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Computer Algebra for Enume

Enumerative Combinatorics: science of counting J

Area of mathematics primarily concerned with counting discrete objects.

> Main outcome: theorems

Computer Algebra: effective mathematics

Area of computer science primarily concerned with the algorithmic
manipulation of algebraic objects.

> Main outcome: algorithms

Computer Algebra for Enumerative Combinatorics
Today: Algorithms for proving Theorems on Lattice Paths Combinatorics. J
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~ An nnocentloking) combinaorial quesion

Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .#-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).
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Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

HSREERN

(ii)
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Teaser 1: This “exercise” is non-trivial
Teaser 2: ...but it can be solved using Computer Algebra

Teaser 3: ...by two robust and efficient algorithmic techniques,
Guess-and-Prove and Creative Telescoping

4/29



Many objects from the real world can be encoded by walks:

© probability theory (voting, games of chance, branching processes, ...)
© discrete mathematics (permutations, trees, words, urns, ...)

© statistical physics (Ising model, ...)

© operations research (queueing theory, ...)



Why care about counting walks?

Many objects from the real world can be encoded by walks:

© probability theory (voting, games of chance, branching processes, ...
© discrete mathematics (permutations, trees, words, urns, ...)
@ statistical physics (Ising model, ...)

© operations research (queueing theory, ...)

7™M INTERNATIONAL CONFERENCE ON
I'TICE PATH COMBINATORICS AND APPLICATIONS

S 2
& "

TOPICS to be covered include (but are not imited to) :

Lattice path enumeration Random walks

Plane Partitions Non parametric stafistical inference
Discrete disiributions and urn models
Queueing theory

Analysis of algorithms

Graph Theory and Applications
Self-dual codes and unimoduiar latfices
Bijections between paths and other

Participants combinatoric structures
General Information

Proceedings Young tableaux
g-calculus
Orthogonal polynomials

Important dates
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Why care about co

Many objects from the real world can be encoded by walks:

© probability theory (voting, games of chance, branching processes, ...)
© discrete mathematics (permutations, trees, words, urns, ...)
© statistical physics (Ising model, ...)

© operations research (queueing theory, ...)

21>25

Lattice Path Combinatorics and Interactions
Marches aléatoires, combinatoire et
interactions

CONFERENCE

Cyril Banderier (CNRS, Université Paris 13)
Jehanne Dousse (CNRS, Université Lyon 1)
Enrica Duchi (Université Paris Diderot)
Christian Krattenthaler (TU Wien)

Michael Wallner (Université de Bordeaux)

https://conferences.cirm-math.fr/2021-calendar.html
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https://conferences.cirm-math.fr/2021-calendar.html

~ Counting valks s an old topc: he ballo problem Berrand, 1857]

CALCUL DES PROBABILITES. — Solution d’un probléme;
par M. J. Berrrano,

« On suppose que deux candidats A et B soient soumis 4 un scrutin de
‘ballottage. Le nombre des votants est ¢ A obtient m suffrages et est élu,
B en obtient . — m. On demande la pmbablhte potir que, pendant le dé-
pouillement du scrutin, le nombre des voix de A ne cesse pas une seule
fois de surpasser celles de son concurrent.

T(a+b,a—b)

(0,0

6/29
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Computation of probabilities — Solution of a problem
by J. Bertrand

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths with a upsteps ,* and
b downsteps \, that start at the origin and never touch the x-axis back again

T(a+b,a—b)

(0,0
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Computation of probabilities — Solution of a problem
by J. Bertrand

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths with a — 1 upsteps
and b downsteps \ that start at (1,1) and never touch the x-axis

T(a-+b,a—b)

(0,0
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Counting walks is an old to

Computation of probabilities — Solution of a problem
by J. Bertrand

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).

Lattice path reformulation: find the number of paths with a — 1 upsteps
and b downsteps “\ that start at (1,1) and never touch the x-axis

Reflection principle [Aebly, 1923]: paths in IN?
from (1,1) to T(a + b,a — b) that do touch the x-axis
are in bijection with paths in Z> from (1, 1) to T
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Counting walks is an old topic: the _

Computation of probabilities — Solution of a problem
by J. Bertrand

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (a — b)/(a + b).

Lattice path reformulation: find the number of paths with a — 1 upsteps
and b downsteps \, that start at (1,1) and never touch the x-axis

Reflection principle [Aebly, 1923]: paths in IN?
from (1,1) to T(a + b,a — b) that do touch the x-axis
are in bijection with paths in Z> from (1, 1) to T

Answer: (paths in Z2 from (1,1) to T) — (paths in Z? from (1, 1) to T)
a+b—1 a+b—1
a—1 b-1




Counting walks is an old topic: the ballot problem [Bertrand, 1887]

Computation of probabilities — Solution of a problem
by J. Bertrand

Suppose that candidates A and B are running in an election. If a votes are cast
for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (a — b)/(a + b).

Lattice path reformulation: find the number of paths with 2 — 1 upsteps
and b downsteps \, that start at (1,1) and never touch the x-axis

Reflection principle [Aebly, 1923]: paths in IN?
from (1,1) to T(a + b,a — b) that do touch the x-axis
are in bijection with paths in Z? from (1,—1) to T

Answer: (paths in Z2 from (1,1) to T) — (paths in Z2 from (1, —1) to T)
at+b-1\ (a+b-1\ a—-bla+b
a—1 b—1 ) a+b\ a
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Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Budd,
Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon, Dulucq, Duraj,
Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel, Gouyou-Beauchamps,
Guttmann, Guy, Hardouin, van Hoeij, Hou, Iasnogorodski, Johnson, Kauers,
Kenyon, Koutschan, Krattenthaler, Kreweras, Kurkova, Malyshev, Melczer,
Miller, Mishna, Niederhausen, Pech, Petkovsek, Prellberg, Raschel,
Rechnitzer, Roques, Sagan, Salvy, Sheffield, Singer, Viennot, Wachtel, Wang,
Wilf, D. Wilson, M. Wilson, Yatchak, Yeats, Zeilberger, ...

etc.

7/29
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...butitis still a

Lot of recent activity; many recent contributors:

Arques, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Budd,
Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon, Dulucq, Duraj,
Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel, Gouyou-Beauchamps,
Guttmann, Guy, Hardouin, van Hoeij, Hou, Iasnogorodski, Johnson, Kauers,
Kenyon, Koutschan, Krattenthaler, Kreweras, Kurkova, Malyshev, Melczer,
Miller, Mishna, Niederhausen, Pech, Petkovsek, Prellberg, Raschel,
Rechnitzer, Roques, Sagan, Salvy, Sheffield, Singer, Viennot, Wachtel, Wang,
Wilf, D. Wilson, M. Wilson, Yatchak, Yeats, Zeilberger, ...

etc.

—= Systematic approach

7/29
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.but it is still a very hot topi

HANDBOOK OF

ENUMERATIVE
COMBINATORICS

Ho

19
LH
2 ™ et
Edited by
Miklos Bona

CRC Press
Tt BFrnERGD

A CHAPMAN & HAL

Chapter 10

Lattice Path Enumeration

Christian Krattenthaler
Universitit Wien

CONTENTS

101 Introduction ...
10.2 Lamice paths without restrictions .
103 Linear boundaries of slope 1 ...
10.4  Simple paths with linear boundaries of rational slope, I .
10.5  Simple paths with linear boundaries with rational slope, 11
10.6  Simple paths with a piecewise linear boundary
10.7  Simple paths with general boundaries ......
10.8  Elementary results on Motzkin and Schriider paths
10.9 A comtinued fraction for the weighted counting of Motzkin paths
10.10 Lattice paths and orthogonal pelynomials
10.11 Motzkin paths in & strip .
10,12 Further results for lattice palhs inthe plane
10.13 Non-intersecting latice paths .
10.14  Lattice paths and their turns
10.15 Multidimensional lattice paths
10.16 Multidimensional lattice paths bounded by 2 hyperplane
10.17 Multidimensional paths with a general boundary
10.18 The reflection principle in full generality ...
10.19  g-Counting of lattice paths and Rogers-Ramanujan identit
10.20 Self- avmdmg walks .
References .....
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Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action

Alin Bostan Computer Algebra for Lattice Path Combinatorics



Our approach: Experimental Mathematics using Computer Algebra

David H. Bailey

Algorithmes Efficaces
en Calcul Formel

. Alin Bostan
E)‘perlmenta]. Frédéric Cryzak
Marc Grusti

Maﬂlema._tics Romain LEBRETON

Grégoire LECERF

mn Actlon ” Bruno SaLvy

Eric Scrost
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> Nearest-neighbor walks in the quarter plane:
-walks in IN?: starting at (0,0) and using steps in a fixed subset .7 of

o= Nt 2=\ L)

> Counting sequence .~ (1): number of .”-walks of length n

> Generating function:

Qu(t) = io g (" € Z[1]

10 /29



> Nearest-neighbor walks in the quarter plane:
#-walks in IN?: starting at (0,0) and using steps in a fixed subset .7 of

{\// ~ ,\1 T/ /‘/ — \/ J/}

> Counting sequence g« (i, j; n): number of walks of length 1 ending at (7, f)

> Complete generating function (with “catalytic ” variables x, y):

Qrxyt)= Y. qolijn)xyt" € Z[x,y 1]

i,jn=0

10 /29



Entire books dedicated to small step walks in the quarter plane!

Guy Fayolle
Roudolf Tasnogorodski
Vadim Malyshev

Random Walks

in the Quarter-Plane

Algebraic Methods,
Boundary Value Problems
and Applications

© Springer

Alin Bostan

Probability Theory and Stochastic Modelling 40

Guy Fayolle
Roudolf lasnogorodski
Vadim'Malyshev

Random
Walks in the
Quarter Plane

@ Springer
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

trivial,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

12/29
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Among the 28 step sets . C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.

12/29
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The 79 small steps models of inter

HOIHOH
HIAOH
HOATK
HOHOK
HOAICHK
AT AIGH
PRGN
HOKHAHHOCH
A A

i%%%%%%
X

AORAKK



Task: classify their generating functions!

P i

FLATIAE

*Cartness marsiniquonsts’
Tavia, 134

Bolte 3 - Collection Colbrant
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differentially algebraic
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differentially algebraic
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differentially algebraic
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differentially algebraic
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differentially algebraic

ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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differentially algebraic
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differentially algebraic

ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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differentially algebraic

tan(t)

ab
21:1<C

— v @n(b)n t" _
t) = n;o On al’ where (a), =a(a+1)---(a+n-1).
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Alge

Generating function: Q(x,y) = Q(x,y;t) = ) q(i, j;n)x'yit" € Z[[x,y,1]]

i,jn=0

Recursive construction yields the kernel equation

1 1 1 1
Q) =11 (y-+ 1+ 77 ) Qay) = 1.0(0,) = 127 Q50
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Algebraic r

Generating function: Q(x,y) = Q(x,y;t) = ) q(i, j;m)x'y/t" € Z][[x,y,t]]

ijn=0

Recursive construction yields the kernel equation

1 1 1 1
Q) =1+ (y-+ 1 + 77 ) Qiy) =~ 1.0(0.) = x5 Q5,0

New task: Solve this functional equation!
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Algebraic ref

Generating function: Q(x,y) = Q(x,y;t) = ) q(i, j;m)x'y/t" € Z][[x,y,t]]

ijn=0

Recursive construction yields the kernel equation

1 1 1 1
Q) =1+ (y-+ 1 + 77 ) Qiy) =~ 1.0(0.) = x5 Q5,0

N

New task: For the other models — solve 78 similar equations!
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Dyck:; ;
Motzkin:; E

Poélya:

Kreweras: ; * g
Gessel: E E
Gouyou-Beauchamps: ; E

King walks: %
Tandem walks: E £

16 /29




e ¢(n) = number of n-steps { , ./, -, — }-walks in IN?
1,2,7,21,78, 260, 988, 3458, 13300, 47880, . ..

Question: What is the nature of the generating function

G(t) = i‘bg(n) "2
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e ¢(i,j;n) = number of n-steps { ', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

Question: What is the nature of the generating function

Glx,y;t)= Y g(i,j;n)x'y/t" 2

ijn=0

17/ 29



e ¢(i,j;n) = number of n-steps { 7, ./, -, — }-walks in IN? from (0, 0) to (i, f)

Question: What is the nature of the generating function
o0

Glxyt)= Y, g(ij;n)xylt"?

i,j,n=0

b

e Qe

|
!
v

Theorem [B., Kauers, 2010] J

G(x,y;t) is an algebraic function®.

> computer-driven discovery/proof via algorithmic Guess-and-Prove

* Minimal polynomial P(G(x,y;t); x,y,t) = 0 has > 10! terms; ~ 30 Gb (6 DVDs!)

17/ 29
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e ¢(n) = number of n-steps { *, ./, -, — }-walks in IN?

Question: What is the nature of the generating function
G(t)y=) gm)t"?
n=0

(Bn+1)g(2n) =(12n+2)g(2n—1)and (n+1)g(2n+1) = (4n +2) g(2n)

> computer-driven discovery/proof via algorithmic Guess-and-Prove

17/ 29



Guess-and-Prove

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



Guess-and-Prove

How to Solve It

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

[ generate data ]—)[ make conjectures )—)[prove them]

Alin Bostan Computer Algebra for Lattice Path Combinatorics




Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi_1,;+ Bjj1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;

19/29
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Guess-an

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924
21 56 126 252 462
15 35 70 126 210
10 20 35 56 84
6 10 15 21 28
4 5 6 7
1 1 1 1 1

L = T W S Gy S e
= N W ke U NN

19 /29
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Guess-and

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i)

@ There are 2 ways to get to (i, f), either from (i — 1, ), or from (i,j — 1):
Bij = Bi_1,;+ Bij1
@ There is only one way to get to a point on an axis: B;g = By; =1

> These two rules completely determine all the numbers B, ;

(1) Generate data:

1 7 28 84 210 462 924

1 6 21 56 126 252 462 (I Guess:
1 5 15 35 70 126 210

1 4 10 20 35 56 84 —

1 3 10 15 21 28 — (L)+2)

1 2 4 5 6 7 — i1

11 1

19 /29
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Guess-and

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924

v (IT) Guess:

1 6 21 56 126 252 462

1 5 15 35 70 126 210 B, L (iT"]')'
1 4 10 20 35 56 84 Br
1 3 6 10 15 21 28

1 2 4 6 7

111 1 1 1 1

19 /29
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi-1j+Bij1
@ There is only one way to get to a point on an axis: B;y = Bp; =1
> These two rules completely determine all the numbers B; ;

(1) Generate data:

(IIT) Prove: If
28 84 210 462 924 C. . def (i)

1 Z 21 56 126 252 462 ij = 7y then

1 5 15 35 70 126 210 Civj Gy _ i
1 4 10 20 35 56 84 Cij Cij i+j i+j

1 3 6 10 15 21 28 and Cyo = Co; = 1.

1 2 4 5 6 7

111 1 1 1 1 Thus B;j = C;;

19 /29
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Guess-and-Prove for Ges

e ¢(i,j;n) = number of n-steps { 7, ./, -, — }-walks in IN? from (0, 0) to (i, f)

A

Question: What is the nature of the generating function
(o]

Glxyt)= Y gli,jn)x'yt"?
i,j,n=0

Answer: [B., Kauers, 2010] G(x, y;t) is an algebraic function®.

Approach:
@ Generate data: compute G to precision ¢'2%0 (=~ 1.5 billion coeffs!)

@ Guess: conjecture polynomial equations for G(x,0;t) and G(0,y; t)
(degree 24 each, coeffs. of degree (46,56), with 80-bits digits coeffs.)

@ Prove: multivariate resultants of (very big) polynomials (30 pages each)

* Minimal polynomial P(G(x,y;t);x,y,t) = 0 has > 10" terms; ~ 30 Gb (6 DVDs!)
e ... s for Latice Pt Combinatoric



g(t) := G(0,0;vt) = E (5/6)u(1/2) (16)" is algebraic.

(5/3)n (2




g(t) := G(0,0;vt) = E (S(é?)SISEll(é)z,zn (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

21/29



g(t) := G(0,0;vt) = E (S(é?);sg,l(é)z,zn (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

21/29



Theorem [“Gessel excursions are algebraic”]

g(t) == G(0,0; V) = i (5/6)n(1/2)n

7 s .
nzo—(5/3)n(2)n (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

NN o Algebr fo Lattice Path Combinalorics



A typical Guess-

Theorem [“Gessel excursions are algebraic”]

= G(0,0;Vt) = 3 M
8= GO0V = ¥, T .

(16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r,) is P-recursive:
(n+2)(3n+5)r,.1 —4(6n+5)2n+1)r, =0, ro=1

_ (5/6),1/2)uqn

= solution r,;, = G302, 16" =g thus g(t) = r(t) is algebraic.
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A typical Guess-and-Prove algorithmi_

Theorem [“Gessel excursions are algebraic”]

= G(0,0;vE) = . 5761/
80):=600VH =) 57, @,

(16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r,) is P-recursive:
(n+2)(3n+5)r,41 —4(6n+5)(2n+1)r, =0, ro=1

= solution r,;, = %16" = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer (5/6,n)*pochhammer(1/2,n)/
pochhammer (5/3,n) /pochhammer (2,n)*16™n, n=0..100)], g(t)):
> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), gt), r(n));




Algorithmic classification of models with D-Finite Q »(¢) := Q#(1,1;¢)
OEIS .¥ Pol size LDE size Rec size OEIS . Pol size LDE size Rec size
1]a005566 & — (3,4 (22 [13lasizrs X —  (5,24) (9, 18)
2]A018224 X —  (3,5) (2,3) [14/A151314 &  —  (5,24) (9, 18)
3la151312 3K — (3,8 4,5 ||15/a151255 X0 —  (4,16) (6 8)
4|A151331 3B —  (3,6) (34 ||16/A151287 R  —  (5,19) (7,11)
5|A151266 YT —  (5,16) (7,10) |17]A001006 &; 2,2) 2,3 @ 1)
6|A151307 &F  —  (5,20) (8 15) [18la120400 T 2,20 (23 (1)
71A151291 ¥ —  (5,15) (6,10) [19/A005558 X —  (3,5) (2,3)
8|A151326 B —  (5,18) (7,14)
9|A151302 K —  (5,24) (9,18) ||20|A151265 <* (6,8) (4,9) (6, 4)
10A151329 & —  (5,24) (9,18) ||21|A151278 . > (6,8) 4,12) (7, 4)
11|A151261 & — 415 (5,8 ||22(a151323 B 4,4 (2,3 @1)
12|A151297 & —  (5,18) (7,11) |[23|A060900 ¥5 (8,9) (3,5 (2, 3)

Equation sizes = (order, degree)
> Computerized discovery: enumeration + guessing [B., Kauers, 2009]

Alin Bostan
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of models with D-Finite Q »(¢) := Q#(1,1;¢)

OEIS .¥ Polsize LDE size Rec size OEIS .¥ Pol size LDE size Rec size

1]A005566 < — (3,4 (2,2 |[13]a151275 o —  (5,24) (9, 18)
20a018224 X — (3,50 (2,3) [14a151314 B8 —  (5,24) (9, 18)
3la151312 3K — (3,8 4,5 ||15/a151255 X0 —  (4,16) (6 8)
4A151331 3B —  (3,6) (34 |16a151287 R — (5,19 (7, 11)
5|A151266 Y —  (5,16) (7,10) [17]Aa001006 X, 2,20 (2,3) @ 1)
6|A151307 F  — (5,200 (8 15) ||18|A129400 T 2,20 (23) (1)
71a151201 * —  (5,15) (6,10) ||19]A005558 X  —  (3,5) (2,3)
8|Aa151326 S —  (5,18) (7, 14)

9(a151302 X —  (5,24) (9,18) |[20(A151265 <* (6,8) (4,9 (6, 4)
10A151329 B8 —  (5,24) (9,18) |21|Aa151278 . > (6,8) (4,12) (7, 4)
1|A151261 & — @15 .8 |20a151323 B @449 23 @1
12(A151297 R —  (5,18) (7,11) |23|A060900 3 (8,90 (3,5) (2 3)

Equation sizes = (order, degree)
> Computerized discovery: enumeration + guessing [B., Kauers, 2009]
> 1-22: DF confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]
> 23: DF confirmed by a human proof in [B., Kurkova, Raschel, 2017]
> All: explicit egs. proved via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of models with D-Finite Q »(¢) := Q#(1,1;¢)

OEIS . algebraic? asymptotics OEIS .7  algebraic? asymptotics
1]a005566 > N 44 3l A151275 X N /@G
2018224 K N 2414 A151314 b N Yo oy
3|a151312 K N vee 15| A151255 A‘ N 22 (22"
4|A151331 % N L8 1| Al151287 ﬁ N 2aaeAr
5|A151266 'Y N 122, |[17|  Acot006 & Y 3/2 2,
6lats1307 N L/5 3 |[s|  A120400 % Y 3/24,
7|a15201 Y N =4 |[19]  Aoossss R N 841
8|asiae N J%n?'/lz A=14V2 B=14V3 C=14VB A=743V6 4= 461
9lats1302 2K N 1,/5 3 |lo|  Als1265 { L
10| A151329 % N i 3%;1{’/’2 21 A151278 } Y &({3/ 5 n§j4
11|A151261 k& N 28"y A151323 ﬂz’; Y At
12[A151207 g N VB2 CE b3l A060900 = Y 2l 4

> Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Algorithmic classification of models with D-Finite Q »(¢) := Q#(1,1;¢)

OEIS . algebraic? asymptotics OEIS .7  algebraic? asymptotics
1]A00s566 P> N 440 3| A151275 X N @(2@"
2|a018224 & N 2414 A151314 b N m;ﬂci/z e
3|a151312 K N Yool 15| A151255 X N 22 (22"
slarsz BN 28 el A151287 & N zaweear
5|a1s1266 'Y N 1\/22 7] Acot006 & Yy 3/ia
6lats1307 N L/5 3 |[s|  A120400 % Y 3/,
7|a15201 Y N =4 |[19]  Aoossss R N 841
8|asiae N J%n?'/lz A=14VZ B=14V3, C=1+V6, A =7+3V6, =/ 2
9lats1302 2K N 1,/5 3 |lo|  Als1265 < L
oja51320 & N L/Z 7|21 Awsizrs S Yy
11|A151261 k& N 28"y A151323 ﬂz’; Y R
12[A151207 g N VB2 CE b3l A060900 = Y 2l 4

> Computerized discovery: convergence acceleration + LLL [B., Kauers, '09]
> Asympt. confirmed by human proofs via ACSV in [Melczer, Wilson, 2016]
> Transcendence proofs via CA [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Alin Bostan
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Models 1

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q. (1) is expressible using iterated integrals of ,F; expressions.

© Q (1) is transcendental, except for .77 = ‘% and .¥ = % .

NN o Algebr fo Lattice Path Combinatorics


http://oeis.org/A151331

Models 1-19: proofs, explicit e

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q. (1) is expressible using iterated integrals of ,F; expressions.

© Q (1) is transcendental, except for .77 = & and .¥ = % .

Example (King walks in the quarter plane, A151331)

16x(1 + x)
e )

1/ 1 3 3
Oggr (=5 |, e 25 (2

=1+ 3t + 182 + 105¢> + 684+* + 4550¢° + 31340£° + 219555¢7 + - - -
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Models 1-19: proofs, explicit expressions and transcendence

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]
Let .¥ be one of the models 1-19. Then

© Q. (t) is expressible using iterated integrals of ,F; expressions.

© Q (1) is transcendental, except for .77 = Q and .¥ = 5& .

Example (King walks in the quarter plane, A151331)

1/ 1 3 3] 16x(1+x)
ogr =7 || e 2h (%2 )

(1+4x)2
=1+ 3t + 182 + 105¢> + 684+* + 4550¢° + 31340£° + 219555¢7 + - - -

> Computer-driven discovery and proof; no human proof yet.
> Proof uses: (1) kernel method + (2) creative telescoping.

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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The kernel | =1 —t-Y(; i)c. o X'y/ :1—t(x-|-%+y+ %) is
invariant under the change of (x,y) into elements of

G = {(e), (1), (1 3), (= 1))

25/29



The kernel | =1 —t-Y(; i)c. o X'y/ :1—t(x-|-%+y+ %) is
invariant under the change of (x,y) into elements of

0 = {(x0), (2, (D). (v )}

Kernel equation:

T,y 8)xyQ(x, y;t) = xy — txQ(x,0;t) — tyQ(0,y; £)

25/29



1) Kernel mthod [BousquetMelow, Mishna, 20100

The kernel | =1 —t-Y(; i)c. o X'y/ :1—t(x+%+y+ %) is
invariant under the change of (x,y) into elements of

0 = {9, (L), (L D), (v )}

Kernel equation:

J(x, v ) xyQ(x,yt) = xy — txQ(x,0;t) — tyQ(0, y; t)
—J(xy) QL vit) = — Ly +t1Q(L,0:t) + tyQ(0, y; t)

25/29
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1)

The kernel | =1 —t-Y(; i)c. o X'y/ :1—t(x+%+y+ %) is
invariant under the change of (x,y) into elements of

G = {(wy). (L) (L), (&)}

Kernel equation:

J(x, y:H)xyQ(x,y;t) = xy — txQ(x,0;t) — tyQ(0,y; t)
—Jx ) iyQ(t,yt) = — Ly +121Q(L,0:t) + tyQ(0,y; t)
Jyit) 53QG, yit) = 1y — 13Q(5,0:0) — 1,0(0, 1)

25/29
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() Kernel method [Bousquet-Melow, Mishna, 2010) .

The kernel | =1 —t-Y(; i)c. o X'y/ :1—t(x+%+y+ %) is
invariant under the change of (x,y) into elements of

1

G = {(wy). (L), (1), ()}

Kernel equation:
J(x,y; )y Q(x,
—J (o yit) 395,
J(xyniiod,
—J(xy DL Q(x,

yit) = xy — txQ(x,0;t) — tyQ(0, ;)
vit) = — Ly +t10(1,0;4) + tyQ(0, ;1)
Ly =1 -tod,0n -0 L
% t) = —x?+th(x,O,t)+th(Or;rt)

25/29
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(1) Kernel m:

The kernel | = 1—t~):(1~,j)€yxiyj = 1—t(x+%-l-y+ %) is
invariant under the change of (x,y) into elements of

G = {(wy). (L), (19), (= ))}

Kernel equation:

J(x,y:)xyQ(x,y;t) = xy — txQ(x, 0;¢) — tyQ(0, y; £)
—J(xy;t )ny(x,y,t) = — W+ 13005, 0:) + tyQ(0, ;1)
(033005 3it) = 13 —£3Q(5,0;1) — £7.Q(0, 1)
—J(x,y; t)xy (x, y,t) = - x +txQ(x,0;¢) + £ Q(O, ;,t)

Summing up yields the orbit equation: .

1 11

XYYt ry — Xy

_1)% i) = ) Txy Ty
egg( )70 (xy Q(x, y;1)) 1)

25 /29
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(1) Kernel m:

The kernel | = 1—t~):(1~,j)€yxiyj = 1—t(x+%-l-y+ %) is
invariant under the change of (x,y) into elements of

G = {(wy). (L), (19), (= ))}

Kernel equation:

J(x,y:)xyQ(x,y;t) = xy — txQ(x, 0;¢) — tyQ(0, y; £)
—J(xy;t )ny(x,y,t) = — W+ 13005, 0:) + tyQ(0, ;1)
(033005 3it) = 13 —£3Q(5,0;1) — £7.Q(0, 1)
—J(x,y; t)xy (x, y,t) = - x +txQ(x,0;¢) + £ Q(O, ;,t)

Taking positive parts yields: .

1 11
) o XY=y tay oy
by7] B (000w Qi) = 7yl =7

25 /29
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(1) Kernel m:

The kernel | = 1—t~):(1~,j)€yxiyj = 1—t(x+%-l-y+ %) is
invariant under the change of (x,y) into elements of

G = {(wy). (L), (19), (= ))}

Kernel equation:

J(x,y:)xyQ(x,y;t) = xy — txQ(x, 0;¢) — tyQ(0, y; £)
—J(xy;t )ny(x,y,t) = — W+ 13005, 0:) + tyQ(0, ;1)
(033005 3it) = 13 —£3Q(5,0;1) — £7.Q(0, 1)
—J(x,y; t)xy (x, y,t) = - x +txQ(x,0;¢) + £ Q(O, ;,t)

Summing up and taking positive parts yields:
=y 3y

Xy~
J(x,y;t

<=

xyQx,y;t) =[x7y7]

25 /29
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(1) Kernel m:

The kernel | = 1—t-2(i,j)€yxiyj =1—t(x+%+y+ %) is
invariant under the change of (x,y) into elements of

G i={ (o), () (L 1), (0 1))

Kernel equation:
](xll/i t)ny(xryl t) =Xy — tXQ(X,O,‘ t) - tyQ(Ory/ t)
— Ty ) yQ( wit) = — 1y +13Q(5,0:t) + tyQ(0, ;1)
J )2 yQ(% yit) = 14 — 13Q(5,0:8) — 5 Q(o,y, )
—J(x,y;t)x yQ(x, ;) = —xy L4 txQ(x,0; t)+t Q(0 ,y, t)

GF = PosPart 05 = ﬂRatFrac
kernel

25/29
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(1) Kernel m:

The kernel | = 1—t-2(i,j)€yxiyj =1—t(x+%+y+ %) is
invariant under the change of (x,y) into elements of

G i={ (o), () (L 1), (0 1))

Kernel equation:

J(x,y; ) xyQ(x,yit) = xy — txQ(x,0;¢) — tyQ(0,y; 1)
—Joy)1yQ(3,wt) = — ty+11Q(1,0:4) + tyQ(0, y; 1)
J( i)z Q5 yit) = 13 —13Q(5,0;8) — £ Q(O,y, )
—J(xy)xyQx, 5t) = — xy +1xQ(x,0;4) +£,Q(0, 35 t)

GF = PosPart (%) is D-finite [Lipshitz, 1988]

25/29
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(1) Kernel method

The kernel | = 1—t-2(i,j)€yxiyj =1—t(x+%+y+ %) is
invariant under the change of (x,y) into elements of

G o= {(9). (L), (4 1), (2 ))

Kernel equation:
JCey; )xyQ(x, y; 1) = xy — txQ(x, 0;¢) — tyQ(0, y; )
—J(xyD3yQ(e yit) = — 3y +£3Q(5,0:1) + tyQ(0, 33 t)
)53 Q(% o) = 1y —t3Q(5,0:1) — 150(0, 1-t)
—J(xy; )ny(x,%,t) = —xy L4 txQ(x,0; t)-l-t Q(0 ,y, t)

GF = PosPart (%) is D-finite [Lipshitz, 1988]

> Argument works if OS # 0: algebraic version of the reflection principle

NN o Algebr fo Lattice Path Combinaorics
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(1) Kernel metho

The kernel | = 1—t-2(i,j)€yxiyj =1—t(x+%+y+ %) is
invariant under the change of (x,y) into elements of

G o= {(9). (L), (4 1), (2 ))

Kernel equation:
TGy DxyQ(x, y3 t) = xy — txQ(x, 0;¢) — tyQ(0,y;t)
— Ty 3yQ(e Yt = — 3y +£3Q(5,0:) + tyQ(0, 33 t)
J(xy;t): Q(x,y,t)—%i—f Q(3.0:1) — 5 Q(o,y,)
—J(xy; )ny(x,y,t) = —xy Lt txQ(x,0; t)+t Q(0 ,y, t)

GF = PosPart (%) is D-finite [Lipshitz, 1988]

> Creative Telescoping finds a differential equation for GF = f RatFrac o
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(2) Creative Telescoping

“An algorithmic toolbox for multiple sums and integrals with parameters”

n
Example [Apéry 1978]: A, = Z (

k=0

2
> satisfies the recurrence

) (i

(n+1)3A +12A, 1 = 2n+1) (1712 +17n+5)A,.

> Key fact used to prove that {(3) :=

1. Journées Arithmétiques de Marseille-Luminy, June 1978

The board of programme changes informed us that R.
Apéry (Caen) would speak Thursday, 14.00 “Sur I'irration-
alité de {(3).” Though there had been earlier rumours of
his claiming a proof, scepticism was general. The lecture
tended to strengthen this view to rank disbelief. Those who
listened casually, or who were afflicted with being non-
Francophone, appeared to hear only a sequence of unlikely
assertions.

1
Z 3 ~ 1.202056903. .. is irrational.
n>1

7.1CM *78, Helsinki, August 1978

Neither Cohen nor I had been able to prove @ or @ in
the intervening 2 months. After a few days of fruitless
effort the specific problem was mentioned to Don Zagier
(Bonn), and with irritating speed he showed that indeed
the sequence {by} satisfies the recurrence (4). This more or
less broke the dam and and were quickly con-
quered. Henri Cohen addressed a very well-attended meet-
ing at 17.00 on Friday, August 18 in the language of the
majority, proving and explaining how this implied the

[Van der Poorten, 1979: “A proof that Euler missed”]

26 /29
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)

“An algorithmic toolbox for multiple sums and integrals with parameters”

mo i\ (n+k\2
Example [Apéry 1978]: A, = ) (k) < K > satisfies the recurrence
k=0

(n+1)3A +12A, 1 = 2n+1) (1712 +17n+5)A,.

> Key fact used to prove that {(3) := ) 711—3 ~ 1.202056903 ... . is irrational.
n>1

[Zeilberger, 1990: “The method of creative telescoping”]
R (... e for Lttice Path Combinatoic



“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

L1 —e2u2 dudo ,
p(e) 24/0 mduz‘lﬂw
(1-u?)0? * P

Principle: Find algorithmically %

26 /29




(2) Creativ

“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1 1—u? N
o \L/

Principle: Find algorithmically

((e — ¢392 4+ (1 —¢%)o, + e) . (ﬁ) =

(T—u%)o?

3 _e(—l—u+u2+u3)02(—3+2u+vz+u2(—2+3e2—02))
H (1402 +u2(e2—22))”

4o, (2(3(—1+e2)u(1+u3)vz3>

—1+v24u?(e?—v2))

> Conclusion: (e —e) - p"(e) + (1 —¢*) - p'(e) +e- p(e) = 0.
" AinBostan  Computer Algebra for Lattice Path Combinatorics



(2) Creative Tel

“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1-— ezuz 4 dudov '
1— u2 - 1 1-cu? . N )

(T—u?2)o? = 3

Principle: Find algorithmically i

((e — 2+ (1—¢*)o, + 6) : (1_%) -

(1-u?)v?

5 ( e(—l—u+u2+u3)v2(—3+2u+v2+u2(—2+3e2—v2)))
u =

(—1+o2+u2(e2—0?))’

49, (2(6(71+ez)u(1+u3)v23>

—1+024u?(e?—0v?))

1
2
2 2 32

NN o Algebr fo Lattice Path Combinalorics
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> Conclusion: p(e) = z .21:1< % ez) o2 37re4 B




“An algorithmic toolbox for multiple sums and integrals with parameters”

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

e @
1.2 - 1 1
1 u 1 flzuvz A\_L/n

Principle: Find algorithmically

((e— e3)2 + (1—¢%)0, +3) ‘ (ﬁ) -

T @-u?)?
P _e(—1—utu? 1) o? (=34 2ut v’ +u? (—243¢2 7))
" (1402 +u2(e2—02))

L, (( (—1+e2)u(1+u? )vj)

1402 +u?(e2—0?))

> Drawback: Size(certificate) > Size(telescoper).
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(2) 4G Creative Teles

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

Input: R(e,x) a rational function in e and x = x1, ..., xy.
Output: A linear ODE T/(e,d.)y = 0 satisfied by y(e) = {f R(e, x)dx.

®
© Complexity: O(D¥+2), where D = degR.
®

Output size: T has order < D" in 9, and degree < D¥*? inee.

> Avoids the (costly) computation of certificates, of size Q(D”z/ 2).
> Previous algorithms: complexity (at least) doubly exponential in 7.

> Very efficient in practice.

27 /29

NN o Algebr fo Lattice Path Combinaorics



Q.» is D-finite <= a certain group G » is finite (!)

quadrant models .¥: 79

— T~

|G| <co: 23 |G | = oc0: 56

N |

orbit sum # 0: 19 orbitsum = 0: 4  asymptotics + GB

Creative Telescoping  Guess-and-Prove non-D-finite

D-finite algebraic
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Summary: classification of

Q.o is D-finite <= a certain group G  is finite (!)

quadrant models .¥: 79

— T~

|G 5| <o0: 23 |G| = o0: 56

PR |

orbit sum # 0: 19 orbitsum = 0: 4  asymptotics + GB

Creative Telescoping ~ Guess-and-Prove non-D-finite

D-finite algebraic

> Many contributors (2010-2019):  B., Bousquet-Mélou, Chyzak, van Hoeij,
Kauers, Kurkova, Mishna, Pech, Raschel, Salvy
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Summary: classification of wal

Q.o is D-finite <= a certain group G  is finite (!)

quadrant models .¥: 79

— T~

|G| <o0: 23 |G| = o0: 56

N |

orbit sum # 0: 19 orbitsum = 0: 4  asymptotics + GB

Creative Telescoping ~ Guess-and-Prove non-D-finite

D-finite algebraic

> Many contributors (2010-2019): B., Bousquet-Mélou, Chyzak, van Hoeij,
Kauers, Kurkova, Mishna, Pech, Raschel, Salvy

> Proofs use various tools: algebra, complex analysis, probability theory,
computer algebra, etc.
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© Enumerative Combinatorics and Computer Algebra enrich one another
@ Classification of Q(x,y; t) fully completed for 2D small step walks

@ Robust algorithmic methods, based on efficient algorithms:

e Guess-and-Prove
o Creative Telescoping

@ Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(x,y;t) ~ 30Gb.
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Conclusio

Enumerative Combinatorics and Computer Algebra enrich one another
Classification of Q(x,y; t) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

e Guess-and-Prove
o Creative Telescoping

© ©OO

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(x,y;t) ~ 30Gb.

Lack of “purely human” proofs for some results.

Many beautiful open questions for 2D models with repeated or large
steps, and in dimension > 2.
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Beyond dimension 2: walks

> 231 ~ 67 million models, of which ~ 11 million inherently 3D

3D octant models . with < 6 steps: 20804

— T~

|G| < o0: 170 |G| = co: 20634

— T~ |

orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

Creative Telescoping  2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]
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Beyond dimension 2: walks with s

> 23 =1 ~ 67 million models, of which ~ 11 million inherently 3D

3D octant models . with < 6 steps: 20804

— T~

|G| < o0: 170 |G| = co: 20634

— T~ |

orbit sum # 0: 108 orbit sum = 0: 62 non-D-finite?

| N

Creative Telescoping  2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2016] + [Du, Hou, Wang, 2017];
completed by [Bacher, Kauers, Yatchak, 2016]

Question: differential finiteness <= finiteness of the group?

Answer: probably no
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Two different computations suggest:
Ky, 7o C - 256 / 3325757004174

so excursions are very probably transcendental
(and even non-D-finite)
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Beyond small step

quadrant models with steps in {—2, —1,0, 1}2: 13 110

|
[ N

|G| < oo: 240 |G | = o0: 12 870
[ | |
OS # 0: 431 0OS=0:9 « rational: 16 « irrational: 12 854
D-finite D-finite? non-D-finite? non-D-finite

[B., Bousquet-Mélou, Melczer, 2018]

Question: differential finiteness <= finiteness of the group?

Answer: ?
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Two challenging models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2018]

For the model %’ the excursions generating function Q(0,0; t'/2) equals

_ 1 2 2
1 1/ 1-12 LR (53 108t (1 + 4t) N
3t 6t \ (1+36t)1/3 1 (1+36t)2
— 1 21108t(1 + 4t)2
V1—12t-oF( 6 3| ——=— ).
“( 1| (1-1202 >)

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2018]
For the model X the excursions generating function Q(0,0; t) equals

(1—24U+120U% — 144 U3) (1 —4U)
(1-3U)(1—-2U)3/2(1—-6U)%/2

7

where U = t* + 5318 + 436312 + - . - is the unique series in Q[[t]] satisfying

U(l-2u)P®(1-3uP(1-6U)’ =t(1-4U)*

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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