-of-3.
In (a) the median branch is the combined results of the branches which compute the median-of-3
(these branches are also executed for (b), (c) and (d)). Comparing (a) with (b), (c) and (d), we
see that the insertion branch associated with its insertion sort is slightly less predictable than in
the other variations. This is due to it running as a post-pass. Finally, comparing (c) with (d) we
see that the binary search branches of (c), binary left and binary right, are very unpredictable
compared to the sequential branch of (d).

pv = a[l];

i = l, j = r + 1;

while(true)

{

while(a[++i] < pv) ; // i-loop

while(a[--j] > pv) ; // j-loop

if(i >= j) break;

swap(a[i], a[j]);

}

swap(a[l], a[j]);

Fig. 10. Quicksort’s partition inner-loop. We refer to the inner while loops as the i and j loops.
We refer to their associated branches as the i and j branches respectively.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Branch Mispredictions Don’t A↵ect Mergesort?

Amr Elmasry1, Jyrki Katajainen1,2, and Max Stenmark2

1 Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen East, Denmark

2 Jyrki Katajainen and Company
Thorsgade 101, 2200 Copenhagen North, Denmark

Abstract. In quicksort, due to branch mispredictions, a skewed pivot-
selection strategy can lead to a better performance than the exact-
median pivot-selection strategy, even if the exact median is given for
free. In this paper we investigate the e↵ect of branch mispredictions on
the behaviour of mergesort. By decoupling element comparisons from
branches, we can avoid most negative e↵ects caused by branch mispre-
dictions. When sorting a sequence of n elements, our fastest version of
mergesort performs n log2 n + O(n) element comparisons and induces at
most O(n) branch mispredictions. We also describe an in-situ version
of mergesort that provides the same bounds, but uses only O(log2 n)
words of extra memory. In our test computers, when sorting integer
data, mergesort was the fastest sorting method, then came quicksort,
and in-situ mergesort was the slowest of the three. We did a similar kind
of decoupling for quicksort, but the transformation made it slower.

1 Introduction

Branch mispredictions may have a significant e↵ect on the speed of programs.
For example, Kaligosi and Sanders [8] showed that in quicksort [6] it may be
more advantageous to select a skewed pivot instead of finding a pivot close to
the median. The reason for this is that for a comparison against the median
the outcome has a fifty percent chance of being smaller or larger, whereas the
outcome of comparisons against a skewed pivot is easier to predict. All in all, a
skewed pivot will lead to a better branch prediction and—possibly—a decrease
in computation time. In a same vein, Brodal and Moruz [3] showed that skewed
binary search trees can perform better than perfectly balanced search trees.

In this paper we tackle the following question posed in [8]. Given a random
permutation of the integers {0, 1, . . . , n � 1}, does there exist a faster in-situ
sorting algorithm than quicksort with skewed pivots for this particular type of
input? We use the word in-situ to indicate that the algorithm is allowed to use
O(log2 n) extra words of memory (as any careful implementation of quicksort).

It is often claimed that quicksort is faster than mergesort. To check the cor-
rectness of this claim, we performed some simple benchmarks for the quicksort
(std::sort) and mergesort (std::stable sort) programs available at the GNU
implementation (g++ version 4.6.1) of the C++ standard library; std::sort is

? c� 2012 Springer-Verlag. This is the authors’ version of the work. The original pub-
lication is available at www.springerlink.com.

and sorting, the other half of the elements can be handled recursively. We stop
the recursion when the number of remaining elements is less than n/ log2 n and
use introsort to handle them. An iterative procedure-level description of this
sorting program is given below. Its interface is the same as that for std::sort.

1 template <typename iterator , typename comparator>
2 void sort(iterator p , iterator r , comparator less) {
3 typedef typename std : : iterator_traits<iterator>::difference_type index ;
4 index n = r � p ;
5 index threshold = n / ilogb(2 + n) ;
6 while (n > threshold) {
7 iterator q_1 = p + n / 2;
8 iterator q_2 = r � n / 2;
9 converse_relation<comparator> greater(less) ;

10 std : : nth_element(p , q_1 , r , greater) ;
11 mergesort(p , q_1 , q_2 , less) ;
12 r = q_1 ;
13 n = r � p ;
14 }
15 std : : sort(p , r , less) ;
16 }

Most of the work is done in the basic steps, and each step only uses O(1)
extra space in addition to the input sequence. Compared to normal mergesort,
the inner loop is not much longer. In the following code extracts, the variables
have the same meaning as those used in tuned mergesort: p, q, r, s, t, t1, and
t2 store iterators; x and y elements; and done and smaller Boolean values.

1 while (p != t1 && q != t2) {
2 i f (less(⇤q , ⇤p)) {
3 s = q ;
4 ++q ;
5 }
6 else {
7 s = p ;
8 ++p ;
9 }

10 x = ⇤r ;
11 ⇤r = ⇤s ;
12 ⇤s = x ;
13 ++r ;
14 }

1 test :
2 done = (q == t2) ;
3 i f (done) goto exit ;
4 entrance :
5 x = ⇤p ;
6 s = p + 1;
7 y = ⇤q ;
8 t = q + 1;
9 smaller = less(y , x) ;

10 i f (smaller) s = t ;
11 i f (smaller) q = t ;
12 i f (! smaller) p = s ;
13 i f (! smaller) y = x ;
14 x = ⇤r ;
15 ⇤r = y ;
16 ��s ;
17 ⇤s = x ;
18 ++r ;
19 done = (p == t1) ;
20 i f (! done) goto test ;
21 exit :

As shown on the right above, an ideal translation of the loop contains 18 assembly-
language instructions, which is only four more than that required by the inner
loop of mergesort. Because of register spilling, the actual code produced by
the g++ compiler was a bit longer; it contained 26 instructions. Again, the two
branches of the if statement were compiled using conditional moves.

For an input of size m, the worst-case cost of std::nth element and std::sort

is O(m) and O(m log2 m), respectively [13]. Thus, the overhead caused by these
subroutines is linear in the input size. Both of these routines require at most a
logarithmic amount of extra space. To sum up, we rely on standard library com-
ponents and ensure that our program only induces O(n) branch mispredictions.

6

Table 3. The execution time [ns], the number of conditional branches, and the number
of mispredictions, each per n log2 n, for two in-situ variants of mergesort.

Program In-situ std::stable sort In-situ mergesort
Time Branches Mispredicts Time Branches Mispredicts

n Per Ares Per Ares

210 49.2 29.7 9.0 2.08 7.3 5.7 1.93 0.26
215 57.6 35.0 11.1 2.38 7.1 5.6 1.94 0.15
220 62.7 38.5 12.9 2.53 7.4 5.7 1.92 0.11
225 68.0 41.3 14.4 2.62 7.6 5.7 1.92 0.09

In our experiments, we compared our in-situ mergesort against the space-
economical mergesort provided by the C++ standard library. The library routine
is recursive, so (due to the recursion stack) it requires a logarithmic amount of
extra space. The performance di↵erence between the two programs is stunning,
as seen in Table 3. We admit that this comparison is unfair; the library routine
promises to sort the elements stably, whereas our in-situ mergesort does not.
However, this comparison shows how well our in-situ mergesort performs.

4 Comparison to Quicksort

In the C++ standard library shipped with our compiler, std::sort is an imple-
mentation of introsort [13], which is a variant of median-of-three quicksort [6].
Introsort is half-recursive, it coarsens the base case by leaving small subprob-
lems (of size 16 or smaller) unsorted, it calls insertionsort to finalize the sorting
process, and it calls heapsort if the recursion depth becomes too large. Since
introsort is known to be fast, it was natural to use it as our starting point.

The performance-critical loop of quicksort is tight as shown on the left below;
p and r are iterators indicating how far the partitioning process has proceeded
from the beginning and the end, respectively; v is the pivot, and less is the
comparator used in element comparisons; the four additional variables are tem-
porary: x and y store elements, and smaller and cross Boolean values.

1 while (true) {
2 while (less(⇤p , v)) {
3 ++p ;
4 }
5 ��r ;
6 while (less(v , ⇤r)) {
7 ��r ;
8 }
9 i f (p >= r) {

10 return p ;
11 }
12 x = ⇤p ;
13 ⇤p = ⇤r ;
14 ⇤r = x ;
15 ++p ;
16 }

1 ��p ;
2 goto first_loop ;
3 swap :
4 ⇤p = y ;
5 ⇤r = x ;
6 first_loop :
7 ++p ;
8 x = ⇤p ;
9 smaller = less(x , v) ;

10 i f (smaller) goto first_loop ;
11 second_loop :
12 ��r ;
13 y = ⇤r ;
14 smaller = less(v , y) ;
15 i f (smaller) goto second_loop ;
16 cross = (p < r) ;
17 i f (cross) goto swap ;
18 return p ;

7

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Sanders, 2006 : mispredictions and quicksort

How Branch Mispredictions Affect Quicksort

Kanela Kaligosi1 and Peter Sanders2

1 Max Planck Institut für Informatik
Saarbrücken, Germany

kaligosi@mpi-sb.mpg.de
2 Universität Karlsruhe, Germany

sanders@ira.uka.de

Abstract. We explain the counterintuitive observation that finding
“good” pivots (close to the median of the array to be partitioned) may
not improve performance of quicksort. Indeed, an intentionally skewed
pivot improves performance. The reason is that while the instruction
count decreases with the quality of the pivot, the likelihood that the
direction of a branch is mispredicted also goes up. We analyze the ef-
fect of simple branch prediction schemes and measure the effects on real
hardware.

1 Introduction

Sorting is one of the most important algorithmic problems both practically and
theoretically. Quicksort [1] is perhaps the most frequently used sorting algo-
rithm since it is very fast in practice, needs almost no additional memory, and
makes no assumptions on the distribution of the input. Hence, quicksort, its
analysis and efficient implementation is discussed in most basic courses on al-
gorithms. When we take a random pivot, the expected number of comparisons
is 2n lnn ≈ 1.4n lg n. One of the most well known optimizations is that taking
the median of three elements reduces the expected number of comparisons to
12
7 n lnn ≈ 1.2n lg n [2]. Indeed, by using the median of a larger random sample,
the expected number of comparisons can be made as close to n lg n as we want
[3]. For sufficiently large inputs, the increased overhead for pivot selection is
negligible. At first glance, counting comparisons makes a lot of practical sense
since in quicksort, the number of executed instructions and cache faults grow
proportionally with this figure.

However, in comparison based sorting algorithms like quicksort or mergesort,
neither the executed instructions nor the cache faults dominate execution time.
Comparisons are much more important, but only indirectly since they cause
the direction of branch instructions depending on them to be mispredicted.
In modern processors with long execution pipelines and superscalar execution,
dozens of subsequent instructions are executed in parallel to achieve a high peak
throughput. When a branch is mispredicted, much of the work already done
on the instructions following the predicted branch direction turns out to be
wasted. Therefore, ingenious and very successful schemes have been devised to
accurately predict the direction a branch takes. Unfortunately, we are facing a

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 780–791, 2006.
c⃝ Springer-Verlag Berlin Heidelberg 2006

788 K. Kaligosi and P. Sanders

of branch mispredictions. In Fig. 5 we see the number of instructions that are
executed. These are proportional to the number of comparisons and therefore
we see that the exact median is the best, followed by the median of 3, then the
random pivot and finally the 1/10-skewed pivot. Observe that the curves in this
figure are very flat and smooth in contrast to the curves in Fig. 3. Therefore, it
is not only the number of executed instructions that plays a major role in the
running time. The fluctuations in Fig. 3 indicate architectural effects. Observe
that for n = 216 the number of branch mispredictions of random pivot drop and
for this n we also see a significant drop in its running time. Having a closer look at
the curves we see that the curves of time and those of the branch mispredictions
have the same shape, in the sense that when the branch mispredictions drop, the
running time drops too and when the branch mispredictions increase the running
time increases too. Note that the branch mispredictions only slowly approach

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 10 12 14 16 18 20 22 24 26

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 3. Time / n lg n for random pivot, median of 3, exact median, 1/10-skewed pivot

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 10 12 14 16 18 20 22 24 26

#b
ra

nc
h

m
is

se
s

/ n
 lg

 n

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 4. Number of branch mispredictions / n lg n for random pivot, median of 3, exact
median, 1/10-skewed pivot

784 K. Kaligosi and P. Sanders

Table 1. Number of branch mispredictions

random pivot α-skewed pivot

static predictor ln 2
2

n lg n + O(n), ln 2
2

≈ 0.3466 α
H(α)

n lg n + O(n), α < 1/2
1−α
H(α)

n lg n + O(n), α ≥ 1/2

1-bit predictor 2 ln 2
3

n lg n + O(n), 2 ln 2
3

≈ 0.4621 2α(1−α)
H(α)

n lg n + O(n)

2-bit predictor 28 ln 2
45

n lg n + O(n), 28 ln 2
45

≈ 0.4313 2α4−4α3+α2+α
(1−α(1−α))H(α)

n lg n + O(n)

with static predictor there is no such assumption and for the entry α-skewed
with static predictor we give a worst case analysis.

In Fig. 2 we see the α-dependent coefficients of n lg n for the case of the α-skewed
pivot. As expected they are maximized for α = 0.5 and their value decreases as
we move towards smaller or larger α’s. Moreover, the best curve is the one for
the static predictor, followed by the one for the 2-bit predictor and then the one
for the 1-bit predictor.

3.1 Static Prediction Scheme

Next we analyze the number of branch mispredictions quicksort could achieve
with static branch prediction if somebody would tell the predictor whether the
pivot is smaller or larger than the median. We can judge dynamic branch pre-
diction by comparing its performance with this “best possible” prediction. We
consider the random pivot and the α-skewed pivot case. For the former we give

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

(#
br

an
ch

 m
is

se
s

-
O

(n
))

 /
 n

 lg
 n

α

static predictor
1-bit predictor
2-bit predictor

Fig. 2. The α-dependent coefficients of n lg n for varying α

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Analysis of Branch Misses in Quicksortú

Conrado Martínez† Markus E. Nebel‡§ Sebastian Wild‡

November 11, 2014

Abstract
The analysis of algorithms mostly relies on count-
ing classic elementary operations like additions,
multiplications, comparisons, swaps etc. This ap-
proach is often su�cient to quantify an algorithm’s
e�ciency. In some cases, however, features of mod-
ern processor architectures like pipelined execution
and memory hierarchies have significant impact on
running time and need to be taken into account to
get a reliable picture. One such example is Quick-
sort: It has been demonstrated experimentally that
under certain conditions on the hardware the clas-
sically optimal balanced choice of the pivot as me-
dian of a sample gets harmful. The reason lies in
mispredicted branches whose rollback costs become
dominating.

In this paper, we give the first precise ana-
lytical investigation of the influence of pipelining
and the resulting branch mispredictions on the ef-
ficiency of (classic) Quicksort and Yaroslavskiy’s
dual-pivot Quicksort as implemented in Oracle’s
Java 7 library. For the latter it is still not fully
understood why experiments prove it 10 % faster
than a highly engineered implementation of a clas-
sic single-pivot version. For di�erent branch pre-
diction strategies, we give precise asymptotics for
the expected number of branch misses caused by
the aforementioned Quicksort variants when their

úPart of this research was done during a visit at UPC, for which
the second and third authors acknowledge support by project
TIN2007-66523 Formal methods and algorithms for system de-
sign (FORMALISM) of the Spanish Ministry of Economy and
Competitiveness

†Department of Computer Science, Univ. Politècnica de
Catalunya, Email: conrado@cs.upc.edu

‡Computer Science Department, University of Kaiserslautern,
Email: {wild,nebel}@cs.uni-kl.de

§Department of Mathematics and Computer Science, Univer-
sity of Southern Denmark

pivots are chosen from a sample of the input. We
conclude that the di�erence in branch misses is too
small to explain the superiority of the dual-pivot
algorithm.

1 Introduction
Quicksort (QS) is one of the most intensively used
sorting algorithms, e.g., as the default sorting
method in the standard libraries of C, C++, Java
and Haskell. Classic Quicksort (CQS) uses one
element of the input as pivot P according to which
the input is partitioned into the elements smaller
than P and the ones larger than P , which are then
sorted recursively by the same procedure.

The choice of the pivot is essential for the ef-
ficiency of Quicksort. If we always use the small-
est or largest element of the (sub-)array, quadratic
runtime results, whereas using the median gives an
(asymptotically) comparison-optimal sorting algo-
rithm. Since the precise computation of the median
is too expensive, sampling strategies have been in-
vented: out of a sample of k randomly selected
elements of the input, a certain order statistic is se-
lected as the pivot— the so-called median-of-three
strategy is one prominent example of this approach.

In theory, Quicksort can easily be generalized
to split the input into s Ø 2 partitions around s≠1
pivots. (CQS corresponds to s = 2). However,
the implementations of Sedgewick and others did
not perform as well in running time experiments as
classic single-pivot Quicksort [15]; it was common
belief that the overhead of using several pivots is
too large in practice. In 2009, however, Vladimir
Yaroslavskiy proposed a new dual-pivot variant
of Quicksort which surprisingly outperformed the
highly engineered classic Quicksort of Java 6, which

ar
X

iv
:1

41
1.

20
59

v1
 [

cs
.D

S]
 7

 N
ov

 2
01

4

⁄ 1

0

xa(1 ≠ x)b
1 ≠ x(1 ≠ x) dx = ≠

b≠1ÿ

i=0
B(a ≠ i, b ≠ i) +

Âa≠b
3 Êÿ

i=1
(≠1)i≠1! 1

(a≠b)≠3i+2 + 1
(a≠b)≠3i+1

"
+ fl1(a ≠ b). (a Ø b)

⁄ 1

0

xa(1 ≠ x)b
1
2 ≠ x(1 ≠ x)

dx = ≠
b≠1ÿ

i=0
2≠iB(a ≠ i, b ≠ i) + 2≠b

Âa≠b
4 Êÿ

i=1

!≠1
4
"i≠1! 1

(a≠b)≠4i+3 + 1
(a≠b)≠4i+2 + 1/2

(a≠b)≠4i+1
"

+ 2≠bfl2(a ≠ b).

fl1(d) = (≠1)Âd3Ê

Y
]
[

2fi

3
Ô

3 if d © 0 (mod 3)
fi

3
Ô

3 if d © 1 (mod 3)
1 ≠ fi

3
Ô

3 if d © 2 (mod 3)
, fl2(d) =

!
≠ 1

4

"Âd4Ê

Y
__]
__[

fi if d © 0 (mod 4)
fi/2 if d © 1 (mod 4)
1 if d © 2 (mod 4)
3
2 ≠ fi

4 if d © 3 (mod 4)

.

Figure 4: Explicit expressions for the integrals involved in “(1)
a,b and “(2)

a,b. The formulas are only valid for
a Ø b, but since the integrals are symmetric, one can simply use aÕ = max{a, b} and bÕ = min{a, b}. The proof
consists in finding recurrences for the polynomial long division of the integrand, solving these recurrences and
integrating them summand by summand. Details are given in Appendix C.

2 4 6 8 10 12 14
t

0.62

0.64

0.66

0.68

0.70

0.72
BM

Figure 5: Branch mispredictions, as a function
of t, in CQS (black) and YQS (red) with 1-bit
branch prediction (fat), 2-bit saturating counter
(thin solid) and 2-bit flip-consecutive (dashed) using
symmetric sampling: tCQS = (3t + 2, 3t + 2) and
tYQS = (2t + 1, 2t + 1, 2t + 1)

· the Dir(t + 1) distribution degenerates to a
deterministic vector, i.e., D æ · in probability.
By the continuous mapping theorem, we also have
the limit (in probability) f(D1) æ f(·1) and thus
E[f(D1)] æ f(·1). ⇤

6 Discussion
Table 2 (page 10) summarizes the leading factor
(the constant in front of n lnn) in the total ex-
pected number of branch mispredictions for both
CQS and YQS under the various branch prediction
schemes and di�erent pivot sampling strategies.

In practice, classic Quicksort implementations
typically use median-of-3 sampling, while in Ora-
cle’s YQS from Java 7 the chosen pivots are the
second and the fourth in a sample of 5 (tertiles-of-
5). With 1-bit prediction, this results in approx-

2 4 6 8 10 12 14
t

0.2

0.3

0.4

0.5

0.6

BM

Figure 6: Branch mispredictions, as a function of t,
in CQS (black) and YQS (red) with 1-bit (fat), 2-
bit sc (thin solid) and 2-bit fc (dashed) predictors,
using extremely skewed sampling: tCQS = (0, 6t+4)
and tYQS = (0, 6t + 3, 0)

imately 0.6857n lnn vs. 0.6867n lnn BMs in the
asymptotic average; for the other branch predic-
tion strategies the di�erence is similar. It is very
unlikely that the substantial di�erences in running
times between CQS and YQS are caused by this
tiny di�erence in the number of branch misses.

6.1 BM-Optimal Sampling. Figure 5 shows
the leading factor of BMs as a function of t, where
pivots are chosen equidistantly from samples of size
k = 6t + 5, i.e., in CQS we use the median as
pivot, in YQS the tertiles. Notice that, contrary to
many other performance measures, sampling can
be harmful with respect to branch mispredictions.
In particular, notice that with symmetric sampling
(i.e., median-of-(2t+1) for CQS, tertiles-of-(3t+2)
for YQS) the expected number of BMs increases

9

Brodal and Moruz, 2006 : skewed binary search trees

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Some Related Works
Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sanders and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martínez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

What next?

Branch predictors exist in computers
They cannot easily be turned off
Classical paradigm: ignore them, they are doing their job
AofA: sometimes, it is necessary to take them into account

What if we take them into account to design new algorithms?

Exponentiation by Squaring
We consider the classical Exponentiation by Squaring algorithm, and we
unroll the main loop, to have two iterations each time.

pow(x,n)
r = 1;
while (n > 0) {

// n is odd?
if (n & 1)

r = r * x;
n /= 2;
x = x * x;

}

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {

t = x * x;
// n0 == 1?
if (n & 1)

r = r * x;
// n1 == 1?
if (n & 2)

r = r * t;
n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

Exponentiation by Squaring

If n is taken uniformly at random in {0, . . . , 4k}, then each if is taken with
probability 1

2 : it is difficult to predict.

unrolled(x,n)
r = 1;
while (n > 0) {

t = x * x;
// n0 == 1?
if (n & 1) ← P = 1

2
r = r * x;

// n1 == 1?
if (n & 2) ← P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

Exponentiation by Squaring

Idea: guide the predictors using a unnecessary test!

unrolled(x,n)
r = 1;
while (n > 0) {

t = x * x;
// n0 == 1?
if (n & 1) ← P = 1

2
r = r * x;

// n1 == 1?
if (n & 2) ← P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

guided(x,n)
r = 1;
while (n > 0) {

t = x * x;
// n0n1 6= 00?
if (n & 3) { ← P = 3

4
if (n & 1) ← P = 2

3
r = r * x;

if (n & 2) ← P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

We have one more comparison by iteration, but predictions are easier.

Exponentiation by Squaring

Results:
25 % more comparisons for guided than for unrolled
guided is 14% faster than unrolled
yet, the number of multiplications is essentially the same.

Analysis: Markov chains!

T

NT

T

NT

T

NT

NT T
p

1− p

p

1− p

p

1− p

1− p p

The expected number of mispredictions after k steps in the Markov
chain is asymptotically µ(p)k , with µ(p) = p(1−p)

1−2p(1−p) .

The expected number of mispredictions in guided is α log2 n, with
α = 1

2µ(3/4) + 3
4µ(2/3) = 0.45

Binary Search
n/2 n/2

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

Binary Search
n/2

n/4

n/2

3n/4

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

Binary Search
n/2

n/4

n/2

n/4

3n/4

3n/4

n/4 n/4 n/2

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

partition
twice

Binary Search

Binary Search: Analysis

For arrays of size n filled with random uniform integers. Cn is the number
of comparisons and Mn the number of mispredictions.

BinarySearch BiasedBinarySearch SkewSearch
E[Cn] log n

log 2
4 log n

4 log 4−3 log 3
7 log n
6 log 2

E[Mn] log n
(2 log 2) µ(14)E[Cn]

(4
7µ(14) + 3

7µ(13)
)
E[Cn]

BinarySearch BiasedBinarySearch SkewSearch
E[Cn] 1.44 log n 1.78 log n 1.68 log n
E[Mn] 0.72 log n 0.53 log n 0.58 log n

Proof:
Master Theorem gives the expected number of times each conditional
is executed
Ensure that our predictors behave almost like Markov chains.

Branch Predictions: Conclusion

Branch prediction mechanism alters the running time of algorithms
It explains why the naive solution is better for the min/max problem
We use it to finely tune classical algorithms:

I Exponentiation by squaring is more efficient by adding a useless test!
I Binary search is more efficient if we don’t cut in the middle!

The importance of branch mispredictions is limited to basic algorithms

Thank you!

