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But first, what is a binary tree?
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m Internal node: Node of out-degree 2 (circle)
m Leave: Node of out-degree 0 (square)

m Root: Distinguished node (top node)

m Order of children important
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But first, what is a binary tree?

L AP O SR

m Internal node: Node of out-degree 2 (circle)
m Leave: Node of out-degree 0 (square)

m Root: Distinguished node (top node)

m Order of children important

A recursive construction
m A binary tree is either a leaf,

m or it consists of a (root) node and a left and right binary tree.
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Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).
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Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

))))' (3’ ()/7070))v (4,(><,3,3)), (5’(_’2a4))v

Definition

Compacted tree is the directed acyclic graph computed by this procedure.
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Compacted trees

m Important property: Subtrees are unique

m Efficient algorithm to compute compacted tree: expected time O(n)

m Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is

asymptotically equal to
n

C
Viogn’

where C is explicit related to the type of trees and the statistical model.

Michael Wallner  LaBRI ~ 27.6.2019



Compacted trees

m Important property: Subtrees are unique
m Efficient algorithm to compute compacted tree: expected time O(n)
m Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,

Volume 4): A tree of size n has a compacted form of expected size that is

asymptotically equal to
n

C
Viogn’

where C is explicit related to the type of trees and the statistical model.

m Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Michael Wallner  LaBRI ~ 27.6.2019



Compacted trees

m Important property: Subtrees are unique
m Efficient algorithm to compute compacted tree: expected time O(n)

m Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is

asymptotically equal to
n

C
Viogn’

where C is explicit related to the type of trees and the statistical model.

m Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

m Restrict to unlabeled binary trees

Michael Wallner  LaBRI =~ 27.6.2019



Compacted trees

m Important property: Subtrees are unique
m Efficient algorithm to compute compacted tree: expected time O(n)

m Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is

asymptotically equal to
n

C
Viogn’

where C is explicit related to the type of trees and the statistical model.

m Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

m Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?
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Compacted (unlabeled binary) trees

m Size: number of internal nodes
m Number of compacted trees of size n: ¢,

M. L

Figure: All compacted binary trees of size n =0,1, 2.
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Compacted (unlabeled binary) trees

m Size: number of internal nodes
m Number of compacted trees of size n: ¢,

M. L

Figure: All compacted binary trees of size n =0,1, 2.

Simple bounds

sizec||n=0|n=1|n=2|n=3|n=4|n=5|n=6
Cn 1 1 3 15 111 1119 | 14487
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m Size: number of internal nodes
m Number of compacted trees of size n: ¢,

M. L

Figure: All compacted binary trees of size n =0,1, 2.

Simple bounds

sizec||n=0|n=1|n=2|n=3|n=4|n=5|n=6
Cn 1 1 3 15 111 1119 | 14487

1 2n
nl<c, < - n!
- n+1\ n

Lower bound: w— s ; ; ; ;

Michael Wallner  LaBRI = 27.6.2019



Compacted Binary Trees | Creating a compacted binary tree

Compacted (unlabeled binary) trees

m Size: number of internal nodes
m Number of compacted trees of size n: ¢,

M. L

Figure: All compacted binary trees of size n =0,1, 2.

Simple bounds

sizec||n=0|n=1|n=2|n=3|n=4|n=5|n=6
Cn 1 1 3 15 111 1119 | 14487

1 2n
nl<c, < - n!
- n+1\ n

Lower bound: Q g ; ; ; ; ; ;
1 2 3 n-3 n-2 n-l n

Michael Wallner  LaBRI =~ 27.6.2019



Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.
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Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

m Pointers may only point to previously seen parts in post-order
m Pointers are not allowed to violate uniqueness

Valid compacted tree Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.
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Counting compacted binary trees

Take a binary tree of size 8.

1 3) 4 31
> | 5>
13

2>

In total, we can construct 1-3-4-13-31 = 4836 compacted trees.
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Counting compacted binary trees

Take a binary tree of size 8.

1 3) 4 31
> | 5>
13

2>

In total, we can construct 1-3-4-13-31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n%) to compute ¢, co, ..., Cp.
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Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees
Let r, be the number of relaxed binary trees of size n: ¢, < r,,.

4 4

In total, this gives 1-3-4-42 .62 = 6912 relaxed trees and we get a similar
recurrence relation.
(Before, 4836 compacted trees.)
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Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.
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Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf (not going through pointers).
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Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height
The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf (not going through pointers).

Example

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.
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Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height
The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf (not going through pointers).

Example

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.
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Compacted trees of right height < k

Figure: Right height < 0.
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Compacted trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.
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Compacted Binary Trees | Bounded right height

Compacted trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.

=i e

Figure: Right height < 2.
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Compacted trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.

=i e

Figure: Right height < 2.
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Figure: Right height < 3.
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Main results

Theorem (Relaxed)

The number ry , of relaxed trees with right height at most k is for n — oo
asymptotically equivalent to

1|4 VY —4
fin ~ k! | 4cos | —— n"z,
kon ™ Tk k+3

where 7y, € R\ {0} is independent of n.
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Main results

[ Theorem (Relaxed)

The number ry , of relaxed trees with right height at most k is for n — oo
asymptotically equivalent to

1|4 VY —4
fin ~ k! | 4cos | —— n"z,
kon ™ Tk k+3

where 7y, € R\ {0} is independent of n.

[ Theorem (Compacted)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

o\ "

™ k 1 1 1 x )2

C ~ K n! 4COS - n_f_k+3_(71_kA3)C05(k+3) ,
on T Tk ( (k+3>>

where kx € R\ {0} is independent of n.
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Proof idea

Methods
Recurrence relations Differential equations
Bijections @ Singularity analysis
Generating functions Chebyshev polynomials
Symbolic method B Guess and prove
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Proof idea

 Methods
Recurrence relations Differential equations
Bijections @ Singularity analysis
Generating functions Chebyshev polynomials
Symbolic method B Guess and prove

Main idea: Exponential generating functions

Let ¢, be the number of compacted trees of size n. Then, we define

Z"
C(z) = Z Cn T
n>0 ’

n!

| (2:) guarantees positive radius of convergence.

Upper bound ¢, <

Michael Wallner  LaBRI = 27.6.2019



Main idea: Exponential generating functions

m Problem: unlabeled structures!

m Idea: derive a symbolic method for compacted trees
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Main idea: Exponential generating functions

m Problem: unlabeled structures!

m Idea: derive a symbolic method for compacted trees

Let T(z) =3 50 t,,i—'; be an EGF of the class 7.
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Main idea: Exponential generating functions

m Problem: unlabeled structures!

m Idea: derive a symbolic method for compacted trees

Let T(z) =3 50 t,,i—'; be an EGF of the class 7.

T(z) — zT(2)

Append a new node with a pointer to the class 7. I>_’
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Main idea: Exponential generating functions

m Problem: unlabeled structures!

m Idea: derive a symbolic method for compacted trees

Let T(z) =3 50 t,,i—'; be an EGF of the class 7.

T(z) — zT(2)
Append a new node with a pointer to the class 7. I>_’

Proof:

ty = kl[zXzT(z) = Kk - t1 O
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Compacted Binary Trees | Bounded right height

Main idea: Exponential generating functions

m Problem: unlabeled structures!

m Idea: derive a symbolic method for compacted trees

Let T(z) =3 50 t,,i—'; be an EGF of the class 7.

T(z) — zT(2)

Append a new node with a pointer to the class 7. I>_’

Proof:
te = kl[zXzT(2) = _k - ti_ =
k p955|b|e k—1 internal
pointers nodes
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Further constructions

S:T(z)— iT(z)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.
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Compacted Binary Trees | Bounded right height

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.

Y d
D:T(z)— $T(2)
Delete top node but preserve its pointers. : 5
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Compacted Binary Trees | Bounded right height

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.
Y d

D:T(z)— $T(2)

Delete top node but preserve its pointers. : 5

I:T(z)— [T(2)
Add top node without pointers. |>.
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Compacted Binary Trees | Bounded right height

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S :I> U I>—9 U I>_9_9 U ...
sequence at the root.

Y d
D:T(z)— $T(2)
Delete top node but preserve its pointers. : 5

I:T(z)— [T(2)
Add top node without pointers. |>_.

P:T(z)~ z% T(2)
Add a new pointer to the top node. : :g
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Relaxed binary trees
Highlights
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Bounded right height < 1: Ry(z)
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Bounded right height < 1: Ry(z)

Symbolic construction

(1-22)Ri(z) — Ri(2) =0,
Ri(0) =1,
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Bounded right height < 1: Ry(z)

Symbolic construction

(1-22)Ri(z) — Ri(2) =0,
Ri(0) =1,

then we get the closed form
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Bounded right height < 1: Ry(z)

Symbolic construction

(1-22)Ri(z) — Ri(2) =0,
Ri(0) =1,

then we get the closed form

and the coefficients
|
M= %(2,7") =(@2n-1)-(2n—3)---3-1.

[W 2019, “A bijection of plane increasing trees with relaxed binary trees of right
height at most one”]. (TCS 2019, Vol. 755, p. 1-12; ArXiv:1706.07163)
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Bounded right height < 2: Ry(z )

e s M

_97




Bounded right height < 2: Ry(z)

Symbolic construction

(1-3z+2%) RY(2) + (22 — 3) Ry(z) = 0,
Ro(0) = 1, Ry(0) = 1,

Michael Wallner  LaBRI = 27.6.2019



Compacted Binary Trees | Relaxed binary trees

Bounded right height < 2: Ry(z)

Symbolic construction

(1-3z+ 22) Ry (z) + (2z — 3) Ry(z) = 0,
R:(0) =1, R3(0) =1,
then we get the closed form

Ri(2) = —

1—3z4 22’
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Compacted Binary Trees

Bounded right height < 2: Ry(z)

Symbolic construction

(1-3z+ 22) Ry (z) + (2z — 3) Ry(z) = 0,
R:(0) =1, R3(0) =1,
then we get the closed form

1

Ro(2) = 75 775

and the coefficients

e ((1evE\" (1ovE)”
nRan= \/g ) - ) .
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Bounded right height < 3: R;(z)

50558 o oeee d T gegb s o oetTd

’p,

D0
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Bounded right height < 3: R;(z)

SR S & T e

@,
.9,

Symbolic construction
(1 —4z + 322) Ry (z) + (92 — 6) RY(z) + 2R}(z) = 0,

Rs(0) = 1, RY(0) =1, RY(0) = 5,
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Bounded right height < 3: R;(z)

SR S & T e

.9,
@,

Symbolic construction
(1 —4z + 322) Ry (z) + (92 — 6) RY(z) + 2R}(z) = 0,
Rs(0) = 1, RY(0) =1, RY(0) = 5,

then we get the closed form

1/V3
32— 2+4++3V1—4z+ 322 /
R3(Z): \/§—2 y
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Bounded right height < 3: R;(z)

e

.9,
@,

9

D0

Symbolic construction
(1 —4z + 322) Ry (z) + (92 — 6) RY(z) + 2R}(z) = 0,
Rs(0) = 1, RY(0) =1, RY(0) = 5,

then we get the closed form

1/V3
32— 2+4++3V1—4z+ 322 /
R3(Z): \/§—2 y

and the asymptotics of the coefficients

ran = nl[2"]Rs(2) = T _"\!/g)wg n3/32"ﬁ <1 +0 (i)) .
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Compacted Binary Trees | Sneak Preview

Sneak Preview

Enumeration of compacted binary trees
WITHOUT height restrictions

(Joint work with Andrew Elvey Price and Wenjie Fang)
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A stretched exponential appears

Theorem

The number of compacted and relaxed binary trees satisfy for n — oo
=0 (n! 4"6331”1/3n) )
=0 (n! 4”e331"1/3f73/4> )

where a; ~ —2.3381 is the largest root of the Airy function
Ai(x) =L [ cos (%3 + xt) dt.
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A stretched exponential appears

VTheorem

The number of compacted and relaxed binary trees satisfy for n — oo
=0 (n! 4“6331”1/3n) )
3
Ch = © (nl 4”6331”1/ n3/4) )

where a; ~ —2.3381 is the largest root of the Airy function
Ai(x) = L [ cos (%3 + xt) dt.

Corollary (Proportion of compacted among relaxed trees)

=o(n ),

n
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Compacted Binary Trees = Sneak Preview

A stretched exponential appears

Theorem
The number of compacted and relaxed binary trees satisfy for n — oo

1/3
m=0 (n! 4ne3an n) ,

1/3
=0 (n! 4ngdan n3/4> ,

where a; ~ —2.3381 is the largest root of the Airy function
Ai(x) = L [ cos (t3_3 + xt) dt.

Corollary (Proportion of compacted among relaxed trees)

C

& — o/,

rn
c (i) =
—k’n ~ )\kr] Cosz(kiﬁ) = 0 (n_1/4) ,
Ik,n

for a constant A\, independent of n.
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Next steps

m Different tree structures, like e.g. ternary trees
m Analyze shape parameters, like height, width, profile, ...
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Next steps

m Different tree structures, like e.g. ternary trees

m Analyze shape parameters, like height, width, profile, ...
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Backup
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Ynt+l,p = E Yi,pYn—ip+is for n>1,
i=0
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Tnt+l,p = Z’yi,plynfi,p+i7 for n>1,
i=0
707p =P + 1)
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,

m Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,

m Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

m Summands possess 3 (!) dependencies on i
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A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Zéi,p5nfi,p+i7 for n >0,
i=0
507P:p+1a 51 =32 1

We are interested in r, = 6, 0.
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A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Zéi,panfi,p+i7 for n >0,
i=0
507P:p+1a 51 =32 1

We are interested in r, = 6, 0.

Recursion still too complicated.
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A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Z5i,p5n—;,p+;, for n >0,
i=0
507P:p+1a 51 =p2 1.

We are interested in r, = 6, 0.

Recursion still too complicated.

'Example (Relaxed binary trees)

size||n=0|n=1|n=2|n=3|n=4|n=5|n=6
Cn 1 1 3 15 111 1119 | 14487
rn 1 1 3 16 127 1363 | 18628
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Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

Ci,n ~ Kinlrg n®* and Mke,n ™~ fykn!r,fnﬁk.
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Compacted Binary Trees | Sneak Preview

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

Ci,n ~ Kinlrg n®* and Mke,n ™~ fykn!r,ank.

LDl ne [ o= [[ m= | U ar || wm | B | b= |
1 2 2.000 || 0.708 -3 —0.750 || 0.564 | —5 | —0.5
2 || 4cos(Z)? | 2618 || 0.561 s- 20@51(%)2 —1.276 || 0.447 | -1 | —1.0
3 3 3.000 || 0.605 2 —1.778 || 0493 | -3 | -15
4 || 4cos(Z)? | 3.246 || 0.873 v 28603(7)2 —2.275 || 0726 | —2 | —2.0
5 || 4cos(F)? | 3414 || 1625 | —2L — @ —2.772 || 1.379 | -2 | —25
6 || 4cos(%)? | 3.532 || 3.782 5 m —3.268 || 3.260 | —3 | —3.0
7 || 4cos({)? | 3618 || 10708 | — — 5 Feyy | —3766 || 9350 | —F | 35

Michael Wallner  LaBRI
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Compacted Binary Trees | Sneak Preview

Construction of Ri(z)

Let Ri(z) =D /50 f1,nf,—? be the EGF of relaxed binary trees with bounded right
height < 1. B
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Compacted Binary Trees | Sneak Preview

Construction of Ri(z)

Let Ri(z) =D /50 f1,nf,—? be the EGF of relaxed binary trees with bounded right
height < 1. B

Decomposition of R;(z)

Ri(z) = Riu(2)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees,
i.e. ¢ left-edges from level 0 to level 1.
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Compacted Binary Trees | Sneak Preview

Construction of Ri(z)

Let Ri(z) =D /50 f1,nf,—? be the EGF of relaxed binary trees with bounded right
height < 1. B

' Decomposition of R;(z)

Ri(z) = Riu(2)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees,
i.e. ¢ left-edges from level 0 to level 1.
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Construction of Ry 1(

27237 77
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Compacted Binary Trees | Sneak Preview

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence D_97
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Compacted Binary Trees | Sneak Preview

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence
2 decompose
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Compacted Binary Trees | Sneak Preview

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence

2 decompose . D—S}— —S)—S):Q_S)_ _9_’

3 append and add pointer
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Compacted Binary Trees | Sneak Preview

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence

2 decompose O 9O 00

3 append and add pointer
4 add initial sequence

Rl,l(Z)

Rlﬁl(z):\S/o I o SoP (zRio(z))

init. Ivl 0 red pointer ., empt:
seq. node and seq. Y

Ru(e) = [ 7 (o) oz

1—~z
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Construction of Ry (z)

Michael Wallner  LaBRI =~ 27.6.2019



Compacted Binary Trees | Sneak Preview

Construction of Ry (z)

AP SR T S S

Observation w 0-0---0-0

Same structure as for Ry 1(z) D000
Rule) = 1 [ 52 (@R (21
1,@2—1_2 1_2221,4712 Z, =z 4

1
R :R =
10(2) = Ro(2) = 7—
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Compacted Binary Trees | Sneak Preview

Construction of Ry (z)

AP SR T S S

Observation w 0-0---0-0

Same structure as for Ry 1(z) D000
Rule) = 1 [ 52 (@R (21
1,@2—1_2 1_2221,6712 Z, =z 4

1
R :R =
10(2) = Ro(2) = 7—

Recall that Ri(z) = >~ ,~o R1,¢(z). Summing the previous equation (formally) for
£ > 1 gives B

1-2z7 1
T -

Ri(z) — ((1 — 2)Ri0(2))" = 0.
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Compacted Binary Trees | Sneak Preview

Closed form of Ry(z)

1-27 1
T Ri(2) = T Ri(2) = (1 - 2)Rio(2) = 0.
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
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Compacted Binary Trees | Sneak Preview

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Michael Wallner  LaBRI ~ 27.6.2019



Compacted Binary Trees | Sneak Preview

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Therefore we get

= nl[z"|Ri(z) = ;(2:) = (2n — 1)L,
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Compacted Binary Trees | Sneak Preview

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Therefore we get
1 /2
= nl[z"|Ri(z) = ;i ( n”) = (2n — 1)L,

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].
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Sketch of proof for relaxed trees

Let ¢« ; € C[z] be such that
L, = fk’k(Z)Dk + Ek’k_l(Z)Dk_l + ...+ fkyo(Z).
Find recurrences for ¢y ;(z) using Guess'n'Prove techniques.
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Sketch of proof for relaxed trees

Let ¢« ; € C[z] be such that
L, = fk)k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ fkyo(Z).
Find recurrences for ¢y ;(z) using Guess'n'Prove techniques.

Use singularity analysis directly on differential equation:
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Sketch of proof for relaxed trees

Let ¢« ; € C[z] be such that
L = bk k(2) DX 4 Ly 4 1(2)DF 2 4 4 Lio(2).
Find recurrences for ¢y ;(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:

Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are
candidates.
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Let ¢« ; € C[z] be such that
L = bk k(2) DX 4 Ly 4 1(2)DF 2 4 4 Lio(2).
Find recurrences for ¢y ;(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:

Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are
candidates.

L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,
1

Pk = —"" 3"
4 cos (1&3)
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Sketch of proof for relaxed trees

Let ¢« ; € C[z] be such that
L, = fk)k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ fkyo(Z).

Find recurrences for ¢y ;(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:
Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are

candidates.
L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,

1

e —
s
4 cos <m)

Subexponential growth: Use the indicial polynomial derived from the ¢4 ;(z).

Pk =
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Sketch of proof for relaxed trees

Let ¢« ; € C[z] be such that
L, = fk)k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ fk,o(Z).

Find recurrences for ¢y ;(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:
Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are

candidates.
L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,

1

e
s

4 cos (m)

Subexponential growth: Use the indicial polynomial derived from the ¢4 ;(z).

@ Find a basis of solutions for differential equation:
Only one is singular at pg!

P =
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Sketch of proof for relaxed trees

Let ¢« ; € C[z] be such that
L, = fk)k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ fk,o(Z).

Find recurrences for ¢y ;(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:
Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are

candidates.
L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,

1

e —
s
4 cos (m)

Subexponential growth: Use the indicial polynomial derived from the ¢4 ;(z).

Pk =

@ Find a basis of solutions for differential equation:
Only one is singular at pg!

Prove that other coefficients ¢ ;(z) are nice.
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Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.
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Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0

2

d d
(2> -3z + 1)@:‘?2(2) + (2z — 3)ER2(Z) =0
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Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0

(2 —3z-|-1):2R( )+(22—3)%R2(z)20

3

d d? d
(322 —4z+1)d sRa(z )+(92_6)ER3(Z)+2$R3(2)_0
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