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© Which algorithms are implemented in standard libraries and why?

» Java's Dual-Pivot Quicksort
[C. Martinez, M. Nebel, R. Neininger, S. Wild, .. .]
» TimSort (Python, Java, ...)

> ..

@ How accurate is our model of computation? Can we improve it?

External memory model
Cache-oblivious model

>
>
» Branch predictions
>



I. TimSort

with N. Auger, V. Jugé & C. Pivoteau
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TimSort algorithm

Lalclelrfblwlk]ifefd]u]n]

@ The input is split into runs, which are monotonic subsequences

@ Every discovered run is added to a stack, then some consecutive
runs can be merged (as in MergeSort) <— more details later

|d|e|i|k|w|

blr b|r —> |d]eli]|k|w
alclt alc|t alc|t alblc|r]t

@ When there is no more run, the runs in the stack are merged top-down

Remark: TimSort also contains a lot of heuristics that we don't consider
here (especially in the merge procedure)



timsort.txt (from Tim Peters)

This describes an adaptive, stable, natural
mergesort, modestly called timsort (hey, I earned

it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than 1g(N!)
comparisons needed, and as few as N-1), yet as fast
as Python’s previous highly tuned samplesort hybrid on
random arrays.

I believe that lists very often do have exploitable
partial order in real life, and this is the strongest
argument in favor of timsort




Running Time

In 2003, TimSort is announced to be in O(log n!), with no formal proof.

Theorem (Auger, Nicaud, Pivoteau 2015) J

TimSort has a worst-case running time of O(nlog n).

The proof is not very difficult, but hard to read (and to teach!)

Theorem (Folklore) J

The running time of any sorting by comparisons algorithm is Q(nlog n).

So TimSort is optimal, as many other algorithms: it does not explain why
it is used in practice!
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Parameterize Running Time

I believe that lists very often do have exploitable partial order in

real life, and this is the strongest argument in favor of timsort

Idea: add a parameter to describe the running time

e First choice: the number of runs p.
It was conjectured that TimSort runs in O(n + nlog p)

@ Better choice: the run lengths entropy H.
If the runs have size r1, ..., r,, then

If the runs have sizes £ H =log, 11 ~ 3.46

“11
If the runs have sizes %ég, 130 1—80' 7—[ ~ 0.80

If the runs have sizes \/n,...\/n: H = 5 |og2 n



Our results

Theorem (Auger, Jugé, Nicaud, Pivoteau. ESA 2018)

TimSort has a worst-case running time of O(n + nlog p).

Theorem (Auger, Jugé, Nicaud, Pivoteau. Talk ESA 2018)

TimSort has a worst-case running time of O(n + nH).

We always have H < log, p < log, n.

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019) J

TimSort needs 1.5nH + O(n) comparisons in the worst case.

Theorem (Barbay, Navarro 2013) J

Sorting by comparisons algorithms use more than n{ — O(n) comparisons.
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Optimal algorithms?

Theorem (Auger, Jugé, Nicaud, Pivoteau. Buss, Knop 2019)

TimSort needs 1.5n#H + O(n) comparisons in the worst case.

Theorem (Barbay, Navarro 2013)

Sorting by comparisons algorithms use more than n{ — O(n) comparisons.

There is a gap, and in fact, TimSort is not optimal (for this parameter H).

Some optimal algorithms are known: Takaoka 2009, Barbay & Navarro
2013, Munro & Wild 2018.

So why analyzing TimSort? because it is used in Python, Java, ...



Back to TimSort

Recall:
@ monotonic runs are computed and added to a stack
@ some merges of consecutive runs may happen when a run is added
@ at the end, the remaining runs are merged top-down

Merges: k lﬁ
lalbld[cb|=[3]2]
\Z \Z
lalblbcld|=] 5 |

@ Run merging algorithm: standard + many optimizations
» time O(k + (), using k + ¢ comparisons!
» memory O(min(k,{))

@ Policy for choosing runs to merge:
» depends on run lengths only

Let us forget array values — only remember run lengths!

Yt is k 4+ ¢ — 1, but we'll use k + £ to simplify.



TimSort's Merging Rules

P Notations:
P @ the run R; has length r;
"o @ the stack has height h

@ the topmost run is Ry,

Merges after adding a new run:

r; e While true

» if r, > r,_» then merge R,_1 and Ry_»

» else if r, > r,_1 then merge R, and Ry_1

» else if r, +r,_1 > r,_> then merge R, and Ry,

r3 > else break
r2 Remarks:
n @ we only consider the three topmost runs

STACK @ we only merge R, and Ry_1, or Rp—_1 and Ry_»



TimSort's Merging Rules

rh Merges after adding a new run:
rh—1 e While true
ho > if r, > r,_> then merge R,_1 and Ry_»
» else if r, > r,_; then merge R, and Ry
» else if r, + r,_1 > r,_> then merge R, and Ry,
> else break
fi timsort.txt:
Note that, by induction, it implies the lengths
of pending runs form a decreasing sequence. It
s implies that, reading the lengths right to left,
Q the pending-run lengths grow at least as fast as
the Fibonacci numbers. Therefore the stack can
n never grow larger than about /og,(N) entries

STACK



TimSort's Merging Rules

'
rh—1

rh—2

r3

rn
n

STACK

Merges after adding a new run:
o While true
» if r, > r,_» then merge Ry_1 and Ry_»

» else if r, > r,_; then merge R, and Ry

» else if r, + r,_1 > r,_> then merge R, and Ry,

» else break
timsort.txt:
Note that, by induqtion, ies the lengths
of pending runs for g sequence. It
implies that, readin ths right to left,
the pending-run l¢hg ast as fast as
the Fibonacci numbers ore the stack can



An error in timsort.txt

@ While true
> if r, > r,_» then merge Ry_1 and Ry_»
> else if r, > r,_1 then merge R, and Ry
» else if r, + ry,_1 > r,_> then merge R, and Ry
» else break

& The invariant ri 1> + riy1 < rj does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java's Timsort, using KeY (verification tool for Java)



An error in timsort.txt

@ While true
> if r, > r,_» then merge Ry_1 and Ry_»
else if r, > r,_1 then merge R, and Ry_1

>
» else if r, + ry,_1 > r,_> then merge R, and Ry
» else break

& The invariant rizo + rir1 < r; does not hold!
Discovered by de Gouw et al (2015) while trying to prove (formally) the
correctness of Java's Timsort, using KeY (verification tool for Java)

Is it a real problem?

@ In Python: not really, the algorithm is still efficient and correct

@ In Java: they use the invariant to fix the maximum size of the stack,
implemented with a static array = de Gouw et al (2015) built an array
that produces an error for Java's sort()!



Two versions of TimSort

de Gouw et al (2015) proposed two solutions to fix the problem:

1. Adding a new rule (implemented in Python)
@ While true

>

>
>
>
>

if r, > r,_o then merge Ry,_1 and R,_»

else if r, > r,_1 then merge R, and Ry_1

else if r, + r,_1 > r,_> then merge R, and Ry
else if r,_1 + rp_> > r,_3 then merge R, and R,_1
else break

The invariant now holds, the algorithm is certified in KeY.

2. Computing correct maximal heights for the stack (implemented in Java)

Lemma

Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.




Running time analysis: O(nlog n)

We focus on the main loop: other parts are done in O(n) comparisons.
@ While there are remaining runs

(#1) Add a new run to the stack
Repeat until stabilized

#2) if ry > ra_» then merge Ry_1 and Ry_>

#3) else if r, > ryn_1 then merge R, and Ru_1

#4) else if r, + ra_1 > rn—> then merge R, and Ry_1
#5) else if rp_1 + rh—2 > rp—3 then merge Ry and Ry_1

Amortized analysis:
e {-tokens and O-tokens are given to the elements of the input
@ tokens are used to pay for comparisons
@ the total number of tokens granted is our upper bound
Tokens' rules: an element gets two <> and one ©
@ when its run enters the stack

@ when its height in the stack decreases



Running time analysis: O(nlog n), case #2

(#2) if r, > rp_o then merge R,_1 and Rp_»

Every element of R, and R,_1 pays one {>: the merge cost is
rh—1+ rh—2 < rp—1 + rp, hence it is fully paid.

| Rh |
Rh—1 — Ry

Rise R

The height of every element that paid one {> decreases by one: they all
gain two < and one ¢



Running time analysis: O(nlog n), case #3

(#3) else if r, > r,_1 then merge Ry and Rp,_1

Every element of Rj, pays two <{>: the merge cost is ry, + r,_1 < 2rp, hence
it is fully paid.

Rh—1 — | R1OR,
| Rh—2 | Rh_2

The height of every element that paid two <> decreases by one: they all
gain two <{» and one ¢



Running time analysis: O(nlog n), case #4

(#4) else if r, + rp_1 > rp_» then merge Ry and Rp_1

Every element of Ry, pays one <, every element of R,_1 pays one ©: the
merge cost is r, + rn_1, hence it is fully paid.

Rh-1 — | R OR,
| Rp—2 | Ri_»

The height of the elements of R}, decreases by one: ok for {
Elements that paid one ¢ are now in the topmost run

Elements in the topmost run never pay with Q
In the new stack, r, > ry_1 so another merge is going to occur (#3)

The height of the new topmost run is going to decrease during this
new merge, its elements will get two > and one ©



Running time analysis: O(nlog n), case #5
(#5) else if rp_1 + rp_o > rp_3 then merge Ry and Rp_1

Every element of Ry, pays one <>, every element of R, ;1 pays one ©: the
merge cost is rp + rp_1, hence it is fully paid.

Rh—1 — | RL,OR; |
| Rh—2 | | R o |
| Rh_3 | | Rh_3 |

The height of the elements of R}, decreases by one: ok for {
o Elements that paid one © are now in the topmost run
@ Elements in the topmost run never pay with ¢
@ In the new stack, r, + rp_1 > rp_» so another merge is going to occur
(#4)
@ The height of the new topmost run is going to decrease during this
new merge, its elements will get two > and one ©



Running time analysis: O(nlog n)
Summary:

e Computing the run decomposition takes O(n)

e For the main loop:

» each element gets 2 and 10 when entering the stack

» each merge is paid with ) and ©

» when an element pays with <, it get it (them) back immediately after

» when an element pays with ©, another merge occurs just after, during
which it get it back

@ The final merges are done in O(n) by direct computation

Lemma
At any moment during TimSort, the stack has height in O(log n).

Proof: the invariant holds.

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(nlog n).




Running time analysis: O(n + nH)

Recall: #1 is the insertion of a new run in the stack
. — i ri
Recall: H =~ “log

We use the following decomposition of the sequence of events:
HLH2H242 #3#AH#2H#DH3 #1#2#2 #AFH24243
starting‘srequence ending;gquence

starting sequence ending sequence
pay with & pay with $and © pay with & pay with {$and ©

Two lemmas (both consequences of the invariant):
@ The total cost in #-tokens is linear

@ The height of the stack at the beginning of the ending sequence after
inserting a run of length r is O(log 7).

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + n#H).




Running time analysis: summary

We proved that for the “new” TimSort, we have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
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This can be improved to:
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TimSort needs at most 1.5nH + O(n) comparisons.
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Running time analysis: summary

We proved that for the “new” TimSort, we have:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2018)
The running time of TimSort is in O(n + nH).

This can be improved to:

Theorem (Auger, Jugé, Nicaud, Pivoteau 2019)
TimSort needs at most 1.5nH + O(n) comparisons.

What about the Java's version of TimSort? it is also in O(n+ nlogp), but
it is much more complicated to establish (no nice invariant).

but wait a minute . ..



Another bug in Java's TimSort

Lemma

Throughout execution of TimSort, the invariant cannot be violated at two
consecutive runs in the stack.
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Another bug in Java's TimSort
Lemma

Throughout execution of TimSort,%ﬁvariant cannot be violated at two
consecutive runs in the stack. N

The lemma is incorrect!

We built an array that produces an error to Java's (patched) TimSort!
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Another bug in Java's TimSort
Lemma

Throughout execution of TimSort, Quariant cannot be violated at two
consecutive runs in the stack. N

The lemma is incorrect!

We built an array that produces an error to Java's (patched) TimSort!
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Another bug in Java's TimSort
Lemma

Throughout execution of TimSort, Quariant cannot be violated at two
consecutive runs in the stack. N

The lemma is incorrect!
We built an array that produces an error to Java's (patched) TimSort!
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Conclusion for TimSort

@ TimSort is an efficient algorithm, in theory and in practice
@ It is not entropy-optimal, but not far from it

@ There are many optimisation to build the runs, to perform the merges,

@ lts O(nlog n) running time was proved more than 10 years after it was
announced

@ There were two consecutive bugs in Java's version, due to improper
analysis of the algorithm
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Conclusion for TimSort

@ TimSort is an efficient algorithm, in theory and in practice
@ It is not entropy-optimal, but not far from it

@ There are many optimisation to build the runs, to perform the merges,

@ lts O(nlog n) running time was proved more than 10 years after it was
announced

@ There were two consecutive bugs in Java's version, due to improper
analysis of the algorithm

Every used algorithm deserves a fine grain analysis




II. Branch predictions
with N. Auger & C. Pivoteau



A toy example: looking for the min and the max

We want to find the minimum and the maximum of an array T of size n.

min = T[n-1];

max - T[n 1] Naive solution:

for(i=0; i<n-1; i++){ foreach element a of T, if a is smaller
a = T[il; than the current minimum, update the
if (a < min) min = a; | minimum; if it is greater than the cur-

if (a > max) max

]
[\

rent maximum, update the maximum.

Fact: the naive solution uses 2n — 2 ~ 2n comparisons.

Can we do better?



Min & Max: Optimal Algorithm

|dea: take the elements by pairs (a1, a2), compare them, then compare the
smallest to the current min and the largest to the current max

min = max = T[n-1];
for(i=0; i<n-1; i+=2){
al = T[i];
a2 = T[i+1]; Number of comparisons:
if (a1l < a2) {

n . .
if (al < min) min = al; ¢ ~3 loop iterations

if (a2 > max) max = a2; @ 3 comparisons by iterations
} . 3
clse { @ number of comparisons: ~ 5n
if (a2 < min) min = a2; That's better!
if (al > max) max = al; ’
}




Min & Max: Optimal Algorithm

|dea: take the elements by pairs (a1, a2), compare them, then compare the
smallest to the current min and the largest to the current max

min = max = T[n-1];
for(i=0; i<n-1; i+=2){
al = T[i];
a2 = T[i+1]; Number of comparisons:
if (a1l < a2) {

n . .
if (al < min) min = al; ¢ ~3 loop iterations

if (a2 > max) max = a2; @ 3 comparisons by iterations
} . 3
clse { @ number of comparisons: ~ 5n
if (a2 < min) min = a2; That's better!
if (al > max) max = al; ’
}

Theorem (Folklore)

At least ~ %n comparisons are needed to compute the min and the max.




Min & Max: experiments

Time (in nsec.)

0.6

Intel Core i7
T

0.5}

0.2

0.1F

0.6 0.8
Array size

1.0

12

1.4
le8



Min & Max: experiments

0.6 T

Intel Core |7

0.5

e optlmlzed min and max
naive min and max

0.4

0.3

Time (in nsec.)

0.2

0.1

The naive solution is more

0.4 0.6 0.8
Array size

efficient in practice!

1.0

12

1.4
le8



Pipeline
Notion of pipeline:

@ During the execution of a program, instructions are executed
sequentially: i=3, a<b, if (...), ...

@ Instructions are divided into several sequential steps

o Different steps can be handle in parallel by the processor

Example with 5 steps:

processor
J
¢— instruction 1 —| 1123415
— instruction2 —| 1213415
¢— instruction3—([1(2(3141]5
¢— instruction 4 —[ 11213 5 |

It can be up to five time as fast



Pipeline and Branches

@ A branch is an instruction with several possible following instructions:
if, while, ...

@ Branches constitute a problem for the pipeline:

processor

if <condition>

J
<instruction A>; | <4 condition — 5
else <— instr. Aor B? —| 1

<instruction B>;

@ We have to wait for the completion of all the stages of <condition>
to know whether it is followed by A or by B!



Pipeline and Branches

@ A branch is an instruction with several possible following instructions:
if, while, ...

@ Branches constitute a problem for the pipeline:

processor

if <condition>

J
<instruction A>; | <4 condition — 5
else <— instr. Aor B? —| 1

<instruction B>;

@ We have to wait for the completion of all the stages of <condition>
to know whether it is followed by A or by B!

Solution: try to anticipate if condition = true or false



Branch predictions

@ Branches does not fit well with the pipeline
@ We try to anticipate whether the branch will be:

» Taken (T): when <condition> is true
» Not Taken (NT): when <condition> is false

@ We push the predicted next instruction in the pipeline:

» if the prediction is correct, we gain some time
» if it is incorrect, we have to undo what we did, we lose some time

A simple local predictor, the 2-bit predictor (one for each branch):

NT T

strongly strongly
not taken taken




Back to the toy example

min = T[a-1]: The condition if (a < min) is true when
max = T[n-11; there is a min-record, and false otherwise.
for(i=0; i<n-1; i++){ NT T

a = T[i]; T T T

if (a < min) min = a;
if (a > max) max = a;

¥ NT NT NT

We have a pure AofA exercise:
e Start at any state, draw a uniform random permutation

@ Scan it from left to right: when there is a min-record, go to the right
in the automaton (if possible), otherwise go to the left

@ What is the expected number of mispredictions?



Back to the toy example

The condition if (a < min) is true when

min = T[n-1]; - ; .
max = T[n-11; there is a min-record, and false otherwise.
for(i=0; i<n-1; i++){ NT T

a = T[i]; T T T

if (a < min) min = a;
if (a > max) max = a;

¥ NT NT NT

We have a pure AofA exercise:
e Start at any state, draw a uniform random permutation

@ Scan it from left to right: when there is a min-record, go to the right
in the automaton (if possible), otherwise go to the left

@ What is the expected number of mispredictions?

Lemma

The expected number of mispredictions produced by each if in the naive
solution is asymptotically equivalent to log n.




What About the Optimal Algorithm?

Idea: take the elements by pairs (a1, a2), compare them, then compare the
smallest to the current min and the largest to the current max

min = max = T[n-1];

al = T[i]l;

a2 = T[i+1];

if (a1l < a2) {
if (al < min)
if (a2 > max)

}

else {
if (a2 < min)
if (al > max)

}

for(i=0; i<n-1; i+=2){

min
max

min
max

al;
a2;

a2;
al;

@ The first branch: if (al < a2) is
true with probability % for uniform
random permutations.

@ This cannot be well predicted:
there is a misprediction here with
probability % for each loop iteration

@ The expected number of
mispredictions is asymptotically 7!



Toy example: conclusion

@ We proposed to solutions to this simple problem
@ For uniform random permutations, in expectation:

» The naive algorithm uses 2n comparisons and 2 log n mispredictions
» The optimal algorithm uses %n comparisons and %n mispredictions
» Experimentally, the naive algorithm is more efficient!



Toy example: conclusion

@ We proposed to solutions to this simple problem
@ For uniform random permutations, in expectation:
» The naive algorithm uses 2n comparisons and 2 log n mispredictions

» The optimal algorithm uses %n comparisons and %n mispredictions

» Experimentally, the naive algorithm is more efficient!

We have to add branch predictors to our model of computation (RAM
model) to fully describe the complexity of some algorithms.
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@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Tradeoffs Between Branch Mispredictions and
Comparisons for Sorting Algorithms

Gerth Stglting Brodal'-* and Gabriel Moruz!

BRICS**, Department of Computer Science, University of Aarhus,
IT Parken, Abogade 34, DK-8200 Arhus N, Denmark
{gerth, gabi}0daimi.au.dk

Abstract. Branch mispredictions is an important factor affecting the
running time in practice. In this paper we consider tradeoffs between
the number of branch misnredictions and the number of comnarisons for

sorting
algorith i [Branch mispredictions
misprec Dis  |O(dn(1 + log(1 + Dis))) 2(nloga(1 + Dis))
by adog Exc  |O(dn(1+ Exclog(l + Exc))) [2(nExelogy(1 + Exc))
tions. F Enc  |O(dn(1 + log(1 + Enc))) 2(nlogy(1 + Enc))
rithm p Inv |O(dn(1 +log(1+Inv/n)))  [2(nlogy(1 + Inv/n))
Qnlog Max  [O(dn(1 +log(1+Max)))  [2(nlogy(1 + Max))
of inver Osc  [O(dn(1 +log(1 + Osc/n)))  |@2(nlogy(1 + Osc/n))
by Esti Reg  |O(dn(1 +log(1 + Reg))) 2(nlogy(1 + Reg))
col and Rem  |O(dn(1 + Remlog(1 + Rem)))|2(nRem logy(1 + Rem))|
misprec Runs  |O(dn(1 +log(1 + Runs)))  [2(nlogy(1 + Runs))
SMS  [O(dn(1 +log(1+SMS)))  |2(nlogy(1 + SMS))
SUS  [O(dn(1 +log(1+ SUS)))  [2(nlogy(1 + SUS))

Fig. 4. Lower bounds on the number of branch mispredictions for deterministic com-
parison based adaptive sorting algorithms for different measures of presortedness, given
the upper bounds on the number of comparisons




Some Related Works

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
@ Biggar et al, 2008 : experimental, branch prediction and sorting

An Experimental Study of Sorting and Branch

Prediction

PAUL BIGGAR’, NICHOLAS NASH', KEVIN WILLIAMS? and DAVID GREGG
Trinity College Dublin

Many good

well studied problems in Computer Science.

(a) Basic quicksort

Go s Al

Additional Key Wo

Fig. 9. Overview of branch predictic



Some Related Works

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
@ Biggar et al, 2008 : experimental, branch prediction and sorting

@ Sanders and Winkel, 2004 : quicksort variant without branches

Super Scalar Sample Sort

Peter Sanders' and Sebastian Winkel®

! Max Planck Institut fiir Informatik
Saarbriicken, Germany, sanders@mpi-sb.zpg.de
2 Chair for Prog. Lang. and Compiler Construction
Saarland University, Saarbriicken, Germany, sewi@cs.uni-sb.de

Abstract. Sample sort, a generalization of quicksort that partitions the
input into many pieces, is known as the best practical comparison based
sorting algorithm for distributed memory parallel computers. We show
that - o oo T - : - o

s
mic i t:= (8k/2, Sk /4, Sak/as Sk/s, Sak/s, Ssk/s, S7ksss---) M < 2

cond for i :=1ton do / locate each element

facili  j:=1 //current tree node := root m

final  repeat logk times //will be unrolled < >
ber ¢ 2+ (as > ¢t left or right?

T i ka1 ket ndes [un] [ua] [Faa)
the (  |bg|++ // count bucket size <, ‘ ‘ >
quick  ofi):=j //remember oracle COEEEEEEE)

Fig. 2. Finding buckets using implicit search trees. The picture is for k = 8. We adopt
the C convention that “z > y” is one if = > y holds, and zero else.
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Elmasry et al, 2012 : mergesort variant without branches

Branch Mispredictions Don’t Affect Mergesort*

Amr Elmasry!, Jyrki Katajainen'2, and Max Stenmark?

! Department, of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen East, Denmark
2 Jyrki Katajainen and Company
Thorsgade 101, 2200 Copenhagen North, Denmark

Abstract. In quicksort, due to branch mispredictions, a skewed pivot-
selection strategy can lead to a better performance than the exact-
median pivot-selection strategy,

et
free. In this paper we investigate done = (q = t2)
if (done) goto exit;

the behaviour of mergesort. By «
. e can avoid most negg] | while (3 1=tk q 1= 2) {

entrance
1ess(ra, +p)) oxs

branch
dictions. When sorting a sequencd 2
mergesort performs nlogyn+O(n| 1 t+q:
most O(n) branch mispredictions| = 1 N

Seo 1

Table 3. The execution time [ns], the number of conditional branches, and the number 1/
of mispredictions, each per nlog, n, for two in-situ variants of mergesort

Program|  In-situ std: :stable sort Tn-situ mergesort i
Time Branches Mispredicts| Time Branches Mispredicts| ¢
n_ |Per Ares "

2% 1492 29.7| 9.0 2.08 1.93 0.26 fo dume=(po=rti
2% |57.6 350 111 238 1.94 0.15 3 i o) meto rest
2% 627 385| 12,9 2.53 1.92 0.11
2% 68.0 413] 144 2.62 1.92 0.09
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Kaligosi and Sanders, 2006 : mispredictions and quicksort

Abstract. W
“good” pivats
not, imprc
pivot imp
count dec
direction
fect of

g

Ve explain the

Kanela Kaligosi® and Peter Sanders?

How Branch Mispredictions Affect Quicksort

! Max Planck Ir Table 1. Number of branch mispredictions
Saarbriic
kaligosi€

2 Universitit K random pivot acskewed pivot

sanders

static predictor| 52nlgn + O(n), 52 ~ 0.3466

nlgn +0(n), a < 1/2

e

snlgn +O(n), a 2 1/2

cou
(eloce t the medi

1-bit: predictor | 222nlgn + O(n), 22 & 0.4621

2oll=9)nlgn + O(n)

H@)
62
o tadpa?
N 2-bit predictor | %% *nlgn + O(n), *3}1'? ~ 04313 2 4 ke tonlgn + O(n)
781y
angompnr | ————
mogan 13 -
4 N axamml-mzn *-
b skensapuei 10 6
7 S
s I B

0 12 W e 8 2
ign

2

Fig.3. Time / nlgn for random pivot, median of 3, exact median, 1/10-skewed pivot
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Analysis of Branch Misses in Quicksort*
Conrado Martinez" Markus E. Nebel Sebastian Wild!
November 11, 2014
Abstract pivots are chosen from a sample of the input. We

»n count- conclude that the difference in branch misses is too
additions, small to explain the superiority of the dual-pivot

The analysis of algorithms mostly
ing classic elementary operations li
multiplications, comparisons, swaps etc. This ap- algorithm

proach is of N

efficiency. 1 05

ern process: o

and memor e

running tin X

get a reliab o

sort: It has . o2

und ta FR R R TR TR TR
sically oDt puoie 5: Branch mispredictions, as a function Figure 6: Branch mispredictions, as a function of ¢
dian of a si o¢ i CQS (black) and YQS (red) with 1-bit in CQS (black) and YQS (red) with 1-bit (fat), 2-
mispredicte branch prediction (fat), 2-bit saturating counter  bit sc (thin solid) and 2-bit fc (dashed) predictors,
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tvgs =
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Skewed Binary Search Trees

Gerth Stolting Brodal'* and Gabriel Moruz'

BRICS**, Department of Computer Science, University of Aarhus, IT Parken,
Abogade 34, DK-8200 Arhus N, Denmark, E-mail: {gerth, gabi }daimi.au.dk

Abstract. It is well-known t
a binary search tree should
shown that a dominating fa
the number of cache faults pe
Iayout of a binary search tr
by several hundred percent. |
branching to the left or righ
same cost, e.g. because of br
study the class of skewed bin
binary search tree the ratio t
size of the tree is a fixed con:
trees). In this paper we preser Fig. 1. Bound on the expected cost for a random search, where the cost for nsltmg
layouts of static skewed bina the left child is ; = 1 and the cost for processing the right child is ¢, = 0,1

tree is accessed with a unifo (¢, = 0 being the lowest curve).

‘many of the memory layouts ...
perform better than perfect hala
the running time are on the order of 15%.

' trees. The improvements in
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What next?

Branch predictors exist in computers
They cannot easily be turned off

Classical paradigm: ignore them, they are doing their job

AofA: sometimes, it is necessary to take them into account

What if we take them into account to design new algorithms?



Exponentiation by Squaring

We consider the classical Exponentiation by Squaring algorithm, and we
unroll the main loop, to have two iterations each time.

unrolled(x,n)

r =1;
pow(x,n) while (m > 0) {
r =1; t = x * x;
while (n > 0) { // ng==17
// n is odd? if (n & 1)
if (n & 1) r=r * X;
r =71 * X; // m==17
n /= 2; if (n & 2)
X = X ¥ X, r =1 *% t;
} n /= 4;
X" = (X2)[n/2ann y x=1t*t;

X" = (X4)[n/4j (X2)n1Xn0



Exponentiation by Squaring

If n is taken uniformly at random in {0, ..., 4%}, then each if is taken with
probability %: it is difficult to predict.

unrolled(x,n)

r =1;
while (n > 0) {
t = x * x3

// ng == 17

if @& 1) «P=3
r =r % X;

// n1::1?

if m&2) «P=3
r =r * t;

n /= 4;

X =1t *x t;




Exponentiation by Squaring

Idea: guide the predictors using a unnecessary test!

unrolled(x,n)

r =1;
while (n > 0) {
t = x * X3

// g == 17

if (ng 1) «P=3
r =r ¥ X;

// np==17

if (n&2) «P=3
r =r * t;

n /= 4;

X =1t *x t;

We have one more comparison by iteration, but predictions are easier.

guided(x,n)

r =1;
while (n > 0) {
t = x * x3
//non17é00?
if (n& 3) { «P=
if (m& 1) «+ P
r =T % X;
if (n & 2) «P=
r =1r * t;

3
4

wWIN




Exponentiation by Squaring

Results:
@ 25 % more comparisons for guided than for unrolled
o guided is 14% faster than unrolled
@ yet, the number of multiplications is essentially the same.

AnalysiS' Markov chains!

&:@:@:&&;@;@:&

@ The expected number of mispredictions after k steps in the Markov

chain is asymptotically u(p)k, with u(p) = %.

@ The expected number of mispredictions in guided is alog, n, with
o= 1u(3/4) + 3p(2/3) = 0.45



Binary Search

/2 ' o2 BINARYSEARCH




Binary Search

. ' w2 BINARYSEARCH
i : 3n/d BIASEDBINARYSEARCH




Binary Search

o2 ' o2 BINARYSEARCH

w4 ' a4 DBIASEDBINARYSEARCH

w4 ' 3n/4 SKEWSEARCH

’ ' partition
' ] twice

n/4 n/4 . n/2




Binary Search

Intel Core i7
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Binary Search: Analysis

For arrays of size n filled with random uniform integers. C, is the number
of comparisons and M,, the number of mispredictions.

BinarySearch | BiasedBinarySearch SkewSearch
logn 4Tog n 7logn
E[C”] IIo§2 4|og4—g3 log 3 6|o§2
EMA | ooty p(OEIC] | (Gu(D)+ 3n())EG]
BinarySearch | BiasedBinarySearch | SkewSearch
E[Ch] 1.44logn 1.78logn 1.68logn
E[Mp] 0.72logn 0.53log n 0.58 log n
Proof:
@ Master Theorem gives the expected number of times each conditional
is executed

@ Ensure that our predictors behave almost like Markov chains.



Branch Predictions: Conclusion

@ Branch prediction mechanism alters the running time of algorithms
@ It explains why the naive solution is better for the min/max problem

o We use it to finely tune classical algorithms:

» Exponentiation by squaring is more efficient by adding a useless test!
» Binary search is more efficient if we don’t cut in the middle!

@ The importance of branch mispredictions is limited to basic algorithms



Thank you!



