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Algorithms that work better when the size is not �xed...

Let C =
⋃

N CN be a family of combinatorial structures,
where C ∈ CN if its size |C | is N.

Every CN is equipped with a measure µN (often just the uniform measure)

Your goal is to devise algorithms for exactly sampling from µN ,
which have the best possible complexity in N

It is often the case that you have a �natural algorithm� for sampling
from µ[α] :=

∑
N αNµN (with αN ≥ 0 and

∑
N αN = 1)

Call this the �Boltzmann case�

and you are temped to use the obvious algorithm

repeat

C ← µ[α]

until |C | = N;
return C
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Example: Boltzmann sampling of 2-terminal series-parallel graphs,
or, more generally, of recursive minor-closed families of graphs.

Here we present the case of W4-free graphs,

that is, graphs that do not contain as a minor.

A graph G is in this class i� ∃ (or ∀) edge (uv) ∈ G
the 2-terminal graph G[uv ] (rooted at u and v) can be reduced

to one edge by series, parallel and `wheatstone bridge' reductions:

G[uv ]

G

u v

ŵ−→

p̂−→

ŝ−→

In this case αn = A(z)−1[ζn]A(ζ), for A(z) solving a certain
equation, and z < z∗ root of a certain polynomial...

(more details later on)
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Algorithms that work better when the size is not �xed...

Now, let CN =
⋃

M CN,M be a family of combinatorial structures,
where C ∈ CN,M if |C | = N and some statistics m(C ) ∈ Zd is equal to M.

Every CN,M is equipped with a measure µN,M

Again, you must devise algorithms for exactly sampling from µN,M ,
which have the best possible complexity in N

You often have a �natural algorithm� for sampling from
µN,[α] :=

∑
M αN,MµN,M (with αN,M ≥ 0 and

∑
M αN,M = 1 for all N)

Call this the �Bridge case�

and you are temped to use the obvious algorithm

repeat

C ← µN,[α]

until m(C ) = M;
return C

Andrea Sportiello The challenge of linear-time Boltzmann sampling



Algorithms that work better when the size is not �xed...

Now, let CN =
⋃

M CN,M be a family of combinatorial structures,
where C ∈ CN,M if |C | = N and some statistics m(C ) ∈ Zd is equal to M.

Every CN,M is equipped with a measure µN,M

Again, you must devise algorithms for exactly sampling from µN,M ,
which have the best possible complexity in N

You often have a �natural algorithm� for sampling from
µN,[α] :=

∑
M αN,MµN,M (with αN,M ≥ 0 and

∑
M αN,M = 1 for all N)

Call this the �Bridge case�

and you are temped to use the obvious algorithm

repeat

C ← µN,[α]

until m(C ) = M;
return C

Andrea Sportiello The challenge of linear-time Boltzmann sampling



Example: Area-weighted integer partitions in a N ×M box,

which can be represented as (N + 1)-tuples (x0, x1, . . . , xN),
associated to the vertical increments along the various columns:

µN,M(x) ∝ q
∑

k kxk δM,
∑

k xk

The natural problem, in which the δ-constraint is traded for a
Lagrange multiplier ω, has measure

µN,[α](x) ∝ q
∑

k kxkω
∑

k xk

and the best you can do is tune ω in order to maximise αN,M .

In this case
αN,M = A(ω)−1[zM ]A(ωz)

with A(ω) =
N∏

k=0

1

1− ωqk
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Naïve complexity: Bridge case

Say that you are in the Bridge case,
and that sampling from µN,[α] takes time TN ∼ τN.

Then of course the complexity is of order T ∼ τN/αN,M .

Even in the �best realistic case� of Gaussian concentration of
m(C ) ∈ Zd around M with variance (tensor spectrum) linear in N,

this gives T ∼ N1+ d
2

We would like to invent a better algorithm

in order to kill the extra factor N
d
2 as much as we can.

This will be done, in a restricted family of models,
through the trick of positive decomposition,

which is in my �GASCom2018� paper.
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Naïve complexity: Boltzmann case

Say that you are in the Boltzmann case,
that sampling from µ[α] takes time Tn ∼ τn when

the outcome |C | is n, and T+ ∼ τN when the sampling procedure
aborts with a certi�cation that |C | will be larger than N.

(this is achieved through anticipated rejection)

Then the complexity is of order T ∼ τN

αN

∑
n

αn min(n,N)

Even in the �best realistic case� of αn ∼ znnγ , with γ > −1 and
z < 1 that can be tuned at your will, this gives T ∼ N2

We would like to invent a better algorithm
in order to kill the extra factor N as much as we can.

This will �almost� be done, but only up to reach complexity N
3

2 ,
through the trick of improved Hadamard product,

which is in my �GASCom2016� paper.

Andrea Sportiello The challenge of linear-time Boltzmann sampling



Plan of the talk

It's now clear: I'm trying to `sell' you two recent tools
for improving the complexity of �Boltzmann�like� algorithms,
that is, exact sampling algorithms which would be linear if it
weren't for some size constraint, and are instead T ∼ N1+γ

because of the many repetitions necessary to get the desired size.

I propose you two main tools:

Boltzmann case: use the improved Hadamard product trick in wide
generality, but the extra exponent only decreases to γ

2

Disclaimer, this is in part �under construction�!

Bridge case: in suitable circumstances, you can use the positive
decomposition trick and remove the extra exponent

Before this, I want to discuss the theoretical limit to possible
improvements, and a nice algorithm, due to Bacher, Bodini,

Hollender and Lumbroso, that can reach this limit in a special case.
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Shannon complexity bound

We have seen that the naïve algorithm has complexity

n1+ d
2 in the Bridge case, and n2 in the Boltzmann case.

This seems bad. But how bad exactly? How good can we possibly do?

Let us try to understand the intrinsic minimal complexity of a problem.

The time complexity is de�ned only up to a multiplicative constant,
and with some degree of arbitrariness.
Instead, for the random-bit complexity,

that is, the average number of random bits used for sampling
an object of size N, also the overall constants do matter.

The intrinsic minimal random-bit complexity of an exact sampling
problem is given by the Shannon entropy of the associated measure:

SN = −
∑
C∈CN

µN(C ) lnµN(C )
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Shannon bound in the Bridge case

In this talk, we will only consider problems in the �Bridge case�
of a special form:
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CN = {x} x = (x1, . . . , xN) ∈ NN , |x | :=
∑

i xi ,

←− random vector
of integers

µN,M(x) = 1
Z

∏N
i=1 f i (xi )× δ|x |,M

←− completely independent:
the problem trivialises!←− NOT completely independent
(a single linear constraint)
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←− completely independent:
the problem trivialises!

←− NOT completely independent
(a single linear constraint)

↑
variables are identically distributed:

doable by using permutation symmetry [L. Devroye, 2012]
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variables are NOT
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We assume E(
∑

i xi ) = M, so that µN,[α](x) :=
∑
M

µN,M αN,M =
∏
i

fi (xi )
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Shannon bound in the Bridge case

So, what's the Shannon entropy of a measure
µN,M(x) = 1

Z

∏N
i=1 fi (xi )× δ|x |,M?

Simple fact 1: S [µN,[α]] =
∑

i S [fi ] = Θ(N)

Simple fact 2:

S [µN,[α]] = −
∑
m

∑
x :|x |=m

αN,m µN,m(x) ln(αN,m µN,m(x))

= EαN

(
S(µN,m)

)
+ S(αN)

Note that, by CLT, S(αN) = Θ(lnN).
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Shannon bound in the Bridge case

A bit more subtle: By CLT, and considering a partition of the list
(f1, . . . , fN) into two lists of size N1 and N2 = N − N1, we have

αN,mS [µN,m] = −
∑
m1

αN1,m1
αN−N1,m−m1

×
∑

x1:|x1|=m1

x2:|x2|=m−m1

fN1,m1
(x1)fN−N1,m−m1

(x2) ln
(
fN1,m1

(x1)fN−N1,m−m1
(x2)

)
=
∑
m1

αN1,m1
αN−N1,m−m1

(
S [µN1,m1

] + S [µN−N1,m−m1
]
)

so that the ansatz S [fN,M+δ]− S [fN,M ] = O(δ2/N)
can be proven self-consistent.

These reasonings imply

S [fN,M ] =

(∑
i

S [fi ]

)(
1 +O

(
lnN
N

))
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Shannon bound in the Boltzmann case

In the Boltzmann case, the measure µN,α is the one induced
by the generating function A1(z), associated to the solution

of a `combinatorial speci�cation' system
A1 = F1(A1, . . . ,Ak , z)

...
Ak = Fk(A1, . . . ,Ak , z)

From the positivity of the Fi 's coe�cients, we can interpret A1(z)
as a sum over suitable (coloured, weighted) trees, where the

branching rules are described by the speci�cation, and depend on z .
Each tree corresponds to one con�guration, exactly sampled from µN,α

As a result, any such measure corresponds to
a barely sub-critical Galton�Watson process
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Shannon bound in the Boltzmann case

By randomising on the branching position,
any Galton�Watson process can be seen as a rewriting system,

Example: for

{
A = A z + B2 + z
B = A3 + z2

we could get

A stack size: 1 obj. size: 0

A
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Shannon bound in the Boltzmann case

By randomising on the branching position,
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Shannon bound in the Boltzmann case

By randomising on the branching position,
any Galton�Watson process can be seen as a rewriting system,

Example: for

{
A = A z + B2 + z
B = A3 + z2

we could get

zzzzzzzzz stack size: 0 obj. size: 9

A

A

B B

A A A
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Shannon bound in the Boltzmann case

In the limit, on a successful run, the stack size pro�le is an excursion,
while the object size pro�le is a straight line, both of length L

Call n1(t), . . . , nk(t), s(t) the time evolution of the number
of objects A1, . . .Ak in the stack, and of the object size.

∼
√
N

N

L = Θ(N)

At linear order, these quantities satisfy equations of the form
ṅi = t−1

∑
j nj(−δij + Ai

Aj

∂
∂Ai

Fj)| z→z∗
Aj→A∗j

=:
∑

j Mijnj/t

M has a unique eigenvector (p1, . . . , pk) with all pi > 0,
∑

i pi = 1,
and eigenvalue zero, all other eigenvalues are negative.

This is the eigenvalue/vector associated to the stack size excursion,
which has height ∼

√
N, so it vanishes at linear order.

For the object size pro�le, we have
ṡ = t−1

∑
j nj(

z
Aj

∂
∂z Fj)| z→z∗

Aj→A∗j

'
∑

j pj(
z
Aj

∂
∂z Fj)| z→z∗

Aj→A∗j
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Shannon bound in the Boltzmann case
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Shannon bound in the Boltzmann case

Note how the randomisation of the growth position
has made the dynamics asymptotically homogeneous in time

(that is, homogeneous up to O(N−
1

4 ) �uctuations,
when the stack size is far from the horizontal axis)

As a result, from the combinatorial speci�cation, and the selection of
the �good� critical point z∗, we can read the limit parameters pi and ṡ

Any Galton�Watson branching on a type-Ai object corresponds to
a combinatorial construction with an intrinsic Shannon entropy Si

Just as in the Bridge case, having an excursion instead of a generic
walk only reduces the entropy by a factor ∼ (lnN)/N

This gives L = N/ṡ +O(
√
N), and

S ' N
(
1
ṡ

∑k
i=1 piSi

)
(1 +O(N−

1

4 )),

which is our �nal result
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Shannon complexity bound: summary

In conclusion, in our case of study, you have an optimal
exact sampling algorithm if the time complexity is linear,

and the random bit complexity Trand(N) is, up to corrections,

Bridge case: µN,M(x) = 1
Z

∏N
i=1 fi (xi )× δ|x |,M

Trand(N,M) =

(∑
i

S [fi ]

)
(1 + o (1))

Boltzmann case: {Ai = Fi (A1, . . . ,Ak , z)}i=1,...,k

Trand(N) =

(
N

ṡ

k∑
i=1

piSi

)
(1 + o(1))

I will not show any algorithm of mine that reaches optimality.
But I will show you that optimality exists! By presenting you the

�mother of all (Bridge-case exact sampling) algorithms�
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BBHL algorithm: `the mother of all algorithms'

The following algorithm is hidden in a small corner of the paper
Bacher, Bodini, Hollender and Lumbroso,

MergeShu�e: A Very Fast, Parallel Random Permutation Algorithm

https://arxiv.org/pdf/1508.03167

The problem: exact sampling of strings in {•, ◦}n with #{•} = k
BBHL solves it in linear time and optimal random-bit complexity.

(which is Trand(n) = n(−p ln p − (1− p) ln(1− p)) + o(n), with p = k
n )
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BBHL algorithm: `the mother of all algorithms'

First naïve idea: the �Bridge case� naïve approach. Sample n
variables x = (x1, . . . , xn) ∈ {0, 1}n, i.i.d. with Bernp, restart if |x | 6= k .

Average complexity: ∼ n
3

2 ,
because |x | is distributed roughly as a Gaussian
of variance θ(n) and mean k .
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BBHL algorithm: `the mother of all algorithms'

Second naïve idea: project down from Fisher�Yates
The Fisher�Yates algorithm samples a random permutation σ ∈ Sn

with optimal random-bit complexity: Trand(n) ' ln n! ' n(ln n − 1)
It works by sampling y ∈ {1}× {1, 2}×{1, 2, 3}× · · · × {1, . . . , n},
and doing as follows:

Then, `projecting down' means
xi = 1 i� σ−1(i) ≤ k

Average complexity: ∼ n ln n,
because, even if Fisher�Yates is
optimal, the projection throws
away most of the information
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BBHL algorithm: `the mother of all algorithms'

The good idea: Sample the n variables x = (x1, . . . , xn) ∈ {0, 1}n,
i.i.d. with Bernp, one by one up to when you have k entries xi = 1,

or n − k entries xi = 0.

Then complete deterministically with what is needed,

Finally, perform Fisher�Yates shu�ings
on these last added steps.

Average complexity:
Trand(n) = S [µ] +O(

√
n ln n)

because the �nal shu�es
are just a few.
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BBHL algorithm: the code

Algorithm : BBHL shu�ing algorithm

begin

a = k, b = n − k , i = 0;
repeat

i ++;
νi ←− Bernβ ;
if νi = 1 then a -- else b --

until a < 0 or b < 0 complexity ∼ n;
if a < 0 then ν̄ = 0 else ν̄ = 1;
for j ← i to n do

νj = ν̄;
h←− RndIntj ;
swap νj and νh complexity ∼

√
n ln n;

return ν

end
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Plan of the talk

I recall you that I'm trying to `sell' you two recent tools
for improving the complexity of �Boltzmann�like� algorithms,
that is, exact sampling algorithms with complexity T ∼ N1+γ

because of the many repetitions necessary to get the desired size.

I propose you two main tools:

Boltzmann case: use the improved Hadamard product trick in wide
generality, but the extra exponent only decreases to γ

2

Bridge case: in suitable circumstances, you can use the positive
decomposition trick and remove the extra exponent

We are ready to go!
Let us start with the Bridge case

and the positive decomposition trick
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Positive decomposition in one slide
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Cn = {x}, x = (x1, . . . , xN) ∈ NN , |x | :=
∑

i xi

µN,M(x) = 1
Z

∏N
i=1 fi (xi )× δ|x |,M

Problem: Assume that sampling from each distrib. fi costs O(1).
Find an algorithm that samples from the distribution µN,M
in average linear time.
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Cn = {x}, x = (x1, . . . , xN) ∈ NN , |x | :=
∑

i xi

µN,M(x) = 1
Z

∏N
i=1 fi (xi )× δ|x |,M

Our solution: positive decomposition. Assume that there exists
g(x) ∈ {Bernb,Poiss,Geomb}, and {qi (s)}1≤i≤n;s∈N real positive,
such that fi (x) =

∑
s qi (s)g∗s(x). Then our new algorithm does it!
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Positive decomposition in two slides

Our new trick is based on the following ideas:

I Rejection algorithms have an extra factor in their complexity,
on the scale of the inverse of the acceptance rate. In order to
have the optimal complexity scaling, you need the average
acceptance rate to be Θ(1), i.e. not to scale with the size n.

I Positive decomposition gives fi (x) =
∑

s qi (s)g∗s(x).

As a result the measure µN,M(x) = 1
Z

∏N
i=1 fi (xi )× δ|x |,M

is a marginal of a measure in two sets of variables:
µN,M(x , s) = 1

Z

∏N
i=1

(
qi (si ) g

∗si (xi )
)
× δ|x |,M .

I You can �rst sample s, with measure µ1(s) =
∏N

i=1 qi (si ),
then accept this vector s with rate a(s) ∝ g∗|s|(M),
and �nally sample x with measure µ2(x | s) =

∏N
i=1 g

∗si (xi ).

I The acceptance rate is high because, although

g∗|s|(M) = Θ(N−
1

2 ), we have g∗|s|(M)/maxN(g∗N(M)) = Θ(1).
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A reminder of the naïve algorithm in the Bridge case

Up to rede�ning the fi 's, we can assume w.l.o.g. that E(|x |) =
∑

i E[fi ] = M.
Assume that both M and σ2 :=

∑
i Var[fi ] are Θ(N).

The `Bridge case' rejection algorithm would give:

Algorithm : Naïve rejection sampling complexity ∼ N3/2

begin

repeat

|x | = 0;
for i ← 1 to N ← complexity ∼ N;do

xi ⇐ fi
|x |+=xi ;

until |x | = M ← complexity ∼
√
N;

return (x1, . . . , xN)

end
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The rejection paradigm

More generally, in any rejection algorithm,
you want to do exact sampling for µ(x),

when µ(x) ∝ µ0(x)a(x), with a(x) ∈ [0, 1],
supposing that you know how to sample from µ0

Algorithm : Rejection sampling T [µ] ∼ T [µ0]E(a(x))−1

begin

repeat

x ⇐ µ0 ; ← complexity T [µ0]

α ⇐ Berna(x);

until α = 1 ← complexity E(a(x))−1;
return x

end
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The rejection paradigm for decomposed measures

Now assume µ(x) ∝
∑

y
µ1(y)µ2(x | y) a(y), with a(y) ∈ [0, 1],

supposing that you know how to sample from µ1, and µ2(· | y)

Algorithm : Rejection sampling for decomposed measures

begin

repeat

y ⇐ µ1 ; ← sample a tentative y with µ1

α ⇐ Berna(y)

until α = 1 ← accept y with rate a(y);

x ⇐ µ2(· | y) ; ← sample x with µ2( · |y)
return x

end

T =

∑
y
µ1(y)

(
T1(y) + a(y)T2(y)

)∑
y
µ1(y)a(y)

=
E(T1 + aT2)

E(a)
≤ Tmax

1

E(a)
+Tmax

2
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Positive decomposition provides a decomposed measure

Positive decomposition tells that, for all i ,
fi (x) =

∑
s qi (s)g∗s(x), with qi (s) ≥ 0.

From the normalisation of the fi 's and of g ,
it follows that also the qi (s) are probability distributions.

As a result the measure µN,M(x) = 1
Z

∏N
i=1 fi (xi )× δ|x |,M

is a marginal of a measure in two sets of variables:
µN,M(x , s) = 1

Z

∏N
i=1

(
qi (si ) g

∗si (xi )
)
× δ|x |,M .

This is exactly as in a decomposed measure, with correspondence
sample s with measure µ1(s) µ1(s) =

∏n
i=1 qi (si )

accept s with rate a(s) a(s) ∝ g∗|s|(m)
sample x with measure µ2(x | s) µ2(x | s) =

∏n
i=1 g

∗si (xi )

Note: although µ1 and µ2 depend on the vector s,
the rate a only depends on |s| =

∑
i si .
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Increasing the acceptance rate

The crucial point is that the decomposition
allows to increase the acceptance rate!

In the `ordinary' rejection scheme, you accept x i� a probabilistic
event occurs (in our case, |x | = M). If this probability is

intrinsically small (in our case, Θ(N−1/2)), there is nothing you can do.

In the rejection scheme for decomposed measures, the rate a(s) is
de�ned up to a multiplicative factor, as long as maxs a(s) ≤ 1.

Here, the obvious choice for a(s) is a(s) = g∗|s|(M), which is Θ(N−
1

2 ).

However, we can push it up to a(s) =
g∗|s|(M)

maxn(g∗n(M))
.

As we will see, with this choice E(a(s)) = Θ(1).
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How to sample from Berna(s)

This idea is not su�cient by itself. Even if you know in advance
that, after maximisation, E(a(s)) = Θ(1), you still have a problem:

sampling a Bernoulli rnd var with parameter a(s) is di�cult
if you do not have an analytic expression for a(s).

It is not compulsory to have an analytic expression for a(s)
(just think to how the Monte Carlo algorithm:

x ⇐ Rnd[0, 1]; y ⇐ Rnd[0, 1]; return sign(1− x2 − y2)
samples Bernπ/4 without knowing π. . . )

however, it makes life easier, and in our case we have it for free
if we choose the base function g(x) for positive decomposition

in the list g(x) ∈ {Bernb,Poiss,Geomb}
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How to sample from Berna(s)

Example with Bernoulli (the other cases are similar)
(just write a(s) for a(s), with s = |s|)

a(s) =
g∗s(M)

maxn(g∗n(M))
=

bM(1− b)s−M
( s
M

)
maxn

(
bM(1− b)n−M

( n
M

))
The max is realised for n = n̄ := bM/bc, thus

a(s) = (1− b)s−n̄
s!(n̄ −M)!

n̄!(s −M)!

Good news 1: This is easily evaluated to high precision
(i.e., calculating d binary digits has complexity � 2d),

so that the average cost of Berna(s) is Θ(1).

Good news 2: For large M, and b = Θ(1), a(s) converges to an
un-normalised Gaussian centered around n̄, and of variance Θ(M).
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A rough evaluation of the complexity

Recall the basic steps in the rejection algo for our decomposed measure:

sample s with measure µ1(s) µ1(s) =
∏n

i=1 qi (si )
accept s with rate a(s) a(s) = g∗s(M)/g∗n̄(M)
sample x with measure µ2(x | s) µ2(x | s) =

∏n
i=1 g

∗si (xi )

and that this algorithm has complexity

T ≤ Tmax
1

Eµ1(a(s))
+ Tmax

2 where Tmax
1 ,Tmax

2 = Θ(n).

Under mild CLT hypotheses, the measure on s = |s| induced by µ1(s)
is a (normalised) Gaussian centered in n̄, with variance σ21N,

while a(s) is an un-normalised Gaussian, centered in n̄, with variance σ22N:

E(a) '
∫
dx 1√

2πσ2
1
N

exp
[
− x2

2N

(
1
σ2
1

+ 1
σ2
2

) ]
= σ2√

σ2
1

+σ2
2

T . Tmax
1

√
1 + (σ1/σ2)2 + Tmax

2 = Θ(N)
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The precise result

The three fundamental distributions

g∗sβ (r) =


Bern∗sβ (r) = βr (1− β)s−r

(s
r

)
β ∈ ]0, 1[

Poisss(r) = e−s s
r

r ! β = 0

Geom∗s−β(r) = |β|r (1 + |β|)−s−r
(s+r−1

r

)
β ∈ ]−∞, 0[

are such that g∗sα has a positive decomposition in gβ i� α ≤ β.

s s
−∞ 0 1

β

δx ,1BinoβPoissGeom−β

For the list of functions F = {f1, . . . , fn} in our measure,
call βmin(F) the smallest value of β

such that all the fi 's have a positive decomposition in gβ .
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The precise result

Then, the largest value for E(a)
that can be achieved within our framework is

amax(F) :=
√
1− βmin(F) ·

√ ∑
i E[fi ]∑

i Var[fi ]

s s
−∞ 0 1

β

δx ,1BinoβPoissGeom−β
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A bonus surprise

If you have that g(x) is Bernb or Geomb,
then the BBHL algorithm at parameters [n,m] can be used when

sampling from
∏

i g
∗si (xi ) δ|x |,M , by rewriting xi = y

(1)
i + · · ·+ y

(si )
i

Calling s =
∑

i si ,

I BBHL[s,M] can be used in the g = Bernb case, by identifying

the outcome string of BBHL with the list of y
(j)
i 's.

I BBHL[s + M − 1,M] can be used in the g = Geomb case, by
identifying the lengths of runs of 0s in the outcome string of

BBHL with the list of y
(j)
i 's.

The Poissonian case (more seldomly needed) can be dealed
with a small algorithm that I invented, similar in spirit to BBHL
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Examples of application

So, we have constructed our algorithm
for the linear-time exact sampling of sum-constrained random variables,

in the case in which they are not equally distributed.

However, you could just think:
�who cares about not-equally-distributed variables?

After all, every time I wanted to generate walks, trees, etc.,

I always wanted equally-distributed variables. . . �

The point is: examples of this sort
may be hidden beyond some smart bijection,

starting from more customary (and symmetric) problems.

This is well illustrated by two classical examples:

• Set partitions, and Stirling numbers of the second kind
• Permutations with m cycles, and Stirling numbers of the �rst kind
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Set partitions, and Stirling numbers of the second kind

Call Ssetn,m the ensemble of partitions of a set with n (labelled)
elements into m (unlabeled) non-empty subsets.

W.l.o.g. we can assume that the set has a total ordering.

Example, for (n,m) = (28, 9), and the set

{a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p, q, r , s, t, u, v ,w , x , y , z , α, β}

consider the partition{
{a, g , t}, {b, d ,m, o, α}, {c , j , s, y}, {e, h, v}, {f , k , q}, {i , l , z},

{n, p, u}, {r , β}, {w , x}
}

Although the sets are not labeled, they are canonically ordered, e.g.
by their smallest element. As a result, we have a canonical

incidence matrix T , with Tij = 1 if the element j is in subset i .
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Set partitions, and Stirling numbers of the second kind

{
{a, g , t}, {b, d ,m, o, α}, {c , j , s, y}, {e, h, v}, {f , k , q}, {i , l , z},

{n, p, u}, {r , β}, {w , x}
}

a b c d e f g h i j k l mn o p q r s t u v w x y z α β
1
2
3
4
5
6
7
8
9

Call backbone B(T ) the list of smallest elements in the subsets,
here B = {a, b, c , e, f , i , n, r ,w}.

The number of partitions T with
B(T ) = B is the trivial product:

∏m
y=1 y

cy , but the quantities cy
are linearly constrained:

∑
y cy = n −m.
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Set partitions, and Stirling numbers of the second kind

{
{a, g , t}, {b, d ,m, o, α}, {c , j , s, y}, {e, h, v}, {f , k , q}, {i , l , z},

{n, p, u}, {r , β}, {w , x}
}

a b c d e f g h i j k l mn o p q r s t u v w x y z α β
1
2
3
4
5
6
7
8
9

cy︷ ︸︸ ︷

Call backbone B(T ) the list of smallest elements in the subsets,
here B = {a, b, c , e, f , i , n, r ,w}. The number of partitions T with
B(T ) = B is the trivial product:

∏m
y=1 y

cy , but the quantities cy
are linearly constrained:

∑
y cy = n −m.
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Set partitions, and Stirling numbers of the second kind

As a result, sampling uniformly set partitions in Sn,m, which
bijectively coincides to sampling uniformly the tableaux T , boils
down to sampling the backbone B with the non-uniform measure

µn,m(c1, . . . , cm) ∝
∏m

y=1 y
cy × δ|c|,n−m

This is exactly our framework! Introduce an appropriate
Lagrange multiplier ω

∑
y cy , in order to have E(|c |) = n −m

(the good choice is the solution to the equation n
m = − ln(1−ω)

ω )
The functions fy (cy ) are Geomby (cy ), with by = ωy

n−ωy

Now, Geoma has a positive decomposition in terms of Bernb
Geoma(x) =

∑
s Geom a

a+b
(s) Bern∗sb (x)

Choosing for simplicity b = 1
2 , our algorithm works, with an

average acceptance rate E(a) =
√

e−θ−1+θ
2(eθ−1−θ)

(ω = 1− e−θ)
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)
)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)(2)

)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)(23)

)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(1)(23)(4)

)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(23)(4)

)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(263)(4)

)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(2638)(4)(7)

)

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(2638)(4)(7)

)
Call B(σ) = {0, 0, 1, 0, 1, 1, 0, 1},
the indicator function of �black rows�
of T (σ), the backbone of σ.

The number of σ's with backbone
B = (x1, . . . , xn) is

∏
y (y − 1)xy ,

and we must have |x | = m

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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m-cycle permutations, and Stirling numbers of the 1st kind

Call Scycn,m the set of permutations σ ∈ Sn with m cycles.
Describe σ through the insertion table associated to its growth,

for example, for σ =
(
(15)(2638)(4)(7)

)
σ =

(
(15)(2638)(4)(7)

)
Call B(σ) = {0, 0, 1, 0, 1, 1, 0, 1},
the indicator function of �black rows�
of T (σ), the backbone of σ.

The number of σ's with backbone
B = (x1, . . . , xn) is

∏
y (y − 1)xy ,

and we must have |x | = m

Again, this is exactly our framework!
just with inhomogeneous Bernoulli variables,
instead of inhomogeneous Geometric variables.
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Plan of the talk

So, I'm trying to `sell' you two recent tools for improving the
complexity of the �Boltzmann�like� problems I introduced.

In the �Bridge case�, if we have positive decomposition of the fi 's
in terms of a function g being Bern or Geom, I should have

convinced you that my trick is `optimal up to a factor'.
You shall be happy with this, unless you really search

for rand-bit optimality (like in the nice BBHL algorithm).

However, we are not always so lucky.
In particular, if we are in the �Boltzmann case�, we already start

from a worse complexity (∼ N2 because of fat tails),
and we have much less tools in our hands. . .

It's time for me for trying to sell you the second tool:
the improved Hadamard product trick.
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Sampling from the Hadamard product: the problem

We have two measures on Z, p(x) and q(x).

Let f (x) =
p(x)q(x)∑
y p(y)q(y)

p(x)

q(x)

Andrea Sportiello The challenge of linear-time Boltzmann sampling



Sampling from the Hadamard product: the problem

We have two measures on Z, p(x) and q(x). Let f (x) =
p(x)q(x)∑
y p(y)q(y)

p(x)

q(x)

f (x)

Andrea Sportiello The challenge of linear-time Boltzmann sampling



Sampling from the Hadamard product: the problem

We have two measures on Z, p(x) and q(x). Let f (x) =
p(x)q(x)∑
y p(y)q(y)

p(x)

q(x)

f (x)

We have two black-box algorithms that sample from p and from q,

and we want to sample from f
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The obvious rejection algorithm

The rules of the game are clear. We have no exploitable
information whatsoever on p and q. We only have the black boxes

The obvious rejection algorithm seems to be the only candidate:

Algorithm : Obvious rejection

begin

repeat

x ⇐ p ; y⇐ q

until x = y ;
return x

end

De�ne the scalar product (f , g) =
∑

x f (x)g(x).
The `repeat' loop is repeated on average 1/(p, q) times.

If we have a size parameter n, this may be large,
and we want to make better
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Scaling of the size parameter

Say that there exists a κ ≥ 3 such that
∑

x(p(x)κ + q(x)κ)� (p, q)
(by Cauchy�Schwarz, it can't be κ = 2).

Then we want to bring down the complexity
from ∼ 1/(p, q). to ∼ 1/

√
(p, q) (maybe up to logs)

The typical case is κ = 3 above, and (p, p), (p, q), (q, q) are all Θ(n−2α)
(maybe up to logs)

Then, the complexity of the obvious rejection algorithm is Θ(n2α)
and we want to go down to Θ(nα ln n) or Θ(nα)

-� Θ(n2α)
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A complexity paradigm (you need this only if you care about logs)

In algorithm complexity you normally just count operations.
Nonetheless, when you have black boxes,

it is wise to count separately operations and black-box queries,
which are generally much more expensive than a single operation

Here we have two black boxes,
for simplicity we will assume they have similar complexity

Nice notation:

{
for black-box queries

for operations

Then, e.g., Θ(nx + ny ) simpli�es to Θ(nx ) if x ≥ y ,
but stays as is if x < y , as we only know that / > 1

The complexity of the obvious rejection algorithm is Θ(n2α )
We want to go down to Θ(nα + nα ln(n) )
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The naïve `birthday paradox' algorithm

Let us consider the following algorithm

Algorithm : Birthday paradox, �rst try

begin

repeat

(x1, . . . , xk) ⇐ p ; (y1, . . . , yk) ⇐ q

until ∃! (i , j) | xi = yj ;
return xi

end

Best hope: in each `repeat' cycle
there are ∼ Poissk2(p,q) pairs (i , j) such that xi = yj ,

so if we tune k ∼ 1/
√

(p, q)
the cycle costs Θ(k ), and is repeated on average Θ(1) times

The complexity drops down to Θ(nα )
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An easy win?

An easy win?

. . .No!

besides a bunch of solvable minor issues
(is the number of good pairs really distributed as a Poissonian?)

(the `wrong' naïve search for a good pair takes time k2)

there is the one big problem:
The resulting probability distribution is biased!

The average number of good pairs (i , j) with xi = yj = z
is in fact proportional to f (z), and boosted by a factor k2,

which is good. . .
. . . but knowing that you have a unique good pair gives a bias!

However the whole idea remains valuable, because, if the average
number of good pairs is small, having no further pairs is `normal',

so the bias is small, and maybe can be corrected with a
computationally-cheap trick.
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Poissonisation of the naïve algorithm

Analysing the bias of the previous algorithm is complicated.
It gets easier if we `Poissonise' k , i.e. we rather consider:

Algorithm : Birthday paradox, Poissonised

begin

repeat

sample kp and kq with Poissk ;
(x1, . . . , xkp) ⇐ p ; (y1, . . . , ykq) ⇐ q

until ∃! (i , j) | xi = yj ;
return xi

end

Call νz = (az , bz), with az = #{i | xi = z} and bz = #{j | yj = z}
The good fact of Poissonisation is that

the νz 's are independent random variables
so that we can easily analyse what is the probability of returning z
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A formula for the bias

Fact: prob(az , bz) = Poisskp(z)(az)Poisskq(z)(bz)

thus the probability that there is a single pair for z is
Poisskp(z)(1)Poisskq(z)(1) = e−k(p(z)+q(z))k2p(z)q(z)

and the probability that there are no pairs for values z ′ 6= z is
1−

(
1− Poisskp(z ′)(0)

)(
1− Poisskq(z ′)(0)

)
=

e−k(p(z ′)+q(z ′))
(
ekp(z ′) + ekq(z ′) − 1

)
as a result, the probability of returning z is proportional to†

f (z)

ekp(z) + ekq(z) − 1

and we would be �ne if we could devise a �nal rejection procedure
for the spurious factor Bias(z) := 1/(ekp(z) + ekq(z) − 1)

† I.e., up to a factor, like
∏

z ′ ψ(z ′), which is the same for all z ,
although possibly complicated to calculate
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A philosophical digression

So, we want to add a �nal procedure
for correcting the spurious factor Bias(z) := 1/(ekp(z) + ekq(z)− 1).

In other words, for some C > maxz(ekp(z) + ekq(z) − 1),

but still with
∑

z f (z) e
kp(z)+ekq(z)−1

C = Θ(1),

I want to sample a Bernoulli random variable of parameter ekp(z)+ekq(z)−1
C

However, recall that we have no analytic information on p and q
(we only have the black boxes!)

Can we ever sample Bernξ without evaluating ξ?

This is not impossible a priori,

just remember the famous algorithm
for Bernπ/4 that makes no use of π. . .
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A �rst solution with static lists

Algorithm : Hadamard product, with static lists
repeat

sample kp and kq with Poissk ;
(x1, . . . , xkp) ⇐ p ; (y1, . . . , ykq) ⇐ q ;

sort the lists above, produce the list of {(z , az , bz)};
if N• = 0 and N• = 1 then

ν ← az + bz − 1 for the only z ∈ Ω•;
win← Bernν/3;

until win=true;
return z ;
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Why this algorithm is unbiased

Let us �rst see why this algorithm is correct
Call for short φ(z) = e−k(p(z)+q(z))

The algorithm may return z only if
no z ′ 6= z arrives out of the Ω• region,

each z ′ makes a factor

φ(z ′)
(
1+ kp(z ′) + (kp(z ′))2

2 + kq(z ′) + (kq(z ′))2

2

)
0 1 2 3 4

0

1

2

3

4

1

3

2

3

2

3

1

1

Then, it shall also happen that z falls within the Ω• region
this makes a factor

k2p(z)q(z) φ(z)
(

1
3 ·

1 +

2
3 ·

kp(z)
2 +

1·

(kp(z))2

6 +

2
3 ·

kq(z)
2 +

1·

(kq(z))2

6

)
We would have won if the two factors in parenthesis
were proportional. But they are not. For this reason

we put a �nal Bernoulli rejection, that corrects for the factorials
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Why this algorithm is fast

We have taken the apparently risky choice of making a very large
rejection region Ω•. If any z falls here, we restart no matter what.

Does this a�ect the complexity in an important way, or the
estimates from the naïve birthday heuristics are still valid?

One run costs on average 2k + k ln(k) (for sorting),
i.e. already the seeked Θ(nα + nα ln(n) ),

so we win i� the acceptance rate of one run is Θ(1)

This rate is easily deduced from the previous calculation, to be

(∑
z

1

3
k2p(z)q(z)

)∏
w

φ(w)
(
1 + kp(w) + (kp(w))2

2 + kq(w) + (kq(w))2

2

)
=:

1

3
k2 (p, q)

∏
w

ψ(w)
. . . we claim that

∏
w

ψ(w) ' e−k
2(p,q)
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Why this algorithm is fast

If this is true, the average complexity can be made as small as

complexity

+ Θ(ln n)
= min

k

2k
1
3k

2(p, q)e−k2(p,q)

=
1√

(p, q)
min
x

2
√
x

x
3 exp(−x)

=
1√

(p, q)
min
x

6ex√
x

=
6
√
2e√

(p, q)

The reason why this is true is that

1

ψ(w)
= 1 +

k2p(w)q(w)+k3

3! (p(w)3 + q(w)3) + · · ·

negligible by
our assumption on∑

z (p(z)3 + q(z)3)

1 + kp(w) + (kp(w))2

2 + kq(w) + (kq(w))2

2

thus
∏

w ψ(w)−1 '
∏

w (1 + k2p(w)q(w)) '∏
w exp(k2p(w)q(w)) = exp(k2(p, q))
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Why this algorithm is fast

If this is true, the average complexity can be made as small as

complexity

+ Θ(ln n)
= min

k

2k
1
3k

2(p, q)e−k2(p,q)

=
1√

(p, q)
min
x

2
√
x

x
3 exp(−x)

=
1√

(p, q)
min
x

6ex√
x

=
6
√
2e√

(p, q)

The reason why this is true is that

1

ψ(w)
= 1 +

k2p(w)q(w)+k3

3! (p(w)3 + q(w)3) + · · ·

negligible by
our assumption on∑

z (p(z)3 + q(z)3)

1 + kp(w) + (kp(w))2

2 + kq(w) + (kq(w))2

2

thus
∏

w ψ(w)−1 '
∏

w (1 + k2p(w)q(w)) '∏
w exp(k2p(w)q(w)) = exp(k2(p, q))
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One application: random bridges in random media

Consider a bistochastic digraph (a graph with uniform in- and out-degree)
which has some `translational invariance on average' (I choose here
a model of plaquettes i.i.d. oriented clockwise or counterclockwise)
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One application: random bridges in random media

Consider a bistochastic digraph (a graph with uniform in- and out-degree)
which has some `translational invariance on average' (I choose here
a model of plaquettes i.i.d. oriented clockwise or counterclockwise)

Now we have a random
instance of a graph.

On top of this, we will
consider random walks
starting at the origin

Do you have a good algorithm
for uniformly sampling walks

W
(n)
0→0, of length 2n, starting

and arriving at the origin?
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One application: random walks in random media

Sampling random walks of length 2n, with
no prescribed endpoint, is trivially linear. . .

but the endpoint x is a random variable,
probably at distance ∼

√
n, and the

probability that x = 0 is roughly n−
D
2

Naïve rejection algorithm: complexity n1+D
2

Now, grow the �rst half of the path, of length n, up to its endpoint x
(which has distribution p(x)), and grow the last half of the path,
again starting from the origin, and walking on the digraph with

reversed orientation (this has distribution q(x))

If you use the algorithm described here, with these p and q,

the complexity goes from n1+D
2 to n1+D

4
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A more complicated problem

Now suppose that you have a family of Hadamard product
problems, that is, for some set C, you want to sample x from

f (x) =

∑
c∈C gc pc(x) qc(x)∑
c,y gc pc(y) qc(y)

(with
∑

c gc = 1, and
∑

y pc(y) =
∑

y pc(y) = 1 for all c)

Our winning strategy was to sample x with a probability of the form

k2p(x)q(x)
∏
y

ψ(y)

where the k2 factor is the �birthday paradox� enhancement, and the∏
y ψ(y) is an irrelevant factor, of order 1 when k2(p, q) is of order 1.

However, if we just do the same in this more general framework,
the

∏
y ψ(y) factor depends on C , and is not irrelevant anymore. . .

Can we correct its contribution?
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A more complicated problem

If we just apply the strategy above, we sample a measure of the like

falg(x) ∝
∑
c∈C

gc
1
3k

2pc(x) qc(x) exp(−k2(pc , qc) + · · · )

We have a nice variant of the Hadamard product algorithm,
which uses �incremental lists� instead of �static� ones.
This works with continuous time and Poisson clocks,

and the probability of terminating at time in [t, t + dt] is

falg(x , t)dt ∝
∑
c∈C

gc
1
3 t pc(x) qc(x) exp(−t2(pc , qc) + t3 · · · )dt

that is, integrating over time,

falg(x) ∼ 1

3

∑
c∈C

gc
pc(x)qc(x)

(pc , qc) + · · ·

this other bias factor is a bit easier to correct. . .
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A more complicated problem

Summary: the �incremental lists� variant of the Hadamard product
algorithm gives a measure

falg(x) ∼ 1

3

∑
c∈C

gc
pc(x)qc(x)

(pc , qc) + · · ·

instead of the desired f (x) ∝
∑

c∈C gc pc(x)qc(x).
We can correct this bias, up to error terms that we still have to �x,

by �rst doing the Birthday paradox strategy (at given c with a
static parameter k such that we know that k2 maxc(pc , qc) . 1),
and then perform the incremental list run at c only if we have
found some �good pair�. This gives a probability of the form

falg(x) ∼ 1
3

∑
c∈C

gc
pc(x)qc(x)

(pc , qc) + · · ·

[
1−
∏
y

(
e−kpc (y)+e−kqc (y)−e−k(pc (y)+qc (y))

)]

∼ 1
3

∑
c∈C

gc pc(x)qc(x)
k2(pc , qc) + · · ·

(pc , qc) + · · ·
∝
∑
c∈C

gc pc(x)qc(x)(1 + · · · )
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Boltzmann sampling of speci�cable structures

Let us just pretend that we can solve this `small' (1 + · · · ) problem,
and see what this would imply at the level of applications...

Recall the framework of `combinatorial speci�cation' systems:
A1 = F1(A1, . . . ,Ak , z)

...
Ak = Fk(A1, . . . ,Ak , z)

By the introduction of marked objects
(a useful trick in order to modify the tail exponent of the distribution),

you get associated equations for the marked classes
A′1 =

∑
i A
′
iF1,i (A1, . . . ,Ak , z) + F1,0(A1, . . . ,Ak , z)

...
A′k =

∑
i A
′
iFk,i (A1, . . . ,Ak , z) + Fk,0(A1, . . . ,Ak , z)
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Boltzmann sampling of speci�cable structures

Now, rede�ne Ai = 1
2(Ared

i + Ablue
i ) in the A′i equations, and

perform the Galton�Watson exploration of the A′i `spine' only,
up to when you hit the marked object.

At this point you have typically produced:
I νredi ∼

√
N red branches Ared

i (for the various 1 ≤ i ≤ k),
I νbluei ∼

√
N blue branches Ablue

i ,
I n0 ∼

√
N elementary units,

I a multiplicative combinatorial factor g .

Call c the datum of {νredi , νbluei , n0, g} and

pc(x) = [zx ]
∏
i

(Ared
i (z))ν

red

i

qc(x) = [zN−n0(c)−x ]
∏
i

(Ablue
i (z))ν

blue

i

Then we are exactly in the framework above!
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Graphs with no W4 minor

Let's choose the example of W4-free graphs,

that is, graphs that do not contain as a minor.

These graphs, rooted at one edge, are in bijection
with 2-terminal graphs G[uv ] that can be reduced to one edge

by series, parallel and `wheatstone bridge' reductions:

G[uv ]

G

u v

ŵ−→

p̂−→

ŝ−→

Crucially, for any such graph, the decomposition tree is unique!
Thus counting the graphs is like counting these trees,

which gives rise to a system of equations
(just like series-parallel graphs, but a bit more complicated)
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Graphs with no W4 minor

Introduce the combinatorial classes:

I z is the one-edge trivial class;

I A is all the (2-terminal) graphs we want;

I S graphs consist of 2 or more blocks in series in the outermost
layer;

I P graphs consist of 2 or more blocks;

I W graphs consist of one Wheatstone bridge.

This gives rise to Galton�Watson trees in which:

I all and only the leaves are z ;

I A is only at the root, has a single child in the list {S ,P,W , z};
I S and P do not have children with same label, and have

degree at least 2. A P node of degree d comes with a
symmetry factor 1/d!;

I W has degree 5 and symmetry factor 1/2.
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Graphs with no W4 minor


A = S + P + W + z
S = (A− S)2/(1− (A− S))
P = exp(A− P)− (1 + (A− P))
W = A5/2

(Ac , zc) is the position of the �rst point of slope zero, on the
branch starting in (0, 0) with slope 1 (this holds for any polynomial
W(A), i.e. any recursive family of graphs). Thus Ac is a root of the
polynomial 1− A− A2 − (1 + A)2W ′(A) = 0. So we `know' the
branching rates of the associated critical Galton�Watson process.
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Graphs with no W4 minor


A = S + P +W(A) + z W(A) = A5/2
S = A2/(1 + A)
P = A− ln(1 + A)

z = ln(1 + A)− A2

1 + A
−W(A)

(Ac , zc) is the position of the �rst point of slope zero, on the
branch starting in (0, 0) with slope 1 (this holds for any polynomial
W(A), i.e. any recursive family of graphs). Thus Ac is a root of the
polynomial 1− A− A2 − (1 + A)2W ′(A) = 0. So we `know' the
branching rates of the associated critical Galton�Watson process.
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Graphs with no W4 minor

Let's go back to the `combinatorial' system...
A = S + P +W(A) + z
S =

∑
k≥2(A− S)k

P =
∑

k≥2
1
k! (A− P)k

With one marking we get
A′ = S ′ + P ′ + A′W ′(A) + 1
S ′ = (A′ − S ′)

∑
k≥1(k + 1)(A− S)k

P ′ = (A′ − P ′)
∑

k≥1
1
k! (A− P)k
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Graphs with no W4 minor

A typical example of the `spine' of the tree following the X ′ class:
A = S + P +W(A) + z
S =

∑
k≥2(A− S)k

P =
∑

k≥2
1
k! (A− P)k


A′ = S ′ + P ′ + A′W ′(A) + 1
S ′ = (A′ − S ′)

∑
k≥1(k + 1)(A− S)k

P ′ = (A′ − P ′)
∑

k≥1
1
k! (A− P)k

(the colours tell how to implement the Hadamard product trick)

A

S

P

W

P P

P P S

A

S

P

W

P P

P P S

S

PW

P S

S S

P
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Graphs with no W4 minor

A typical example of the `spine' of the tree following the X ′ class:
W = 1

2(S+P+W +z)5

S =
∑

k≥2(P+W +z)k

P =
∑

k≥2
1
k! (S+W +z)k


W ′ = 5

2(S ′+P ′+W ′+1)(S+P+W +z)4

S ′ = (P ′+W ′+1)
∑

k≥1(k+1)(P+W +z)k

P ′ = (S ′+W ′+1)
∑

k≥1
1
k! (S+W +z)k

(the colours tell how to implement the Hadamard product trick)

A

S

P

W

P P

P P S

A

S

P

W

P P

P P S

S

PW

P S

S S

P
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