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Aim of the project

Motivation: We would like to understand how processes on large complex
networks can be affected by time-variability of the network.

This talk: Results obtained for the contact process on scale-free networks.

The contact process is a model for the spread of an infection on a finite graph.

Every vertex can either be infected or healthy.

An infected vertex infects each of its neighbours at a fixed rate λ > 0.

An infected vertex recovers with a fixed rate one.

Once recovered, a vertex is again susceptible to infection by its neighbours.
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Peter Mörters (Köln) Contact process on evolving scale-free networks 2 / 16



Aim of the project

Motivation: We would like to understand how processes on large complex
networks can be affected by time-variability of the network.

This talk: Results obtained for the contact process on scale-free networks.

The contact process is a model for the spread of an infection on a finite graph.

Every vertex can either be infected or healthy.

An infected vertex infects each of its neighbours at a fixed rate λ > 0.

An infected vertex recovers with a fixed rate one.

Once recovered, a vertex is again susceptible to infection by its neighbours.
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The contact process

After a random finite extinction time Text all vertices become healthy
and remain so forever. Starting the process with all vertices infected
we ask how large is the extinction time?

Fast extinction: For sufficiently small infection rates 0 < λ < λc the
expected extinction time is at most polynomial in the number N of vertices
in the network.

Slow extinction: For all λ > 0 with high probability the extinction time is
at least exponential in the number N of vertices in the network.

Figure: Schematic energy landscape for fast and slow extinction.
Slow extinction is due to metastability.
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Scale-free networks
A feature of many networks is that they are (at least approximately) scale-free,
which means that for very large N and large k ,

proportion of nodes of degree k ≈ k−τ ,

for some positive power law exponent τ .

Easiest model: The vertex set is {1, . . . ,N} with small indices indicating large
strength. Every pair of vertices connects independently and the probability of
connecting the ith and jth indexed vertex in the network of size N is

pi,j =
1

N
p(i/N, j/N) ∧ 1,

for the two paradigmatic kernels

Factor kernel p(x , y) = β x−γy−γ ,

Preferential attachment kernel p(x , y) = β (x ∧ y)−γ(x ∨ y)γ−1

where β > 0 and γ ∈ (0, 1) are the parameters of the model.

In both cases the power law exponent is τ = 1 + 1
γ .

Classical result: For all values of τ the contact process shows slow extinction.
Proved by Chatterjee and Durrett (2009) for the factor kernel.
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Peter Mörters (Köln) Contact process on evolving scale-free networks 4 / 16



Scale-free networks

Easiest model: The vertex set is {1, . . . ,N} with small indices indicating large
strength. Every pair of vertices connects independently and the probability of
connecting the ith and jth indexed vertex in the network of size N is

pi,j =
1

N
p(i/N, j/N) ∧ 1,

for the two paradigmatic kernels

Factor kernel p(x , y) = β x−γy−γ ,

Preferential attachment kernel p(x , y) = β (x ∧ y)−γ(x ∨ y)γ−1

where β > 0 and γ ∈ (0, 1) are the parameters of the model.

In both cases the power law exponent is τ = 1 + 1
γ .

Classical result: For all values of τ the contact process shows slow extinction.
Proved by Chatterjee and Durrett (2009) for the factor kernel.
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Our evolving scale-free network model

We look at the following evolving network (Gt)t≥0.

at all times the vertex set is given as {1, . . . ,N}.
G0 is formed by independently connecting every pair {i , j} with probability

pi,j = 1
N p(i/N, j/N).

The network evolves by vertex updating:

I Every vertex has a clock which strikes after an exponential time with
parameter κ > 0.

I When it strikes, say for vertex i , all adjacent edges are removed, and
I new edges i ↔ j are formed with probability pi,j , independently for every

j ∈ {1, . . . ,N} \ {i}.

Note that Gt
d
= G0 for all t > 0.
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The contact process on evolving scale-free networks

Theorem: Jacob, M (2015)

Consider the contact process on the evolving network (Gt)t≥0 with factor kernel.

(a) If τ < 4 (or equivalently γ > 1/3 ), then for all λ > 0 there exists c > 0 such
that, uniformly in N > 0,

P(Text ≤ ecN) ≤ e−cN .

(b) If τ > 4 (or equivalently γ < 1/3), then there exists a parameter λc > 0 such
that, for all λ < λc, there exists C > 0 such that, uniformly in N > 0,

E[Text] ≤ CNγ logN.

Observation:

Time-variability has made fast extinction possible, but only if τ > 4.

This is also different from the mean-field prediction of Pastor-Sattoras and
Vespignani (2001) who find fast extinction for τ > 3, which is the value at
which there is a transition in the network topology.
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Heuristic explanation

For a suitable a(λ) ↓ 0 the most powerful vertices with index in {1, . . . , a(λ)N}
are called stars.

Mean field calculation:
The infection can be sustained on the set of stars if

λ ≈

which can be achieved if γ > 1
2 or, equivalently, τ < 3.

Vertices of degree k � λ−2 can keep the infection for longer:

if λ2k � 1 the infection stays alive for order λ2k time units.

Topology based calculation:

λ3 ≈

which can be achieved if γ > 1
3 or, equivalently, τ < 4.
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Topology based calculation:

λ3 a(λ)−γ
∫ a(λ)

0

∫ a(λ)

0

x−γy−γ dx dy ≈ a(λ)

which can be achieved if γ > 1
3 or, equivalently, τ < 4.
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Heuristic explanation

For a suitable a(λ) ↓ 0 the most powerful vertices with index in {1, . . . , a(λ)N}
are called stars.

Mean field calculation:
The infection can be sustained on the set of stars if

λ

∫ a(λ)

0

∫ a(λ)

0

p(x , y) dx dy ≈ a(λ)

which can be achieved if γ > 1
2 or, equivalently, τ < 3.

Vertices of degree k � λ−2 can keep the infection for longer:

if λ2k � 1 the infection stays alive for order λ2k time units.

Topology based calculation:

λ3 a(λ)2−3γ ≈ a(λ)

which can be achieved if γ > 1
3 or, equivalently, τ < 4.
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Metastable Densities: Factor kernel

In the slow extinction case the density of infected vertices is likely to be maintained
at a certain level up to the exponential survival time of the infection. Denoting

IN(t) = E
[

proportion of infected vertices at time t
]

we say that ρ(λ) is the metastable density if, whenever tN is going to infinity
slower than exponentially, we have

lim
N→∞

IN(tN) = ρ(λ) > 0.
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Theorem: Jacob, Linker, M (2017)

Consider the contact process on the evolving network (Gt)t≥0 with factor kernel.
Then, as λ ↓ 0, the metastable density ρ(λ) satisfies

ρ(λ) =

{
λ

2
3γ−1+o(1) if 1/3 < γ < 2/3 or 4 > τ > 5/2,

λ
γ

2γ−1+o(1) if γ > 2/3 or τ < 5/2.

At τ = 5/2 a change in survival strategies happens.
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Insight: A transition of time-scales
The transition occurs in the time-scale on which the infection spreads.

1/3 < γ < 2/3: Delayed direct spreading

Individual stars can survive recoveries through immediate reinfection by their
neighbours and thus keep the infection on a time-scale of

Tλ = λ2a(λ)−γ = λ
3γ−2
3γ−1 � 1.

On this time-scale stars spread the infection to other stars thereby retaining a
skeleton of infected stars in a set of infected vertices of density

λa(λ)1−γ = λ
2

3γ−1 .

2/3 < γ < 1: Quick direct spreading

The time-delay mechanism is no longer effective. Stars infect a sufficient
number of other stars at time-scale of order one to retain a skeleton of
infected stars in a set of infected vertices of density

λa(λ)1−γ = λ
γ

2γ−1 .
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Metastable Densities: Preferential attachment kernel

The situation is quite different for preferential attachment kernels.

Theorem: Jacob, Linker, M (2017)

Consider the contact process on the evolving network (Gt)t≥0 with preferential
attachment kernel.

(i) For all 0 < γ < 1 there is slow extinction.

(ii) As λ ↓ 0, the metastable density ρ(λ) satisfies

ρ(λ) =

{
λ

3−2γ
γ +o(1) if γ < 3/5 or τ > 8/3,

λ
3−γ
3γ−1+o(1) if γ > 3/5 or τ < 8/3.

Unlike in the case of factor kernels we do not have a fast extinction phase.

At power law exponent τ = 8/3 a change in survival strategies happens.
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Insights: A transition of spreading mechanism
In the preferential attachment case time-delay always works. What changes is the
mechanism how the infection spreads most effectively from star to star.

γ < 3/5: Delayed direct spreading

Individual stars can survive recoveries through immediate reinfection by their
neighbours and thus keep the infection on a time-scale of Tλ = λ−1 � 1. On
this time-scale stars spread the infection directly to other stars.

γ > 3/5: Delayed indirect spreading

Individual stars can survive recoveries through immediate reinfection by their
neighbours and thus keep the infection on a time-scale

Tλ = λ2a(λ)−γ = λ
2γ−2
3γ−1 � 1.

On this time-scale stars infect other stars by infecting a large number of their
neighbours, which pass the infection to other stars thereby retaining a
skeleton of infected stars in a set of infected vertices of density

λa(λ)1−γ = λ
3−γ
3γ−1 .
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Degree dependent update rates
By making the update rates of vertices dependent on the degree we get a more
complete understanding of the phases. Let the update rate of the ith vertex be

κ(i) = κ×
(N
i

)γη
,

for some η ∈ R.

Then we have the following phase diagrams.

Figure: Phase diagrams interpolating between the mean-field case, for η ↑ ∞, and the
static case, for η ↓ −∞. For the factor kernel metatable densities in the static case are
due to Mountford, Valesin, Yao (2013).
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Peter Mörters (Köln) Contact process on evolving scale-free networks 12 / 16



Edge updating with variable rates
We also study the case that all potential edges {i , j} update with rate

κ(i , j) = κ×
((N

i

)γη
+
(N
j

)γη)
,

for some η ∈ R.

Then we have the following phase diagrams.

Figure: Phase diagrams for edge-updating scheme, factor kernel on the left, preferential
attachment kernel on the right.
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Method of proof: Existence of a fast extinction phase

Coupling with a mean-field model

In the mean-field model every vertex can have three states healthy, ready, or
infected. The state ready means that the vertex is infected but ready to recover.

Recovery and update times are taken from the original process. For every pair
{i , j} of vertices there is a Poisson process of infection times with rate λpi,j .

If at an infection time of the pair {i , j} one of the vertices is not healthy,
both become infected.

If at an update time the vertex is infected, it becomes ready.

If at a recovery time a vertex is ready, it becomes healthy.

It is possible to couple the original process to the mean-field model in such a way
that, at every time t > 0, every vertex which is infected in the original model, is
either ready or infected in the mean-field model.

Hence the extinction time in the mean-field model is a stochastic upper bound to
the original extinction time.
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Method of proof: Existence of a fast extinction phase
Extinction time in the mean-field model

If γ < 1
3 and λ is small enough, the process

M(t) :=
N∑
i=1

1{i ready at time t} s1(i) +
N∑
i=1

1{i infected at time t} s2(i)

with
s1(i) =

(
N

i

)2γ

s2(i) = s1(i) +

(
N

i

)γ
,

satisfies
1

dt
E
[
M(t + dt)−M(t)

∣∣Ft

]
≤ −2c N−γM(t).

We introduce Z (t) = log(M(t) + 1) + cN−γt, and get

1

dt
E
[
Z (t + dt)− Z (t)

∣∣Ft

]
≤ 0.

Hence (Z (t))0≤t<Text is a positive supermartingale, and we deduce

EText = c−1NγE[Z (Text)] ≤ c−1NγEZ (0) = O(Nγ logN).
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Thank you very much for your attention!
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