
Compacted Binary Trees

Enumeration of Compacted Binary Trees with Bounded
Right Height

AofA 06/2019

Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers, and Michael Wallner

Erwin Schrödinger-Fellow (Austrian Science Fund (FWF): J 4162)

Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, France

June 27th, 2019

Based on the paper:
Asymptotic Enumeration of Compacted Binary Trees of Bounded Right Height,

to appear in Journal of Combinatorial Theory, Series A.

ArXiv:1703.10031

Michael Wallner | LaBRI | 27.6.2019 1 / 22

https://arxiv.org/abs/1703.10031

Compacted Binary Trees | Creating a compacted binary tree

Creating a compacted binary tree

Michael Wallner | LaBRI | 27.6.2019 2 / 22

Compacted Binary Trees | Creating a compacted binary tree

But first, what is a binary tree?

Michael Wallner | LaBRI | 27.6.2019 3 / 22

Compacted Binary Trees | Creating a compacted binary tree

But first, what is a binary tree?

Michael Wallner | LaBRI | 27.6.2019 3 / 22

Compacted Binary Trees | Creating a compacted binary tree

But first, what is a binary tree?

Michael Wallner | LaBRI | 27.6.2019 3 / 22

Compacted Binary Trees | Creating a compacted binary tree

But first, what is a binary tree?

Internal node: Node of out-degree 2 (circle)

Leave: Node of out-degree 0 (square)

Root: Distinguished node (top node)

Order of children important

A recursive construction

A binary tree is either a leaf,

or it consists of a (root) node and a left and right binary tree.

Michael Wallner | LaBRI | 27.6.2019 3 / 22

Compacted Binary Trees | Creating a compacted binary tree

But first, what is a binary tree?

Internal node: Node of out-degree 2 (circle)

Leave: Node of out-degree 0 (square)

Root: Distinguished node (top node)

Order of children important

A recursive construction

A binary tree is either a leaf,

or it consists of a (root) node and a left and right binary tree.

Michael Wallner | LaBRI | 27.6.2019 3 / 22

Compacted Binary Trees | Creating a compacted binary tree

But first, what is a binary tree?

Internal node: Node of out-degree 2 (circle)

Leave: Node of out-degree 0 (square)

Root: Distinguished node (top node)

Order of children important

A recursive construction

A binary tree is either a leaf,

or it consists of a (root) node and a left and right binary tree.

Michael Wallner | LaBRI | 27.6.2019 3 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

x x

×

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

x x

×

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 x

×

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0))

, (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 x

×

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0))

, (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

×

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0))

, (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

×

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0))

, (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1))

, (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1))

, (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0))

, (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0))

, (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0))

, (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0))

, (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 x x

×

+

y y

×

−

×

4

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3))

, (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 x x

×

+

y y

×

−

×

4

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3))

, (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 x x

×

+

y y

×

×

4

5

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 x x

×

+

y y

×

×

4

5

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 x

×

+

y y

×

×

4

5

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 x

×

+

y y

×

×

4

5

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

×

+

y y

×

×

4

5

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

×

+

y y

×

×

4

5

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

y y

×

×

4

5

2

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

y y

×

×

4

5

2

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

3 y

×

×

4

5

2

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

3 y

×

×

4

5

2

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

3 3

×

×

4

5

2

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

3 3

×

×

4

5

2

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

3 3

×

4

5

2 4

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1

+

3 3

×

4

5

2 4

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4))

,
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1 3 3

×

4

5

2 4

6

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4))

, (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1 3 3

×

4

5

2 4

6

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4))

, (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1 3 3

4

5

2 4

6

7

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1 3 3

4

5

2 4

6

7

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

1 1

2

3 3 1 1 3 3

4

5

2 4

6

7

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Michael Wallner | LaBRI | 27.6.2019 4 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted trees

Important property: Subtrees are unique

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is
asymptotically equal to

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?

Michael Wallner | LaBRI | 27.6.2019 5 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted trees

Important property: Subtrees are unique

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is
asymptotically equal to

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?

Michael Wallner | LaBRI | 27.6.2019 5 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted trees

Important property: Subtrees are unique

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is
asymptotically equal to

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?

Michael Wallner | LaBRI | 27.6.2019 5 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted trees

Important property: Subtrees are unique

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is
asymptotically equal to

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?

Michael Wallner | LaBRI | 27.6.2019 5 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted trees

Important property: Subtrees are unique

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is
asymptotically equal to

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?

Michael Wallner | LaBRI | 27.6.2019 5 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted trees

Important property: Subtrees are unique

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990] (Flajolet Collected Works,
Volume 4): A tree of size n has a compacted form of expected size that is
asymptotically equal to

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?

Michael Wallner | LaBRI | 27.6.2019 5 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted (unlabeled binary) trees

Size: number of internal nodes
Number of compacted trees of size n: cn

Figure: All compacted binary trees of size n = 0, 1, 2.

Simple bounds

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487

n! ≤ cn ≤
1

n + 1

(
2n

n

)
· n!

Lower bound:
n

Michael Wallner | LaBRI | 27.6.2019 6 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted (unlabeled binary) trees

Size: number of internal nodes
Number of compacted trees of size n: cn

Figure: All compacted binary trees of size n = 0, 1, 2.

Simple bounds

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487

n! ≤ cn ≤
1

n + 1

(
2n

n

)
· n!

Lower bound:
n

Michael Wallner | LaBRI | 27.6.2019 6 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted (unlabeled binary) trees

Size: number of internal nodes
Number of compacted trees of size n: cn

Figure: All compacted binary trees of size n = 0, 1, 2.

Simple bounds

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487

n! ≤ cn ≤
1

n + 1

(
2n

n

)
· n!

Lower bound:
n

Michael Wallner | LaBRI | 27.6.2019 6 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted (unlabeled binary) trees

Size: number of internal nodes
Number of compacted trees of size n: cn

Figure: All compacted binary trees of size n = 0, 1, 2.

Simple bounds

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487

n! ≤ cn ≤
1

n + 1

(
2n

n

)
· n!

Lower bound:
n

Michael Wallner | LaBRI | 27.6.2019 6 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted (unlabeled binary) trees

Size: number of internal nodes
Number of compacted trees of size n: cn

Figure: All compacted binary trees of size n = 0, 1, 2.

Simple bounds

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487

n! ≤ cn ≤
1

n + 1

(
2n

n

)
· n!

Lower bound:
n

Michael Wallner | LaBRI | 27.6.2019 6 / 22

Compacted Binary Trees | Creating a compacted binary tree

Compacted (unlabeled binary) trees

Size: number of internal nodes
Number of compacted trees of size n: cn

Figure: All compacted binary trees of size n = 0, 1, 2.

Simple bounds

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487

n! ≤ cn ≤
1

n + 1

(
2n

n

)
· n!

Lower bound:
1 2 3 n-3 n-2 n-1 n

Michael Wallner | LaBRI | 27.6.2019 6 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

=

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

=

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Building a compacted binary tree

Idea

Every compacted tree can be build from a binary tree by adding pointers.

Pointers may only point to previously seen parts in post-order
Pointers are not allowed to violate uniqueness

Valid compacted tree

=

Invalid compacted tree

Observation

Only cherries (nodes with 2 pointers) might violate uniqueness.

Michael Wallner | LaBRI | 27.6.2019 7 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

4 4

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

4 4
13

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

4 4
13

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

4 4
13

6 6

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

4 4
13

6 6
31

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

4 4
13

6 6
31

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Creating a compacted binary tree

Counting compacted binary trees

Take a binary tree of size 8.

1
2 2
3 4

4 4
13

6 6
31

In total, we can construct 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.

Recurrence relation

This construction leads to a (complicated) recurrence relation of complexity
O(n3) to compute c1, c2, . . . , cn.

Michael Wallner | LaBRI | 27.6.2019 8 / 22

Compacted Binary Trees | Relaxed compacted binary trees

Relaxed compacted binary trees

Michael Wallner | LaBRI | 27.6.2019 9 / 22

Compacted Binary Trees | Relaxed compacted binary trees

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees

Let rn be the number of relaxed binary trees of size n: cn ≤ rn.

1
2 2

4

4 4

6 6

In total, this gives 1 · 3 · 4 · 42 · 62 = 6912 relaxed trees and we get a similar
recurrence relation.
(Before, 4836 compacted trees.)

Michael Wallner | LaBRI | 27.6.2019 10 / 22

Compacted Binary Trees | Relaxed compacted binary trees

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees
Let rn be the number of relaxed binary trees of size n: cn ≤ rn.

1
2 2

4

4 4

6 6

In total, this gives 1 · 3 · 4 · 42 · 62 = 6912 relaxed trees and we get a similar
recurrence relation.
(Before, 4836 compacted trees.)

Michael Wallner | LaBRI | 27.6.2019 10 / 22

Compacted Binary Trees | Relaxed compacted binary trees

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees
Let rn be the number of relaxed binary trees of size n: cn ≤ rn.

1
2 2

4

4 4

6 6

In total, this gives 1 · 3 · 4 · 42 · 62 = 6912 relaxed trees and we get a similar
recurrence relation.
(Before, 4836 compacted trees.)

Michael Wallner | LaBRI | 27.6.2019 10 / 22

Compacted Binary Trees | Relaxed compacted binary trees

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees
Let rn be the number of relaxed binary trees of size n: cn ≤ rn.

1
2 2

4

4 4

6 6

In total, this gives 1 · 3 · 4 · 42 · 62 = 6912 relaxed trees and we get a similar
recurrence relation.
(Before, 4836 compacted trees.)

Michael Wallner | LaBRI | 27.6.2019 10 / 22

Compacted Binary Trees | Bounded right height

Bounded right height

Michael Wallner | LaBRI | 27.6.2019 11 / 22

Compacted Binary Trees | Bounded right height

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf (not going through pointers).

Example

←→

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.

Michael Wallner | LaBRI | 27.6.2019 12 / 22

Compacted Binary Trees | Bounded right height

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf (not going through pointers).

Example

←→

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.

Michael Wallner | LaBRI | 27.6.2019 12 / 22

Compacted Binary Trees | Bounded right height

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf (not going through pointers).

Example

←→

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.

Michael Wallner | LaBRI | 27.6.2019 12 / 22

Compacted Binary Trees | Bounded right height

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf (not going through pointers).

Example

←→

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.

Michael Wallner | LaBRI | 27.6.2019 12 / 22

Compacted Binary Trees | Bounded right height

Compacted trees of right height ≤ k

n

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Figure: Right height ≤ 2.

Figure: Right height ≤ 3.

Michael Wallner | LaBRI | 27.6.2019 13 / 22

Compacted Binary Trees | Bounded right height

Compacted trees of right height ≤ k

n

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Figure: Right height ≤ 2.

Figure: Right height ≤ 3.

Michael Wallner | LaBRI | 27.6.2019 13 / 22

Compacted Binary Trees | Bounded right height

Compacted trees of right height ≤ k

n

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Figure: Right height ≤ 2.

Figure: Right height ≤ 3.

Michael Wallner | LaBRI | 27.6.2019 13 / 22

Compacted Binary Trees | Bounded right height

Compacted trees of right height ≤ k

n

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Figure: Right height ≤ 2.

Figure: Right height ≤ 3.

Michael Wallner | LaBRI | 27.6.2019 13 / 22

Compacted Binary Trees | Bounded right height

Main results

Theorem (Relaxed)

The number rk,n of relaxed trees with right height at most k is for n→∞
asymptotically equivalent to

rk,n ∼ γkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2 ,

where γk ∈ R \ {0} is independent of n.

Theorem (Compacted)

The number ck,n of compacted trees with right height at most k is
asymptotically equal to

ck,n ∼ κkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2−

1
k+3−(1

4−
1

k+3) cos(π
k+3)−2

,

where κk ∈ R \ {0} is independent of n.

Michael Wallner | LaBRI | 27.6.2019 14 / 22

Compacted Binary Trees | Bounded right height

Main results

Theorem (Relaxed)

The number rk,n of relaxed trees with right height at most k is for n→∞
asymptotically equivalent to

rk,n ∼ γkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2 ,

where γk ∈ R \ {0} is independent of n.

Theorem (Compacted)

The number ck,n of compacted trees with right height at most k is
asymptotically equal to

ck,n ∼ κkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2−

1
k+3−(1

4−
1

k+3) cos(π
k+3)−2

,

where κk ∈ R \ {0} is independent of n.

Michael Wallner | LaBRI | 27.6.2019 14 / 22

Compacted Binary Trees | Bounded right height

Main results

Theorem (Relaxed)

The number rk,n of relaxed trees with right height at most k is for n→∞
asymptotically equivalent to

rk,n ∼ γkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2 ,

where γk ∈ R \ {0} is independent of n.

Theorem (Compacted)

The number ck,n of compacted trees with right height at most k is
asymptotically equal to

ck,n ∼ κkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2−

1
k+3−(1

4−
1

k+3) cos(π
k+3)−2

,

where κk ∈ R \ {0} is independent of n.

Michael Wallner | LaBRI | 27.6.2019 14 / 22

Compacted Binary Trees | Bounded right height

Proof idea

Methods

1 Recurrence relations

2 Bijections

3 Generating functions

4 Symbolic method

5 Differential equations

6 Singularity analysis

7 Chebyshev polynomials

8 Guess and prove

Main idea: Exponential generating functions

Let cn be the number of compacted trees of size n. Then, we define

C (z) =
∑
n≥0

cn
zn

n!
.

Upper bound cn ≤ n!
n+1

(
2n
n

)
guarantees positive radius of convergence.

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Proof idea

Methods

1 Recurrence relations

2 Bijections

3 Generating functions

4 Symbolic method

5 Differential equations

6 Singularity analysis

7 Chebyshev polynomials

8 Guess and prove

Main idea: Exponential generating functions

Let cn be the number of compacted trees of size n. Then, we define

C (z) =
∑
n≥0

cn
zn

n!
.

Upper bound cn ≤ n!
n+1

(
2n
n

)
guarantees positive radius of convergence.

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Main idea: Exponential generating functions

Problem: unlabeled structures!

Idea: derive a symbolic method for compacted trees

Let T (z) =
∑

n≥0 tn
zn

n! be an EGF of the class T .

T (z) 7→ zT (z)

Append a new node with a pointer to the class T . T

Proof:

tk = k![zk]zT (z) = k︸︷︷︸

k possible
pointers

· tk−1︸︷︷︸

k−1 internal
nodes

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Main idea: Exponential generating functions

Problem: unlabeled structures!

Idea: derive a symbolic method for compacted trees

Let T (z) =
∑

n≥0 tn
zn

n! be an EGF of the class T .

T (z) 7→ zT (z)

Append a new node with a pointer to the class T . T

Proof:

tk = k![zk]zT (z) = k︸︷︷︸

k possible
pointers

· tk−1︸︷︷︸

k−1 internal
nodes

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Main idea: Exponential generating functions

Problem: unlabeled structures!

Idea: derive a symbolic method for compacted trees

Let T (z) =
∑

n≥0 tn
zn

n! be an EGF of the class T .

T (z) 7→ zT (z)

Append a new node with a pointer to the class T . T

Proof:

tk = k![zk]zT (z) = k︸︷︷︸

k possible
pointers

· tk−1︸︷︷︸

k−1 internal
nodes

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Main idea: Exponential generating functions

Problem: unlabeled structures!

Idea: derive a symbolic method for compacted trees

Let T (z) =
∑

n≥0 tn
zn

n! be an EGF of the class T .

T (z) 7→ zT (z)

Append a new node with a pointer to the class T . T

Proof:

tk = k![zk]zT (z) = k︸︷︷︸

k possible
pointers

· tk−1︸︷︷︸

k−1 internal
nodes

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Main idea: Exponential generating functions

Problem: unlabeled structures!

Idea: derive a symbolic method for compacted trees

Let T (z) =
∑

n≥0 tn
zn

n! be an EGF of the class T .

T (z) 7→ zT (z)

Append a new node with a pointer to the class T . T

Proof:

tk = k![zk]zT (z) = k︸︷︷︸
k possible
pointers

· tk−1︸︷︷︸
k−1 internal

nodes

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Further constructions

S : T (z) 7→ 1
1−z

T (z)

Append a (possibly empty)
sequence at the root.

TS = ∪ T ∪ T ∪

D : T (z) 7→ d
dz
T (z)

Delete top node but preserve its pointers.
T

I : T (z) 7→
∫
T (z)

Add top node without pointers.
T

P : T (z) 7→ z d
dz
T (z)

Add a new pointer to the top node.
T

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Further constructions

S : T (z) 7→ 1
1−z

T (z)

Append a (possibly empty)
sequence at the root.

TS = ∪ T ∪ T ∪

D : T (z) 7→ d
dz
T (z)

Delete top node but preserve its pointers.
T

I : T (z) 7→
∫
T (z)

Add top node without pointers.
T

P : T (z) 7→ z d
dz
T (z)

Add a new pointer to the top node.
T

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Further constructions

S : T (z) 7→ 1
1−z

T (z)

Append a (possibly empty)
sequence at the root.

TS = ∪ T ∪ T ∪

D : T (z) 7→ d
dz
T (z)

Delete top node but preserve its pointers.
T

I : T (z) 7→
∫
T (z)

Add top node without pointers.
T

P : T (z) 7→ z d
dz
T (z)

Add a new pointer to the top node.
T

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Bounded right height

Further constructions

S : T (z) 7→ 1
1−z

T (z)

Append a (possibly empty)
sequence at the root.

TS = ∪ T ∪ T ∪

D : T (z) 7→ d
dz
T (z)

Delete top node but preserve its pointers.
T

I : T (z) 7→
∫
T (z)

Add top node without pointers.
T

P : T (z) 7→ z d
dz
T (z)

Add a new pointer to the top node.
T

Michael Wallner | LaBRI | 27.6.2019 15 / 22

Compacted Binary Trees | Relaxed binary trees

Relaxed binary trees
Highlights

Michael Wallner | LaBRI | 27.6.2019 16 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 1: R1(z)

Symbolic construction

(1− 2z)R ′1(z)− R1(z) = 0,

R1(0) = 1,

then we get the closed form

R1(z) =
1√

1− 2z
,

and the coefficients

r1,n =
n!

2n

(
2n

n

)
= (2n − 1) · (2n − 3) · · · 3 · 1.

[W 2019, “A bijection of plane increasing trees with relaxed binary trees of right
height at most one”]. (TCS 2019, Vol. 755, p. 1–12; ArXiv:1706.07163)

Michael Wallner | LaBRI | 27.6.2019 17 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 1: R1(z)

Symbolic construction

(1− 2z)R ′1(z)− R1(z) = 0,

R1(0) = 1,

then we get the closed form

R1(z) =
1√

1− 2z
,

and the coefficients

r1,n =
n!

2n

(
2n

n

)
= (2n − 1) · (2n − 3) · · · 3 · 1.

[W 2019, “A bijection of plane increasing trees with relaxed binary trees of right
height at most one”]. (TCS 2019, Vol. 755, p. 1–12; ArXiv:1706.07163)

Michael Wallner | LaBRI | 27.6.2019 17 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 1: R1(z)

Symbolic construction

(1− 2z)R ′1(z)− R1(z) = 0,

R1(0) = 1,

then we get the closed form

R1(z) =
1√

1− 2z
,

and the coefficients

r1,n =
n!

2n

(
2n

n

)
= (2n − 1) · (2n − 3) · · · 3 · 1.

[W 2019, “A bijection of plane increasing trees with relaxed binary trees of right
height at most one”]. (TCS 2019, Vol. 755, p. 1–12; ArXiv:1706.07163)

Michael Wallner | LaBRI | 27.6.2019 17 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 1: R1(z)

Symbolic construction

(1− 2z)R ′1(z)− R1(z) = 0,

R1(0) = 1,

then we get the closed form

R1(z) =
1√

1− 2z
,

and the coefficients

r1,n =
n!

2n

(
2n

n

)
= (2n − 1) · (2n − 3) · · · 3 · 1.

[W 2019, “A bijection of plane increasing trees with relaxed binary trees of right
height at most one”]. (TCS 2019, Vol. 755, p. 1–12; ArXiv:1706.07163)

Michael Wallner | LaBRI | 27.6.2019 17 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 2: R2(z)

Symbolic construction(
1− 3z + z2

)
R ′′2 (z) + (2z − 3)R ′2(z) = 0,

R2(0) = 1, R ′2(0) = 1,

then we get the closed form

R ′2(z) =
1

1− 3z + z2
,

and the coefficients

r2,n =
(n − 1)!√

5

(1 +
√

5

2

)2n

−

(
1−
√

5

2

)2n
 .

Michael Wallner | LaBRI | 27.6.2019 18 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 2: R2(z)

Symbolic construction(
1− 3z + z2

)
R ′′2 (z) + (2z − 3)R ′2(z) = 0,

R2(0) = 1, R ′2(0) = 1,

then we get the closed form

R ′2(z) =
1

1− 3z + z2
,

and the coefficients

r2,n =
(n − 1)!√

5

(1 +
√

5

2

)2n

−

(
1−
√

5

2

)2n
 .

Michael Wallner | LaBRI | 27.6.2019 18 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 2: R2(z)

Symbolic construction(
1− 3z + z2

)
R ′′2 (z) + (2z − 3)R ′2(z) = 0,

R2(0) = 1, R ′2(0) = 1,

then we get the closed form

R ′2(z) =
1

1− 3z + z2
,

and the coefficients

r2,n =
(n − 1)!√

5

(1 +
√

5

2

)2n

−

(
1−
√

5

2

)2n
 .

Michael Wallner | LaBRI | 27.6.2019 18 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 2: R2(z)

Symbolic construction(
1− 3z + z2

)
R ′′2 (z) + (2z − 3)R ′2(z) = 0,

R2(0) = 1, R ′2(0) = 1,

then we get the closed form

R ′2(z) =
1

1− 3z + z2
,

and the coefficients

r2,n =
(n − 1)!√

5

(1 +
√

5

2

)2n

−

(
1−
√

5

2

)2n
 .

Michael Wallner | LaBRI | 27.6.2019 18 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 3: R3(z)

Symbolic construction(
1− 4z + 3z2

)
R ′′′3 (z) + (9z − 6)R ′′3 (z) + 2R ′3(z) = 0,

R3(0) = 1, R ′3(0) = 1, R ′′3 (0) =
3

2
,

then we get the closed form

R3(z) =

(
3z − 2 +

√
3
√

1− 4z + 3z2

√
3− 2

)1/
√

3

,

and the asymptotics of the coefficients

r3,n = n![zn]R3(z) =
n!

√
6
(
2−
√

3
)1/
√

3

3n

n3/2
√
π

(
1 +O

(
1

n

))
.

Michael Wallner | LaBRI | 27.6.2019 19 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 3: R3(z)

Symbolic construction(
1− 4z + 3z2

)
R ′′′3 (z) + (9z − 6)R ′′3 (z) + 2R ′3(z) = 0,

R3(0) = 1, R ′3(0) = 1, R ′′3 (0) =
3

2
,

then we get the closed form

R3(z) =

(
3z − 2 +

√
3
√

1− 4z + 3z2

√
3− 2

)1/
√

3

,

and the asymptotics of the coefficients

r3,n = n![zn]R3(z) =
n!

√
6
(
2−
√

3
)1/
√

3

3n

n3/2
√
π

(
1 +O

(
1

n

))
.

Michael Wallner | LaBRI | 27.6.2019 19 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 3: R3(z)

Symbolic construction(
1− 4z + 3z2

)
R ′′′3 (z) + (9z − 6)R ′′3 (z) + 2R ′3(z) = 0,

R3(0) = 1, R ′3(0) = 1, R ′′3 (0) =
3

2
,

then we get the closed form

R3(z) =

(
3z − 2 +

√
3
√

1− 4z + 3z2

√
3− 2

)1/
√

3

,

and the asymptotics of the coefficients

r3,n = n![zn]R3(z) =
n!

√
6
(
2−
√

3
)1/
√

3

3n

n3/2
√
π

(
1 +O

(
1

n

))
.

Michael Wallner | LaBRI | 27.6.2019 19 / 22

Compacted Binary Trees | Relaxed binary trees

Bounded right height ≤ 3: R3(z)

Symbolic construction(
1− 4z + 3z2

)
R ′′′3 (z) + (9z − 6)R ′′3 (z) + 2R ′3(z) = 0,

R3(0) = 1, R ′3(0) = 1, R ′′3 (0) =
3

2
,

then we get the closed form

R3(z) =

(
3z − 2 +

√
3
√

1− 4z + 3z2

√
3− 2

)1/
√

3

,

and the asymptotics of the coefficients

r3,n = n![zn]R3(z) =
n!

√
6
(
2−
√

3
)1/
√

3

3n

n3/2
√
π

(
1 +O

(
1

n

))
.

Michael Wallner | LaBRI | 27.6.2019 19 / 22

Compacted Binary Trees | Sneak Preview

Sneak Preview
Enumeration of compacted binary trees

WITHOUT height restrictions

(Joint work with Andrew Elvey Price and Wenjie Fang)

Michael Wallner | LaBRI | 27.6.2019 20 / 22

Compacted Binary Trees | Sneak Preview

A stretched exponential appears

Theorem

The number of compacted and relaxed binary trees satisfy for n→∞

rn = Θ
(
n! 4ne3a1n

1/3

n
)
,

cn = Θ
(
n! 4ne3a1n

1/3

n3/4
)
,

where a1 ≈ −2.3381 is the largest root of the Airy function

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt.

Corollary (Proportion of compacted among relaxed trees)

cn
rn

= Θ(n−1/4),

ck,n
rk,n
∼ λkn

− 1
k+3−(1

4−
1

k+3) 1

cos2(π
k+3) = o

(
n−1/4

)
,

for a constant λk independent of n.

Michael Wallner | LaBRI | 27.6.2019 21 / 22

Compacted Binary Trees | Sneak Preview

A stretched exponential appears

Theorem

The number of compacted and relaxed binary trees satisfy for n→∞

rn = Θ
(
n! 4ne3a1n

1/3

n
)
,

cn = Θ
(
n! 4ne3a1n

1/3

n3/4
)
,

where a1 ≈ −2.3381 is the largest root of the Airy function

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt.

Corollary (Proportion of compacted among relaxed trees)

cn
rn

= Θ(n−1/4),

ck,n
rk,n
∼ λkn

− 1
k+3−(1

4−
1

k+3) 1

cos2(π
k+3) = o

(
n−1/4

)
,

for a constant λk independent of n.

Michael Wallner | LaBRI | 27.6.2019 21 / 22

Compacted Binary Trees | Sneak Preview

A stretched exponential appears

Theorem

The number of compacted and relaxed binary trees satisfy for n→∞

rn = Θ
(
n! 4ne3a1n

1/3

n
)
,

cn = Θ
(
n! 4ne3a1n

1/3

n3/4
)
,

where a1 ≈ −2.3381 is the largest root of the Airy function

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt.

Corollary (Proportion of compacted among relaxed trees)

cn
rn

= Θ(n−1/4),

ck,n
rk,n
∼ λkn

− 1
k+3−(1

4−
1

k+3) 1

cos2(π
k+3) = o

(
n−1/4

)
,

for a constant λk independent of n.

Michael Wallner | LaBRI | 27.6.2019 21 / 22

Compacted Binary Trees | Sneak Preview

Next steps

Different tree structures, like e.g. ternary trees

Analyze shape parameters, like height, width, profile, . . .

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Next steps

Different tree structures, like e.g. ternary trees

Analyze shape parameters, like height, width, profile, . . .

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Backup

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for relaxed compacted binary trees

Counting formula

Let n, p ∈ N, then

δn+1,p =
n∑

i=0

δi,pδn−i,p+i , for n ≥ 0,

δ0,p = p + 1, ((((((((hhhhhhhhδ1,p = p2 + p + 1 .

We are interested in rn = δn,0.

Recursion still too complicated.

Example (Relaxed binary trees)

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487
rn 1 1 3 16 127 1363 18628

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for relaxed compacted binary trees

Counting formula

Let n, p ∈ N, then

δn+1,p =
n∑

i=0

δi,pδn−i,p+i , for n ≥ 0,

δ0,p = p + 1, ((((((((hhhhhhhhδ1,p = p2 + p + 1 .

We are interested in rn = δn,0.

Recursion still too complicated.

Example (Relaxed binary trees)

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487
rn 1 1 3 16 127 1363 18628

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

A recurrence for relaxed compacted binary trees

Counting formula

Let n, p ∈ N, then

δn+1,p =
n∑

i=0

δi,pδn−i,p+i , for n ≥ 0,

δ0,p = p + 1, ((((((((hhhhhhhhδ1,p = p2 + p + 1 .

We are interested in rn = δn,0.

Recursion still too complicated.

Example (Relaxed binary trees)

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487
rn 1 1 3 16 127 1363 18628

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

ck,n ∼ κkn!rnk n
αk and rk,n ∼ γkn!rnk n

βk .

k rk rk ≈ κk ≈ αk αk ≈ γk ≈ βk βk ≈
1 2 2.000 0.708 − 3

4
−0.750 0.564 − 1

2
−0.5

2 4 cos(π
5

)2 2.618 0.561 − 6
5
− 1

20 cos(π
5

)2 −1.276 0.447 −1 −1.0

3 3 3.000 0.605 − 16
9

−1.778 0.493 − 3
2

−1.5

4 4 cos(π
7

)2 3.246 0.873 − 15
7
− 3

28 cos(π
7

)2 −2.275 0.726 −2 −2.0

5 4 cos(π
8

)2 3.414 1.625 − 21
8
− 1

8 cos(π
8

)2 −2.772 1.379 − 5
2

−2.5

6 4 cos(π
9

)2 3.532 3.782 − 28
9
− 5

36 cos(π
9

)2 −3.268 3.260 −3 −3.0

7 4 cos(π
10

)2 3.618 10.708 − 18
5
− 3

20 cos(π
10

)2 −3.766 9.350 − 7
2

−3.5

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

ck,n ∼ κkn!rnk n
αk and rk,n ∼ γkn!rnk n

βk .

k rk rk ≈ κk ≈ αk αk ≈ γk ≈ βk βk ≈
1 2 2.000 0.708 − 3

4
−0.750 0.564 − 1

2
−0.5

2 4 cos(π
5

)2 2.618 0.561 − 6
5
− 1

20 cos(π
5

)2 −1.276 0.447 −1 −1.0

3 3 3.000 0.605 − 16
9

−1.778 0.493 − 3
2

−1.5

4 4 cos(π
7

)2 3.246 0.873 − 15
7
− 3

28 cos(π
7

)2 −2.275 0.726 −2 −2.0

5 4 cos(π
8

)2 3.414 1.625 − 21
8
− 1

8 cos(π
8

)2 −2.772 1.379 − 5
2

−2.5

6 4 cos(π
9

)2 3.532 3.782 − 28
9
− 5

36 cos(π
9

)2 −3.268 3.260 −3 −3.0

7 4 cos(π
10

)2 3.618 10.708 − 18
5
− 3

20 cos(π
10

)2 −3.766 9.350 − 7
2

−3.5

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1(z)

Let R1(z) =
∑
`≥0 r1,n

zn

n! be the EGF of relaxed binary trees with bounded right
height ≤ 1.

Decomposition of R1(z)

R1(z) =
∑
n≥0

R1,`(z)

where R1,`(z) is the EGF for relaxed binary trees with exactly ` left-subtrees,
i.e. ` left-edges from level 0 to level 1.

R1,0(z) = R0(z) =
1

1− z

R1,1(z) = ?

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1(z)

Let R1(z) =
∑
`≥0 r1,n

zn

n! be the EGF of relaxed binary trees with bounded right
height ≤ 1.

Decomposition of R1(z)

R1(z) =
∑
n≥0

R1,`(z)

where R1,`(z) is the EGF for relaxed binary trees with exactly ` left-subtrees,
i.e. ` left-edges from level 0 to level 1.

R1,0(z) = R0(z) =
1

1− z

R1,1(z) = ?

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1(z)

Let R1(z) =
∑
`≥0 r1,n

zn

n! be the EGF of relaxed binary trees with bounded right
height ≤ 1.

Decomposition of R1(z)

R1(z) =
∑
n≥0

R1,`(z)

where R1,`(z) is the EGF for relaxed binary trees with exactly ` left-subtrees,
i.e. ` left-edges from level 0 to level 1.

R1,0(z) = R0(z) =
1

1− z

R1,1(z) = ?

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,1(z)

Symbolic specification

1 delete initial sequence
2 decompose
3 append and add pointer
4 add initial sequence

R1,1(z)

R1,1(z) = S︸︷︷︸
init.
seq.

◦ I︸︷︷︸
lvl 0
node

◦ S ◦ P︸ ︷︷ ︸
red pointer

and seq.

(
zR1,0(z)︸ ︷︷ ︸
non empty

)

R1,1(z) =
1

1− z

∫
1

1− z
z (zR1,0(z))′ dz

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,1(z)

Symbolic specification

1 delete initial sequence

2 decompose
3 append and add pointer
4 add initial sequence

R1,1(z)

R1,1(z) = S︸︷︷︸
init.
seq.

◦ I︸︷︷︸
lvl 0
node

◦ S ◦ P︸ ︷︷ ︸
red pointer

and seq.

(
zR1,0(z)︸ ︷︷ ︸
non empty

)

R1,1(z) =
1

1− z

∫
1

1− z
z (zR1,0(z))′ dz

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,1(z)

Symbolic specification

1 delete initial sequence
2 decompose

3 append and add pointer
4 add initial sequence

R1,1(z)

R1,1(z) = S︸︷︷︸
init.
seq.

◦ I︸︷︷︸
lvl 0
node

◦ S ◦ P︸ ︷︷ ︸
red pointer

and seq.

(
zR1,0(z)︸ ︷︷ ︸
non empty

)

R1,1(z) =
1

1− z

∫
1

1− z
z (zR1,0(z))′ dz

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,1(z)

Symbolic specification

1 delete initial sequence
2 decompose
3 append and add pointer

4 add initial sequence

R1,1(z)

R1,1(z) = S︸︷︷︸
init.
seq.

◦ I︸︷︷︸
lvl 0
node

◦ S ◦ P︸ ︷︷ ︸
red pointer

and seq.

(
zR1,0(z)︸ ︷︷ ︸
non empty

)

R1,1(z) =
1

1− z

∫
1

1− z
z (zR1,0(z))′ dz

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,1(z)

Symbolic specification

1 delete initial sequence
2 decompose
3 append and add pointer
4 add initial sequence

R1,1(z)

R1,1(z) = S︸︷︷︸
init.
seq.

◦ I︸︷︷︸
lvl 0
node

◦ S ◦ P︸ ︷︷ ︸
red pointer

and seq.

(
zR1,0(z)︸ ︷︷ ︸
non empty

)

R1,1(z) =
1

1− z

∫
1

1− z
z (zR1,0(z))′ dz

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,`(z)

Observation

Same structure as for R1,1(z)

R1,`−1

R1,`(z) =
1

1− z

∫
1

1− z
z (zR1,`−1(z))′ dz , ` ≥ 1,

R1,0(z) = R0(z) =
1

1− z
.

Recall that R1(z) =
∑
`≥0 R1,`(z). Summing the previous equation (formally) for

` ≥ 1 gives

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,`(z)

Observation

Same structure as for R1,1(z)

R1,`−1

R1,`(z) =
1

1− z

∫
1

1− z
z (zR1,`−1(z))′ dz , ` ≥ 1,

R1,0(z) = R0(z) =
1

1− z
.

Recall that R1(z) =
∑
`≥0 R1,`(z). Summing the previous equation (formally) for

` ≥ 1 gives

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Construction of R1,`(z)

Observation

Same structure as for R1,1(z)

R1,`−1

R1,`(z) =
1

1− z

∫
1

1− z
z (zR1,`−1(z))′ dz , ` ≥ 1,

R1,0(z) = R0(z) =
1

1− z
.

Recall that R1(z) =
∑
`≥0 R1,`(z). Summing the previous equation (formally) for

` ≥ 1 gives

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Closed form of R1(z)

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

We know that R1,0(z) = 1
1−z and get

(1− 2z)R ′1(z)− R1(z) = 0, with R1(0) = 1.

This directly yields

R1(z) =
1√

1− 2z
.

Therefore we get

r1,n = n![zn]R1(z) =
n!

2n

(
2n

n

)
= (2n − 1)!!.

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Closed form of R1(z)

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

We know that R1,0(z) = 1
1−z and get

(1− 2z)R ′1(z)− R1(z) = 0, with R1(0) = 1.

This directly yields

R1(z) =
1√

1− 2z
.

Therefore we get

r1,n = n![zn]R1(z) =
n!

2n

(
2n

n

)
= (2n − 1)!!.

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Closed form of R1(z)

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

We know that R1,0(z) = 1
1−z and get

(1− 2z)R ′1(z)− R1(z) = 0, with R1(0) = 1.

This directly yields

R1(z) =
1√

1− 2z
.

Therefore we get

r1,n = n![zn]R1(z) =
n!

2n

(
2n

n

)
= (2n − 1)!!.

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Closed form of R1(z)

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

We know that R1,0(z) = 1
1−z and get

(1− 2z)R ′1(z)− R1(z) = 0, with R1(0) = 1.

This directly yields

R1(z) =
1√

1− 2z
.

Therefore we get

r1,n = n![zn]R1(z) =
n!

2n

(
2n

n

)
= (2n − 1)!!.

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Sketch of proof for relaxed trees

1 Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial polynomial derived from the `k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Sketch of proof for relaxed trees

1 Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial polynomial derived from the `k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Sketch of proof for relaxed trees

1 Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial polynomial derived from the `k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Sketch of proof for relaxed trees

1 Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial polynomial derived from the `k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Sketch of proof for relaxed trees

1 Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial polynomial derived from the `k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Sketch of proof for relaxed trees

1 Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial polynomial derived from the `k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Sketch of proof for relaxed trees

1 Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial polynomial derived from the `k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Differential operators

Theorem

Let (Lk)k≥0 be a family of differential operators given by

L0 = (1− z),

L1 = (1− 2z)D − 1,

Lk = Lk−1 · D − Lk−2 · D2 · z , k ≥ 2.

Then the exponential generating function Rk(z) for relaxed trees with right
height ≤ k satisfies

Lk · Rk = 0.

(1− 2z)
d

dz
R1(z)− R1(z) = 0

(z2 − 3z + 1)
d2

dz2
R2(z) + (2z − 3)

d

dz
R2(z) = 0

(3z2 − 4z + 1)
d3

dz3
R3(z) + (9z − 6)

d2

dz2
R3(z) + 2

d

dz
R3(z) = 0

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Differential operators

Theorem

Let (Lk)k≥0 be a family of differential operators given by

L0 = (1− z),

L1 = (1− 2z)D − 1,

Lk = Lk−1 · D − Lk−2 · D2 · z , k ≥ 2.

Then the exponential generating function Rk(z) for relaxed trees with right
height ≤ k satisfies

Lk · Rk = 0.

(1− 2z)
d

dz
R1(z)− R1(z) = 0

(z2 − 3z + 1)
d2

dz2
R2(z) + (2z − 3)

d

dz
R2(z) = 0

(3z2 − 4z + 1)
d3

dz3
R3(z) + (9z − 6)

d2

dz2
R3(z) + 2

d

dz
R3(z) = 0

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Differential operators

Theorem

Let (Lk)k≥0 be a family of differential operators given by

L0 = (1− z),

L1 = (1− 2z)D − 1,

Lk = Lk−1 · D − Lk−2 · D2 · z , k ≥ 2.

Then the exponential generating function Rk(z) for relaxed trees with right
height ≤ k satisfies

Lk · Rk = 0.

(1− 2z)
d

dz
R1(z)− R1(z) = 0

(z2 − 3z + 1)
d2

dz2
R2(z) + (2z − 3)

d

dz
R2(z) = 0

(3z2 − 4z + 1)
d3

dz3
R3(z) + (9z − 6)

d2

dz2
R3(z) + 2

d

dz
R3(z) = 0

Michael Wallner | LaBRI | 27.6.2019 22 / 22

Compacted Binary Trees | Sneak Preview

Differential operators

Theorem

Let (Lk)k≥0 be a family of differential operators given by

L0 = (1− z),

L1 = (1− 2z)D − 1,

Lk = Lk−1 · D − Lk−2 · D2 · z , k ≥ 2.

Then the exponential generating function Rk(z) for relaxed trees with right
height ≤ k satisfies

Lk · Rk = 0.

(1− 2z)
d

dz
R1(z)− R1(z) = 0

(z2 − 3z + 1)
d2

dz2
R2(z) + (2z − 3)

d

dz
R2(z) = 0

(3z2 − 4z + 1)
d3

dz3
R3(z) + (9z − 6)

d2

dz2
R3(z) + 2

d

dz
R3(z) = 0

Michael Wallner | LaBRI | 27.6.2019 22 / 22

	Creating a compacted binary tree
	Relaxed compacted binary trees
	Bounded right height
	Relaxed binary trees
	Sneak Preview

