Enumeration of Compacted Binary Trees with Bounded Right Height AofA 06/2019

Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers, and Michael Wallner

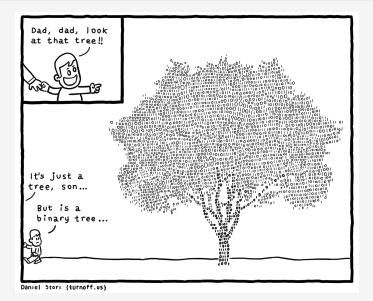
Erwin Schrödinger-Fellow (Austrian Science Fund (FWF): J 4162) Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, France

June 27th, 2019

Based on the paper: Asymptotic Enumeration of Compacted Binary Trees of Bounded Right Height, to appear in Journal of Combinatorial Theory, Series A. ArXiv:1703.10031

Creating a compacted binary tree

Compacted Binary Trees | Creating a compacted binary tree



Compacted Binary Trees | Creating a compacted binary tree

- Internal node: Node of out-degree 2 (circle)
- Leave: Node of out-degree 0 (square)
- Root: Distinguished node (top node)
- Order of children important

But first, what is a binary tree?

- Internal node: Node of out-degree 2 (circle)
- Leave: Node of out-degree 0 (square)
- Root: Distinguished node (top node)
- Order of children important

A recursive construction

- A binary tree is either a leaf,
- or it consists of a (root) node and a left and right binary tree.

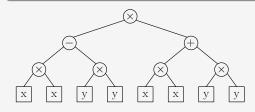
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

which represents $(x^2 - y^2)(x^2 + y^2)$.

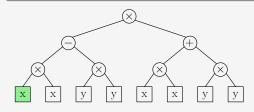
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



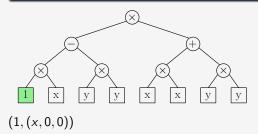
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



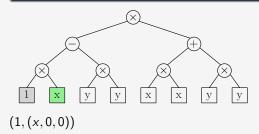
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



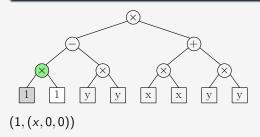
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



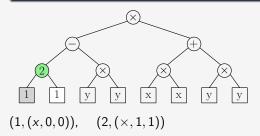
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

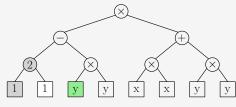
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

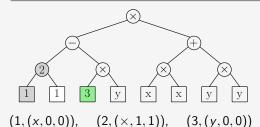
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



 $(1, (x, 0, 0)), (2, (\times, 1, 1))$

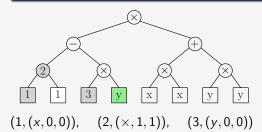
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



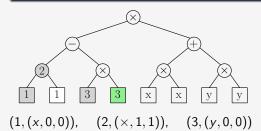
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$

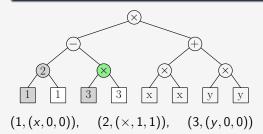


Example

wh

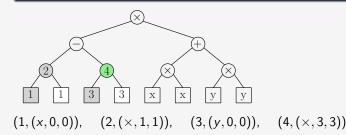
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

ich represents $(x^2 - y^2)(x^2 + y^2)$.



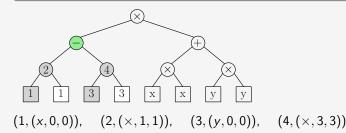
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

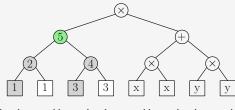
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

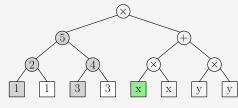
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

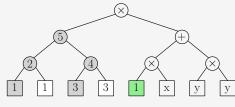
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

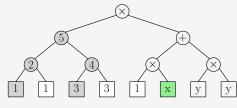
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

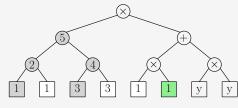
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

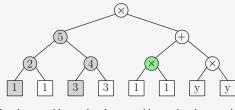
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

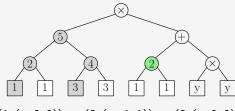
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

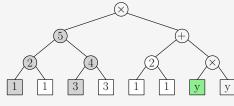
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

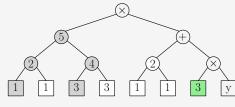
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

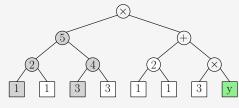
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

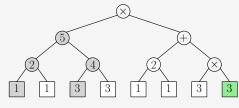
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

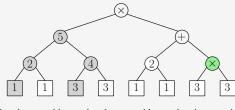
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

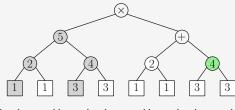
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

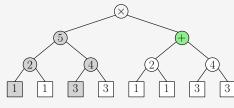
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



Example

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$

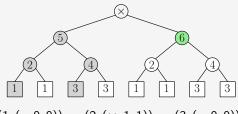


 $(1, (x, 0, 0)), (2, (\times, 1, 1)), (3, (y, 0, 0)), (4, (\times, 3, 3)), (5, (-, 2, 4))$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$

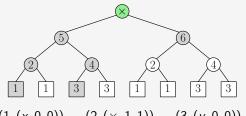


(1, (x, 0, 0)), $(2, (\times, 1, 1)),$ (3, (y, 0, 0)), $(4, (\times, 3, 3)),$ (5, (-, 2, 4)),(6, (+, 2, 4))

Example

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$

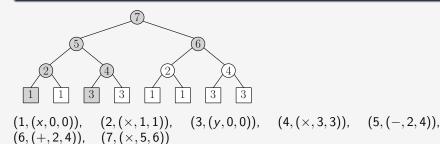


 $(1, (x, 0, 0)), (2, (\times, 1, 1)), (3, (y, 0, 0)), (4, (\times, 3, 3)), (5, (-, 2, 4)), (6, (+, 2, 4))$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2).$



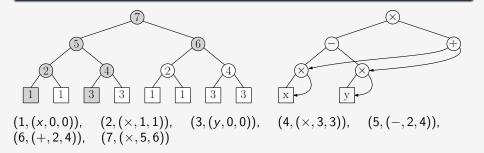
Example

wh

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

ich represents $(x^2 - y^2)(x^2 + y^2)$.



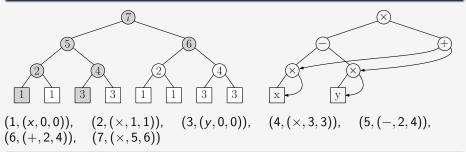
Example

whi

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

ch represents $(x^2 - y^2)(x^2 + y^2)$.



Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Important property: Subtrees are unique

- Efficient algorithm to compute compacted tree: expected time $\mathcal{O}(n)$
- Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works, Volume 4): A tree of size n has a compacted form of expected size that is asymptotically equal to

- Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.
- Restrict to unlabeled binary trees

- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree: expected time $\mathcal{O}(n)$
- Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works, Volume 4): A tree of size n has a compacted form of expected size that is asymptotically equal to

- Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.
- Restrict to unlabeled binary trees

- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree: expected time $\mathcal{O}(n)$
- Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works, Volume 4): A tree of size n has a compacted form of expected size that is asymptotically equal to

$$C\frac{n}{\sqrt{\log n}},$$

- Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.
- Restrict to unlabeled binary trees

- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree: expected time $\mathcal{O}(n)$
- Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works, Volume 4): A tree of size n has a compacted form of expected size that is asymptotically equal to

$$C \frac{n}{\sqrt{\log n}}$$

where C is explicit related to the type of trees and the statistical model.

 Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Restrict to unlabeled binary trees

- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree: expected time O(n)
- Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works, Volume 4): A tree of size n has a compacted form of expected size that is asymptotically equal to

$$C \frac{n}{\sqrt{\log n}}$$

- Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.
- Restrict to unlabeled binary trees

- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree: expected time O(n)
- Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works, Volume 4): A tree of size n has a compacted form of expected size that is asymptotically equal to

$$C\frac{n}{\sqrt{\log n}},$$

where C is explicit related to the type of trees and the statistical model.

- Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.
- Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size *n* exist?

Compacted (unlabeled binary) trees

Size: number of internal nodes

Number of compacted trees of size n: c_n

- Size: number of internal nodes
- Number of compacted trees of size n: c_n

Compacted (unlabeled binary) trees

Size: number of internal nodes

■ Number of compacted trees of size *n*: *c_n*

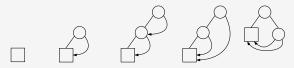


Figure: All compacted binary trees of size n = 0, 1, 2.

- Size: number of internal nodes
- Number of compacted trees of size *n*: *c_n*

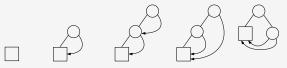


Figure: All compacted binary trees of size n = 0, 1, 2.

Simp	le bou	nds						
	size	<i>n</i> = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
	Cn	1	1	3	15	111	1119	14487
	$n! \leq c_n \leq \frac{1}{n+1} {2n \choose n} \cdot n!$							

- Size: number of internal nodes
- Number of compacted trees of size *n*: *c*_n

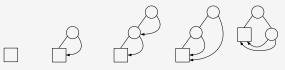
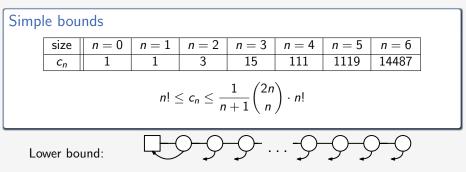


Figure: All compacted binary trees of size n = 0, 1, 2.



- Size: number of internal nodes
- Number of compacted trees of size *n*: *c*_n

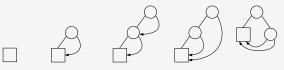
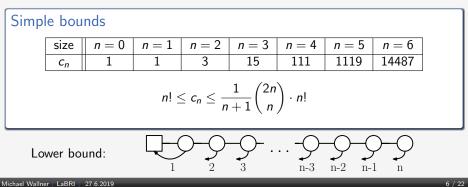


Figure: All compacted binary trees of size n = 0, 1, 2.



Idea

Idea

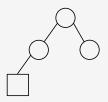
- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness

Idea

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness

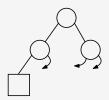
Idea

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness



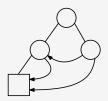
Idea

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness



Idea

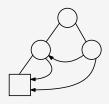
- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness



Idea

Every compacted tree can be build from a binary tree by adding pointers.

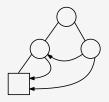
- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness



Idea

Every compacted tree can be build from a binary tree by adding pointers.

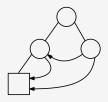
- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness

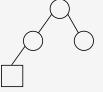


Idea

Every compacted tree can be build from a binary tree by adding pointers.

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness

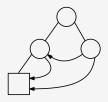




Idea

Every compacted tree can be build from a binary tree by adding pointers.

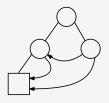
- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness

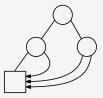


Idea

Every compacted tree can be build from a binary tree by adding pointers.

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness



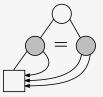


Idea

Every compacted tree can be build from a binary tree by adding pointers.

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness

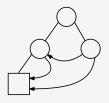




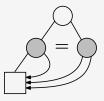
Idea

Every compacted tree can be build from a binary tree by adding pointers.

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness



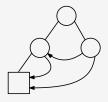
Valid compacted tree



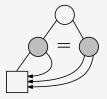
Idea

Every compacted tree can be build from a binary tree by adding pointers.

- Pointers may only point to previously seen parts in **post-order**
- Pointers are not allowed to violate uniqueness



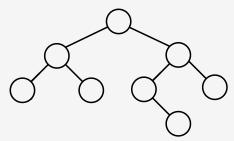
Valid compacted tree

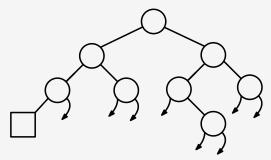


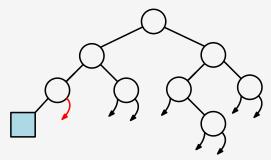
Invalid compacted tree

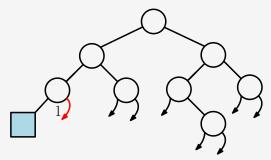
Observation

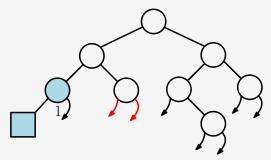
Only cherries (nodes with 2 pointers) might violate uniqueness.

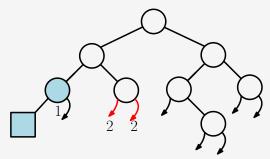


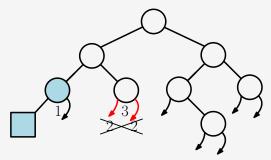


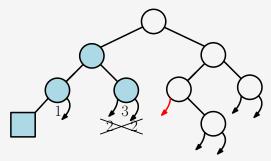


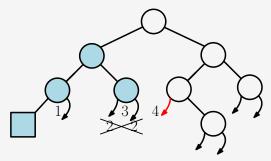


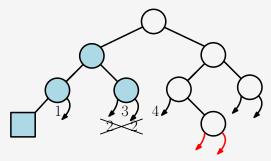


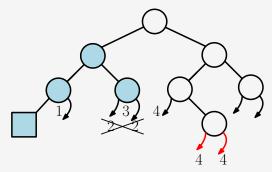


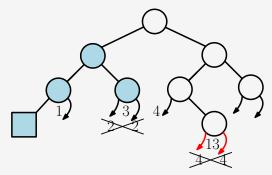


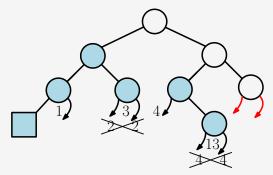


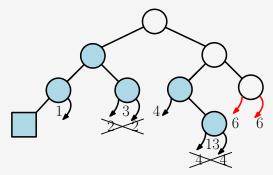


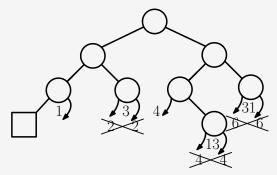




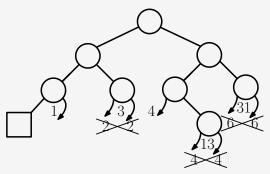






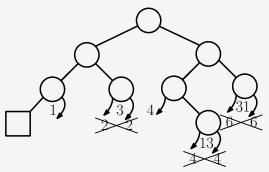


Take a binary tree of size 8.



In total, we can construct $1 \cdot 3 \cdot 4 \cdot 13 \cdot 31 = 4836$ compacted trees.

Take a binary tree of size 8.



In total, we can construct $1 \cdot 3 \cdot 4 \cdot 13 \cdot 31 = 4836$ compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity $O(n^3)$ to compute c_1, c_2, \ldots, c_n .

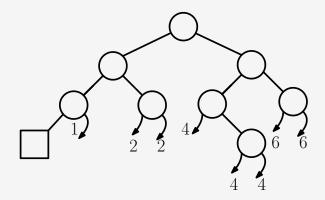
Drop the condition of uniqueness of the subtrees

Drop the condition of uniqueness of the subtrees

Let r_n be the number of relaxed binary trees of size n: $c_n \leq r_n$.

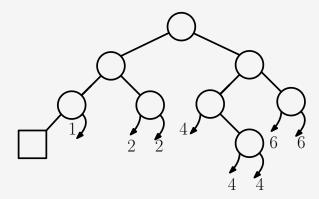
Drop the condition of uniqueness of the subtrees

Let r_n be the number of relaxed binary trees of size n: $c_n \leq r_n$.



Drop the condition of uniqueness of the subtrees

Let r_n be the number of relaxed binary trees of size n: $c_n \leq r_n$.



In total, this gives $1\cdot 3\cdot 4\cdot 4^2\cdot 6^2=6912$ relaxed trees and we get a similar recurrence relation.

(Before, 4836 compacted trees.)

We restrict to a subclass of relaxed binary trees: bounded right height.

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of **right children on any path from the root to a leaf** (not going through pointers).

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

Example

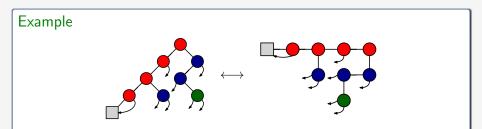
The right height of a binary tree is the maximal number of **right children on any path from the root to a leaf** (not going through pointers).

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 3 in green.

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of **right children on any path from the root to a leaf** (not going through pointers).



A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 3 in green.

9-9-...-9-9-

Figure: Right height ≤ 0 .

Figure: Right height ≤ 0 .

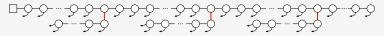


Figure: Right height ≤ 1 .

-Q-...**-**Q--Ç

Figure: Right height ≤ 0 .

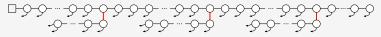


Figure: Right height ≤ 1 .

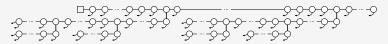


Figure: Right height ≤ 2 .

�**-**Ŷ- ... **-**Ŷ**-**Ŷ-

Figure: Right height ≤ 0 .

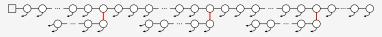


Figure: Right height ≤ 1 .

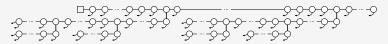


Figure: Right height ≤ 2 .

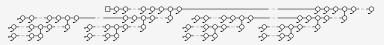


Figure: Right height \leq 3.

Main results

Main results

Theorem (Relaxed)

The number $r_{k,n}$ of relaxed trees with right height at most k is for $n \to \infty$ asymptotically equivalent to

$$r_{k,n} \sim \gamma_k n! \left(4 \cos \left(\frac{\pi}{k+3} \right)^2 \right)^n n^{-\frac{k}{2}},$$

where $\gamma_k \in \mathbb{R} \setminus \{0\}$ is independent of *n*.

Main results

Theorem (Relaxed)

The number $r_{k,n}$ of relaxed trees with right height at most k is for $n \to \infty$ asymptotically equivalent to

$$r_{k,n} \sim \gamma_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2\right)^n n^{-\frac{k}{2}},$$

where $\gamma_k \in \mathbb{R} \setminus \{0\}$ is independent of *n*.

Theorem (Compacted)

The number $c_{k,n}$ of compacted trees with right height at most k is asymptotically equal to

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2}}$$

where $\kappa_k \in \mathbb{R} \setminus \{0\}$ is independent of *n*.

Proof idea

Methods

- **1** Recurrence relations
- 2 Bijections
- 3 Generating functions
- 4 Symbolic method

- 5 Differential equations
- **6** Singularity analysis
- 7 Chebyshev polynomials
- 8 Guess and prove

Proof idea

Methods

- Recurrence relations
- 2 Bijections
- 3 Generating functions
- 4 Symbolic method

- **5** Differential equations
- **6** Singularity analysis
- 7 Chebyshev polynomials
- 8 Guess and prove

Main idea: Exponential generating functions Let c_n be the number of compacted trees of size n. Then, we define $C(z) = \sum_{n \ge 0} c_n \frac{z^n}{n!}.$

Upper bound $c_n \leq \frac{n!}{n+1} \binom{2n}{n}$ guarantees positive radius of convergence.

- Problem: unlabeled structures!
- Idea: derive a symbolic method for compacted trees

- Problem: unlabeled structures!
- Idea: derive a symbolic method for compacted trees

Let $T(z) = \sum_{n>0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

- Problem: unlabeled structures!
- Idea: derive a symbolic method for compacted trees

Let
$$T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$$
 be an EGF of the class \mathcal{T} .

 $T(z) \mapsto zT(z)$

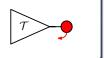
Append a new node with a pointer to the class \mathcal{T} .

- Problem: unlabeled structures!
- Idea: derive a symbolic method for compacted trees

Let
$$T(z) = \sum_{n\geq 0} t_n \frac{z^n}{n!}$$
 be an EGF of the class \mathcal{T} .

 $T(z) \mapsto zT(z)$

Append a new node with a pointer to the class \mathcal{T} .



Proof:

$$t_k = k![z^k]zT(z) = k \cdot t_{k-1}$$

Main idea: Exponential generating functions

- Problem: unlabeled structures!
- Idea: derive a symbolic method for compacted trees

Let
$$T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$$
 be an EGF of the class \mathcal{T} .

 $T(z) \mapsto zT(z)$

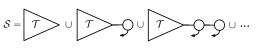
Append a new node with a pointer to the class \mathcal{T} .

Proof:

$$t_k = k! [z^k] z T(z) = \underbrace{k}_{\substack{k \text{ possible} \\ \text{pointers}}} \cdot \underbrace{t_{k-1}}_{\substack{k-1 \text{ internal} \\ \text{nodes}}}$$

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty) $S = T \cup T \cup T$

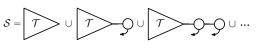
 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty) S = $T \cup T$ equence at the root.



 $D: T(z) \mapsto \frac{d}{dz}T(z)$

Delete top node but preserve its pointers.

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty) $S = T \cup T$ sequence at the root.



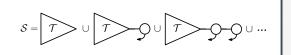
 $D: T(z) \mapsto \frac{d}{dz}T(z)$

Delete top node but preserve its pointers.

 $I: T(z) \mapsto \int T(z)$

Add top node without pointers.

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty) sequence at the root.



 $D: T(z) \mapsto \frac{d}{dz}T(z)$

Delete top node but preserve its pointers.

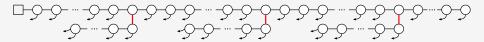
 $I: T(z) \mapsto \int T(z)$

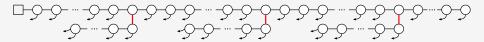
Add top node without pointers.

 $P: T(z) \mapsto z \frac{d}{dz} T(z)$

Add a new pointer to the top node.

Relaxed binary trees Highlights





Symbolic construction

$$(1-2z) R'_1(z) - R_1(z) = 0,$$

 $R_1(0) = 1,$

Symbolic construction

$$(1-2z) R'_1(z) - R_1(z) = 0,$$

 $R_1(0) = 1,$

then we get the closed form

$$R_1(z)=\frac{1}{\sqrt{1-2z}},$$

Symbolic construction

$$(1-2z) R'_1(z) - R_1(z) = 0,$$

 $R_1(0) = 1,$

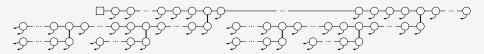
then we get the closed form

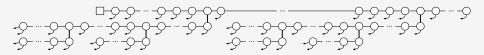
$$R_1(z)=\frac{1}{\sqrt{1-2z}},$$

and the coefficients

$$r_{1,n} = \frac{n!}{2^n} {2n \choose n} = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1.$$

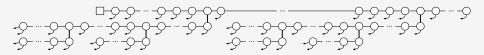
[W 2019, "A bijection of plane increasing trees with relaxed binary trees of right height at most one"]. (TCS 2019, Vol. 755, p. 1–12; ArXiv:1706.07163)





Symbolic construction

$$egin{aligned} & \left(1-3z+z^2
ight)R_2''(z)+\left(2z-3
ight)R_2'(z)=0, \ & R_2(0)=1, \ & R_2(0)=1, \end{aligned}$$

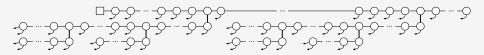


Symbolic construction

$$\begin{pmatrix} (1-3z+z^2) \ R_2''(z) + (2z-3) \ R_2'(z) = 0, \\ R_2(0) = 1, \ R_2'(0) = 1, \end{cases}$$

then we get the closed form

$$R_2'(z) = rac{1}{1-3z+z^2},$$



Symbolic construction

$$(1-3z+z^2) R_2''(z) + (2z-3) R_2'(z) = 0,$$

 $R_2(0) = 1, R_2'(0) = 1,$

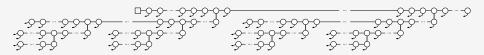
then we get the closed form

$$R_2'(z) = rac{1}{1-3z+z^2},$$

and the coefficients

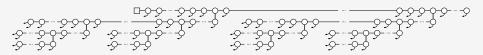
$$r_{2,n} = \frac{(n-1)!}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{2n} - \left(\frac{1-\sqrt{5}}{2} \right)^{2n} \right)^{2n}$$





Symbolic construction

$$egin{aligned} &(1-4z+3z^2)\ R_3^{\prime\prime\prime}(z)+(9z-6)\ R_3^{\prime\prime}(z)+2R_3^{\prime}(z)=0,\ &R_3(0)=1,\ R_3^{\prime\prime}(0)=1,\ R_3^{\prime\prime}(0)=rac{3}{2}, \end{aligned}$$

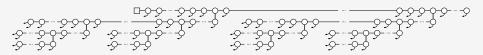


Symbolic construction

$$egin{aligned} \left(1-4z+3z^2
ight)R_3'''(z)+\left(9z-6
ight)R_3''(z)+2R_3'(z)=0,\ R_3(0)=1,\ R_3'(0)=1,\ R_3''(0)=rac{3}{2}, \end{aligned}$$

then we get the closed form

$$R_3(z) = \left(\frac{3z - 2 + \sqrt{3}\sqrt{1 - 4z + 3z^2}}{\sqrt{3} - 2}\right)^{1/\sqrt{3}}$$



Symbolic construction

$$egin{aligned} \left(1-4z+3z^2
ight)R_3'''(z)+\left(9z-6
ight)R_3''(z)+2R_3'(z)=0,\ R_3(0)=1,\ R_3'(0)=1,\ R_3''(0)=rac{3}{2}, \end{aligned}$$

then we get the closed form

$$R_3(z) = \left(rac{3z-2+\sqrt{3}\sqrt{1-4z+3z^2}}{\sqrt{3}-2}
ight)^{1/\sqrt{3}},$$

and the asymptotics of the coefficients

$$r_{3,n} = n! [z^n] R_3(z) = \frac{n!}{\sqrt{6} \left(2 - \sqrt{3}\right)^{1/\sqrt{3}}} \frac{3^n}{n^{3/2} \sqrt{\pi}} \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right).$$

Sneak Preview

Enumeration of compacted binary trees WITHOUT height restrictions

(Joint work with Andrew Elvey Price and Wenjie Fang)

A stretched exponential appears

Theorem

The number of compacted and relaxed binary trees satisfy for $n \to \infty$

$$r_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right),$$
$$c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),$$

where $a_1 \approx -2.3381$ is the largest root of the Airy function Ai $(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt.$

A stretched exponential appears

Theorem

The number of compacted and relaxed binary trees satisfy for $\mathsf{n}
ightarrow \infty$

$$r_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right),$$

$$c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),$$

where $a_1 \approx -2.3381$ is the largest root of the Airy function Ai $(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt.$

Corollary (Proportion of compacted among relaxed trees)

$$\frac{c_n}{r_n}=\Theta(n^{-1/4}),$$

A stretched exponential appears

Theorem

The number of compacted and relaxed binary trees satisfy for $n
ightarrow \infty$

$$r_{n} = \Theta\left(n! \, 4^{n} e^{3a_{1}n^{1/3}}n\right),$$

$$c_{n} = \Theta\left(n! \, 4^{n} e^{3a_{1}n^{1/3}}n^{3/4}\right),$$

where $a_1 \approx -2.3381$ is the largest root of the Airy function Ai $(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt.$

Corollary (Proportion of compacted among relaxed trees)

$$\begin{aligned} & \frac{c_n}{r_n} = \Theta(n^{-1/4}), \\ & \frac{c_{k,n}}{r_{k,n}} \sim \lambda_k n^{-\frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \frac{1}{\cos^2\left(\frac{\pi}{k+3}\right)}} = o\left(n^{-1/4}\right), \end{aligned}$$

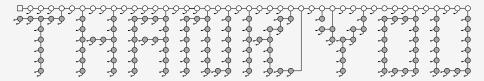
for a constant λ_k independent of n.

Next steps

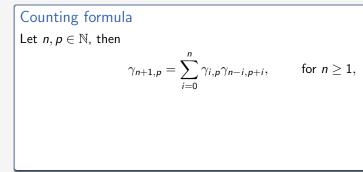
- Different tree structures, like e.g. ternary trees
- Analyze shape parameters, like height, width, profile, ...

Next steps

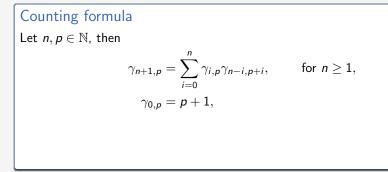
- Different tree structures, like e.g. ternary trees
- Analyze shape parameters, like height, width, profile, ...



Backup



- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i



- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i

Counting formula
Let
$$n, p \in \mathbb{N}$$
, then
 $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$
 $\gamma_{0,p} = p + 1,$
 $\gamma_{1,p} = p^2 + p + 1.$

- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}.$

- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}.$

• Helps us to efficiently compute c_n

Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}.$

- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}.$

- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on *i*

Counting formula

Let $n, p \in \mathbb{N}$, then

$$\delta_{n+1,p} = \sum_{i=0}^{n} \delta_{i,p} \delta_{n-i,p+i}, \quad \text{for } n \ge 0,$$

$$\delta_{0,p} = p+1, \quad \underbrace{\delta_{1,p} = p^2 + p + 1}_{\text{black}}$$

We are interested in $r_n = \delta_{n,0}$.

Counting formula Let $n, p \in \mathbb{N}$, then $\delta_{n+1,p} = \sum_{i=0}^{n} \delta_{i,p} \delta_{n-i,p+i}, \quad \text{for } n \ge 0,$ $\delta_{0,p} = p + 1, \quad \overbrace{\delta_{1,p} = p^2 + p + 1}^2.$ We are interested in $r_n = \delta_{n,0}.$

Recursion still too complicated.

Counting formula

Let $n, p \in \mathbb{N}$, then

$$\delta_{n+1,p} = \sum_{i=0}^{n} \delta_{i,p} \delta_{n-i,p+i}, \quad \text{for } n \ge 0,$$

$$\delta_{0,p} = p+1, \quad \underbrace{\delta_{1,p} = p^2 + p + 1}_{i=0}$$

We are interested in $r_n = \delta_{n,0}$.

Recursion still too complicated.

Exam	ple (F	Relaxed	binary t	rees)				
	size	<i>n</i> = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
	Cn	1	1	3	15	111	1119	14487
	r _n	1	1	3	16	127	1363	18628

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees $c_{k,n} \sim \kappa_k n! r_k^n n^{\alpha_k}$ and $r_{k,n} \sim \gamma_k n! r_k^n n^{\beta_k}$

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

$c_{k,n} \sim \kappa_k n! r_k^n n^{\alpha_k}$ and r_k	$\kappa_{k,n} \sim \gamma_k n! r_k^n n^{\beta_k}.$
---	--

k	r _k	$r_k \approx$	$\kappa_k \approx$	α_k	$\alpha_k \approx$	$\gamma_k \approx$	β_k	$\beta_k \approx$
1	2	2.000	0.708	$-\frac{3}{4}$	-0.750	0.564	$-\frac{1}{2}$	-0.5
2	$4\cos(\frac{\pi}{5})^2$	2.618	0.561	$-\frac{6}{5} - \frac{1}{20\cos(\frac{\pi}{5})^2}$	-1.276	0.447	$-\overline{1}$	-1.0
3	3	3.000	0.605	$-\frac{16}{9}$	-1.778	0.493	$-\frac{3}{2}$	-1.5
4	$4\cos(\frac{\pi}{7})^2$	3.246	0.873	$-\frac{15}{7} - \frac{3}{28\cos(\frac{\pi}{7})^2}$	-2.275	0.726	$-\overline{2}$	-2.0
5	$4\cos(\frac{\pi}{8})^2$	3.414	1.625	$-\frac{21}{8} - \frac{1}{8\cos(\frac{\pi}{8})^2}$	-2.772	1.379	$-\frac{5}{2}$	-2.5
6	$4\cos(\frac{\pi}{9})^2$	3.532	3.782	$-\frac{28}{9} - \frac{5^{\circ}}{36 \cos(\frac{\pi}{0})^2}$	-3.268	3.260	-3	-3.0
7	$4\cos(\frac{\pi}{10})^2$	3.618	10.708	$-\frac{18}{5} - \frac{3}{20\cos(\frac{\pi}{10})^2}$	-3.766	9.350	$-\frac{7}{2}$	-3.5

Let $R_1(z) = \sum_{\ell \ge 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1 .

Let $R_1(z) = \sum_{\ell \ge 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1 .

Decomposition of $R_1(z)$

$$R_1(z) = \sum_{n\geq 0} R_{1,\ell}(z)$$

where $R_{1,\ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

Let $R_1(z) = \sum_{\ell \ge 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1 .

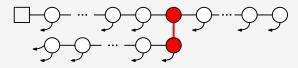
Decomposition of $R_1(z)$

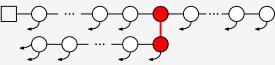
$$R_1(z) = \sum_{n\geq 0} R_{1,\ell}(z)$$

where $R_{1,\ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

$$R_{1,0}(z) = R_0(z) = rac{1}{1-z}$$

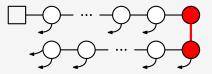
 $R_{1,1}(z) = ?$

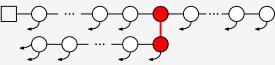




Symbolic specification

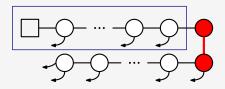
1 delete initial sequence

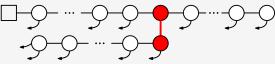




Symbolic specification

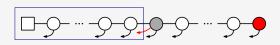
- 1 delete initial sequence
- 2 decompose

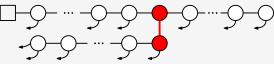




Symbolic specification

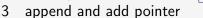
- 1 delete initial sequence
- 2 decompose
- 3 append and add pointer



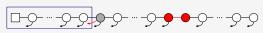


Symbolic specification

- 1 delete initial sequence
- 2 decompose

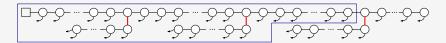


4 add initial sequence



$R_{1,1}(z)$

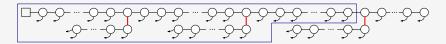
$$\begin{aligned} R_{1,1}(z) &= \underbrace{S}_{\text{init.}} \circ \underbrace{I}_{\text{NVI 0}} \circ \underbrace{S \circ P}_{\text{node order order order}} \left(\underbrace{zR_{1,0}(z)}_{\text{non empty}} \right) \\ R_{1,1}(z) &= \frac{1}{1-z} \int \frac{1}{1-z} z \left(zR_{1,0}(z) \right)' \, dz \end{aligned}$$



Observation

Same structure as for $R_{1,1}(z)$

$$\begin{split} R_{1,\ell}(z) &= \frac{1}{1-z} \int \frac{1}{1-z} z \left(z R_{1,\ell-1}(z) \right)' \, dz, \qquad \ell \geq 1, \\ R_{1,0}(z) &= R_0(z) = \frac{1}{1-z}. \end{split}$$



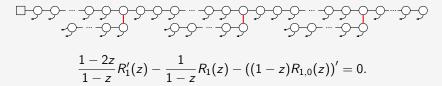
Observation

Same structure as for $R_{1,1}(z)$

$$egin{aligned} &R_{1,\ell}(z) = rac{1}{1-z} \int rac{1}{1-z} z \left(z R_{1,\ell-1}(z)
ight)' \, dz, &\ell \geq 1, \ &R_{1,0}(z) = R_0(z) = rac{1}{1-z}. \end{aligned}$$

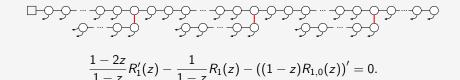
Recall that $R_1(z) = \sum_{\ell \ge 0} R_{1,\ell}(z)$. Summing the previous equation (formally) for $\ell \ge 1$ gives

$$\frac{1-2z}{1-z}R_1'(z)-\frac{1}{1-z}R_1(z)-((1-z)R_{1,0}(z))'=0.$$



We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$

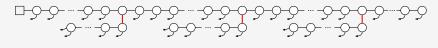


We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$

This directly yields

$$R_1(z)=\frac{1}{\sqrt{1-2z}}.$$



$$\frac{1-2z}{1-z}R_1'(z) - \frac{1}{1-z}R_1(z) - ((1-z)R_{1,0}(z))' = 0$$

We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

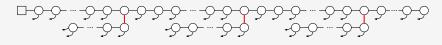
$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$

This directly yields

$$R_1(z)=\frac{1}{\sqrt{1-2z}}.$$

Therefore we get

$$r_{1,n} = n![z^n]R_1(z) = \frac{n!}{2^n} {\binom{2n}{n}} = (2n-1)!!.$$



$$\frac{1-2z}{1-z}R_1'(z) - \frac{1}{1-z}R_1(z) - ((1-z)R_{1,0}(z))' = 0.$$

We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$

This directly yields

$$R_1(z)=\frac{1}{\sqrt{1-2z}}.$$

Therefore we get

$$r_{1,n} = n![z^n]R_1(z) = \frac{n!}{2^n} {\binom{2n}{n}} = (2n-1)!!.$$

Preprint (ArXiv:1706.07163): [W, 2017, "A bijection of plane increasing trees with relaxed binary trees of right height at most one"].

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

Find recurrences for $\ell_{k,i}(z)$ using Guess'n'Prove techniques.

Use singularity analysis directly on differential equation:

- Exponential growth ρ_k : Roots of coefficient of leading polynomial $\ell_{k,k}(z)$ are candidates.
- **4** $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

5 Subexponential growth: Use the indicial polynomial derived from the $\ell_{k,i}(z)$.

- 6 Find a basis of solutions for differential equation: Only one is singular at ρ_k!
- **7** Prove that other coefficients $\ell_{k,i}(z)$ are nice.

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

Find recurrences for $\ell_{k,i}(z)$ using Guess'n'Prove techniques.

2 Use singularity analysis directly on differential equation:

- Exponential growth ρ_k : Roots of coefficient of leading polynomial $\ell_{k,k}(z)$ are candidates.
- **4** $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

Subexponential growth: Use the indicial polynomial derived from the $\ell_{k,i}(z)$.

- Find a basis of solutions for differential equation:
 Only one is singular at ρ_k!
- **7** Prove that other coefficients $\ell_{k,i}(z)$ are nice.

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

Find recurrences for $\ell_{k,i}(z)$ using Guess'n'Prove techniques.

- **2** Use singularity analysis directly on differential equation:
- **Exponential growth** ρ_k : Roots of coefficient of leading polynomial $\ell_{k,k}(z)$ are candidates.
- **4** $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

5 Subexponential growth: Use the indicial polynomial derived from the $\ell_{k,i}(z)$.

- Find a basis of solutions for differential equation:
 Only one is singular at ρ_k!
- **7** Prove that other coefficients $\ell_{k,i}(z)$ are nice.

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

- 2 Use singularity analysis directly on differential equation:
- **Exponential growth** ρ_k : Roots of coefficient of leading polynomial $\ell_{k,k}(z)$ are candidates.
- **4** $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

- **5** Subexponential growth: Use the indicial polynomial derived from the $\ell_{k,i}(z)$.
- Find a basis of solutions for differential equation:
 Only one is singular at ρ_k!
- **7** Prove that other coefficients $\ell_{k,i}(z)$ are nice.

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

- 2 Use singularity analysis directly on differential equation:
- **Exponential growth** ρ_k : Roots of coefficient of leading polynomial $\ell_{k,k}(z)$ are candidates.
- **4** $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

- **5** Subexponential growth: Use the indicial polynomial derived from the $\ell_{k,i}(z)$.
- Find a basis of solutions for differential equation:
 Only one is singular at ρ_k!
- **7** Prove that other coefficients $\ell_{k,i}(z)$ are nice.

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

- 2 Use singularity analysis directly on differential equation:
- **Exponential growth** ρ_k : Roots of coefficient of leading polynomial $\ell_{k,k}(z)$ are candidates.
- **4** $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

- **5** Subexponential growth: Use the indicial polynomial derived from the $\ell_{k,i}(z)$.
- Find a basis of solutions for differential equation:
 Only one is singular at ρ_k!
- **7** Prove that other coefficients $\ell_{k,i}(z)$ are nice.

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

- 2 Use singularity analysis directly on differential equation:
- **Exponential growth** ρ_k : Roots of coefficient of leading polynomial $\ell_{k,k}(z)$ are candidates.
- **4** $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

- **5** Subexponential growth: Use the indicial polynomial derived from the $\ell_{k,i}(z)$.
- **6** Find a basis of solutions for differential equation: Only one is singular at ρ_k !
- **7** Prove that other coefficients $\ell_{k,i}(z)$ are nice.

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$egin{aligned} & L_0 = (1-z), \ & L_1 = (1-2z)D-1, \ & L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \end{aligned}$$

$$L_k\cdot R_k=0.$$

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$\begin{split} & L_0 = (1 - z), \\ & L_1 = (1 - 2z)D - 1, \\ & L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \qquad k \geq 2. \end{split}$$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z)-R_1(z)=0$$

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$L_{0} = (1 - z),$$

$$L_{1} = (1 - 2z)D - 1,$$

$$L_{k} = L_{k-1} \cdot D - L_{k-2} \cdot D^{2} \cdot z, \qquad k \ge 2.$$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z) - R_1(z) = 0$$
$$(z^2 - 3z + 1)\frac{d^2}{dz^2}R_2(z) + (2z - 3)\frac{d}{dz}R_2(z) = 0$$

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$\begin{split} & L_0 = (1 - z), \\ & L_1 = (1 - 2z)D - 1, \\ & L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \qquad k \geq 2. \end{split}$$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z) - R_1(z) = 0$$
$$(z^2 - 3z + 1)\frac{d^2}{dz^2}R_2(z) + (2z - 3)\frac{d}{dz}R_2(z) = 0$$
$$(3z^2 - 4z + 1)\frac{d^3}{dz^3}R_3(z) + (9z - 6)\frac{d^2}{dz^2}R_3(z) + 2\frac{d}{dz}R_3(z) = 0$$