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Motivation: Dengue Virus

Transmitted by mosquitos

Kills in average 25K human
worldwide per year

Targets octapeptides (octamers)

Target characterization has been
elusive, making vaccine
development challenging

Figure: Some known targets

Question.

Are there sensible low-dimensional representations of octamers?
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Common Numerical Representation Schemes

One-hot encodings

k-mer count vectors

Fisher kernels 1

Multidimensional Scaling (PCoA) 2

Word2Vec (BioVec 3)

DeepWalk 4

Node2Vec 5

1Jaakkola, Diekhans, and Haussler - 1999
2Krzanowski - 2000
3Asgari and Mofrad - 2015
4Perozzi, Al-Rfou, and Skiena - 2014
5Grover and Leskovec - 2016
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Common Numerical Representation Schemes (shortcomings)

One-hot encodings (dimension: ak + sparse)

k-mer count vectors (non-local + dimension: ak)

Fisher kernels 1 (large dataset)

Multidimensional Scaling (PCoA) 2 (n points map to dimension: n − 1)

Word2Vec (BioVec 3) (large dataset)

DeepWalk 4 (new sample rerun)

Node2Vec 5 (new sample rerun)

1Jaakkola, Diekhans, and Haussler - 1999
2Krzanowski - 2000
3Asgari and Mofrad - 2015
4Perozzi, Al-Rfou, and Skiena - 2014
5Grover and Leskovec - 2016
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A Multilateration Approach

Problem.

Develop a sensible low-dimensional representation of points in a large
metric space that addresses the shortcomings of the existing methods

Figure: Three non-colinear points trilaterate the plane
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A Multilateration Approach

Question.

Is it possible to multilaterate any finite metric space?

Definitions.

Call R ⊂ V resolving when ∀x 6= y ∈ V ∃r ∈ R s.t. d(x , r) 6= d(y , r)

Φ(x) :=
(
d(x , r)

)
r∈R from V to R|R| is one-to-one and “continuous”

(Metric Dimension.) β(V , d) := min
R⊂V resolving

|R|

(Terminology borrowed from graph theory!)
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Metric Dimension vs Distance Matrix

Observation.

The metric dimension of a metric space (V , d) is the smallest number of
columns in its distance matrix D needed to differentiate all the rows

D =



0 1 2 1 2 3
1 0 1 1 1 2
2 1 0 2 2 1
1 1 2 0 2 3
2 1 2 2 0 3
3 2 1 3 3 0


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Metric Dimension vs Distance Matrix

Theorem: (Tillquist-Ll’19)

The general multilateration problem is NP-complete.

Why? Reduction to the Set Cover Problem, which is a known 1

NP-complete problem �

1Karp - 1972
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Metric Dimension of a Graph

Our terminology is borrowed from a graph theory 1,2

A set R of nodes in a graph G = (V ,E ) is called resolving when any
vertex in the graph is uniquely determined by its vector of distances
to those nodes

The metric dimension of a graph, β(G ), is the size of a smallest
resolving set

If d is the geodesic distance between pairs of nodes in G then

β(G ) = β(V , d)

1Slater - 1975
2Harary and Melter - 1976
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Examples

β(G ) = 1 if and only if G is a path

β(G ) = (n − 1) if and only if G = Kn
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Known Facts About Metric Dimension

β(G ) is known for specific graph families such as:

trees 1,2

regular bipartite graphs 3

complete n-partite graphs 4

Finding β(G ) is NP-complete for a general graph G = (V ,E ) 5

The Information Content Heuristic (ICH) finds a resolving set
greedily 6

O(|V |3) time-complexity
O(|V |2) memory-complexity
Approximation ratio of 1 + (1 + o(1)) · ln |V |

1Slater - 1975
2Harary and Melter - 1976
3Bača, Baskoro, Salman, et. al. - 2011
4Saputro, Baskoro, Salman, et. al. - 2009
5Hauptmann, Schmied, and Viehmann - 2012; Gary and Johnson - 1979
6Hauptmann, Schmied, and Viehmann - 2012
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Hamming Graphs

Definition.

Hk,a denotes the graph with vertex set {0, . . . , a− 1}k , i.e. k-mers over
an alphabet of size a. Two k-mers are connected by an edge if and only if
they are identical except for one character at the same position
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Figure: Visuals of H1,3, H2,3, and H3,3 (resolving sets in blue)

Question.

Can we find small resolving sets in Hk,a efficiently?
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Hamming Graphs

Theorem: (Tillquist-Ll’19)

β(Hk−1,a) ≤ β(Hk,a) ≤ β(Hk−1,a) + ba/2c. *

∗ Case with a = 2 due to Chartrand et al. - 2000

Why? The proof is constructive!

d := distance matrix of Hk−1,a

D:= distance matrix of Hk,a

D =


0. . . 1. . . · · · (a-1). . .

0. . . d d + 1 · · · d + 1
1. . . d + 1 d · · · d + 1
...

...
...

. . .
...

(a-1). . . d + 1 d + 1 · · · d


Any resolving set of Hk−1,a distinguishes rows in each block

Pick additional nodes to resolve rows across blocks �
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Algorithm: Hamming Graph Resolving Set Construction

Input: Resolving set r of Hk−1,a
Output: Resolving set R of Hk,a
function constructResolvingSet(r ,a)

R0 ← {}
R1 ← {}
i ← 0
for w ∈ r do

if i < a then
R0 ← R0 ∪ {iw}
if i < (a − 1) then

R0 ← R0 ∪ {(i + 1)w}
end if

end if
if i ≥ a then

R1 ← R1 ∪ {0w}
end if
i ← (i + 2)

end for
R ← (R0 ∪ R1)
return R

end function

Time complexity starting with H1,a: O(ak2)

(ICH time complexity: O(a3k))

Finds resolving set for Hk,a of size O(k)

(|Hk,a| = ak)
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Back to Octamers

ICH gives the following resolving set for H3,20:{
AAA, RRR, NNN, DDD, CCC, QQQ, EEE, GGG, HHH, CNS,

III, LLL, KKK, MMM, FFF, PPP, SIS, NST, TTC, QPK

ARW, WWD, MKY, QYE, YGL, HPV, VFR, EAG, KLQ, SVT,

DHF, WMP

}

Then five iterations of our algorithm give this resolving set for H8,20:

AAAAAAAA, AAAAAAAR, AAAAAARA, AAAAARAA, AAAARAAA,

AAARAAAA, ARWAAAAA, CCCHHHHH, CCCHHHHI, CCCHHHIA,

CCCHHIAA, CCCHIAAA, CCCIAAAA, CNSAAAAA, DDDEEEEE,

DDDEEEEG, DDDEEEGA, DDDEEGAA, DDDEGAAA, DDDGAAAA,

DHFAAAAA, EAGAAAAA, EEEFAAAA, EEEMFAAA, EEEMMFAA,

EEEMMMFA, EEEMMMMF, EEEMMMMM, FFFAAAAA, GGGPPPPP,

GGGPPPPS, GGGPPPSA, GGGPPSAA, GGGPSAAA, GGGSAAAA,

HHHTTTTT, HHHTTTTW, HHHTTTWA, HHHTTWAA, HHHTWAAA,

HHHWAAAA, HPVAAAAA, IIIVAAAA, IIIYVAAA, IIIYYVAA,

IIIYYYVA, IIIYYYYV, IIIYYYYY, KKKAAAAA, KLQAAAAA,

LLLAAAAA, MKYAAAAA, MMMAAAAA, NNNCCCCC, NNNCCCCQ,

NNNCCCQA, NNNCCQAA, NNNCQAAA, NNNQAAAA, NSTAAAAA,

PPPAAAAA, QPKAAAAA, QQQKAAAA, QQQLKAAA, QQQLLKAA,

QQQLLLKA, QQQLLLLK, QQQLLLLL, QYEAAAAA, RRRDAAAA,

RRRNDAAA, RRRNNDAA, RRRNNNDA, RRRNNNND, RRRNNNNN,

SISAAAAA, SVTAAAAA, TTCAAAAA, VFRAAAAA, WMPAAAAA,

WWDAAAAA, YGLAAAAA


i.e. octamers may be represented as 82-dimensional vectors!
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WORK IN PROGRESS
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Question.

Is the metric dimension problem still NP-complete on Hamming graphs?

ANSWER: We do not know yet!

Problem.

Find characterizations of resolvability in Hk,a

Observation.

Brute force is not practical to determine whether a set R of k-mers
resolves or not Hk,a because, for each of the Θ(a2k) pairs (x , y) of k-mers,
one would need to check if there is r ∈ R such that d(x , r) 6= d(y , r)
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Lower-complexity Characterization of Resolvability

Qk := Hk,a=2 (k-dimensional hypercube)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
β(Qk ) 1 2 3 4 4 5 6 6 7 7 8 8 8 9 9 10 10

Table: Exact 1 up to k = 10, conjectured 2 up to k = 17

There is already a resolvability characterization of hypercubes 3

... but Hamming graphs are transitive

Theorem: (with Laird, Tillquist & Becker)

Suppose 1k ∈ R and define A := (—r—)r∈R . Then, R is resolves Qk iff
there does not exist a non-zero z ∈ {0,±1}k such that Az = 0.

1Harary and Melter - 1976
2Mladenović, Kratica, Kovačević-Vujčić et al. - 2012
3Beardon - 2013
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Characterization in General Hamming Graphs

Theorem: (with Laird, Tillquist & Becker)

Let v1, . . . , vn be k-mers with one-hot encodings V1, . . . ,Vn,
respectively. If

A :=

 — vec(V1) —
...

— vec(Vn) —


then R = {v1, . . . , vn} resolves Hk,a iff z = 0 is the only solution to the
linear system Az = 0 which satisfies this additional constraint: if z is
decomposed into k non-overlapping blocks of dimension a as follows

z =
(

(z1, . . . , za), (za+1, . . . , z2a), ..., (z(k−1)a+1, . . . , zka)
)T
,

then each block is the difference of two canonical vectors in Ra.
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Can we throw points away keeping a set resolving?

Using this new characterization:

Integer linear programming (ILP) implies that

AAAAAAAA, AAAAAAAR, AAAAAARA, AAAAARAA, AAAARAAA,

AAARAAAA, ARWAAAAA, CCCHHHHH, CCCHHHHI, CCCHHHIA,

CCCHHIAA, CCCHIAAA, CCCIAAAA, CNSAAAAA, DDDEEEEE,

DDDEEEEG, DDDEEEGA, DDDEEGAA, DDDEGAAA, DDDGAAAA,

DHFAAAAA, EAGAAAAA, EEEFAAAA, EEEMFAAA, EEEMMFAA,

EEEMMMFA, EEEMMMMF, EEEMMMMM, FFFAAAAA, GGGPPPPP,

GGGPPPPS, GGGPPPSA, GGGPPSAA, GGGPSAAA, GGGSAAAA,

HHHTTTTT, HHHTTTTW, HHHTTTWA, HHHTTWAA, HHHTWAAA,

HHHWAAAA, HPVAAAAA, IIIVAAAA, IIIYVAAA, IIIYYVAA,

IIIYYYVA, IIIYYYYV, IIIYYYYY, KKKAAAAA, KLQAAAAA,

LLLAAAAA, MKYAAAAA, MMMAAAAA, NNNCCCCC, NNNCCCCQ,

NNNCCCQA, NNNCCQAA, NNNCQAAA, NNNQAAAA, NSTAAAAA,

PPPAAAAA, QPKAAAAA, QQQKAAAA, QQQLKAAA, QQQLLKAA,

QQQLLLKA, QQQLLLLK, QQQLLLLL, QYEAAAAA, RRRDAAAA,

RRRNDAAA, RRRNNDAA, RRRNNNDA, RRRNNNND, RRRNNNNN,

SISAAAAA, SVTAAAAA, TTCAAAAA, VFRAAAAA, WMPAAAAA,

WWDAAAAA, YGLAAAAA



.

resolves H8,20 with high probability.

Gröbner bases imply this set resolves H8,20 with certainty

So octamers may be represented as 77-dimensional vectors!
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Proof of Concept

Fruit fly genome (∼ 1.75× 108 base-pairs)
Problem: Characterize 20-mers centered at intron-exon boundaries
Pos. examples: ∼87K; Neg. examples: Random 20-mers
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Figure: Cross-validation of KNN with 3 different embeddings
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