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Monotone surfaces

2-d 3-d

• Exclusion processes
• Permutations
• Dyck Paths (> diagonal)
• Integer partitions

• Plane partitions
• Lozenge tilings
• Dimer model on hexagonal lattice

1) 2)



One path

Simple Exclusion Process:1)

Permutations with Nearest Neighbor Transpositions:

2 7 1 5 6 4 3

0 1 0 0 0 0 0 
0 1 0 0 1 0 0 
0 1 0 1 1 0 0 
0 1 0 1 1 1 0 
0 1 0 1 1 1 1
1 1 0 1 1 1 1

2)

3) Integer Partitions:  unordered sums of positive integers

Ex:         5+4+1+1,       5 + 3 + 3,  &  11   are all partitions of 11.

(“Mountain-valley chain”)



Integer partitions as paths

Integer Partitions

Ferrers Diagrams:  

*  Sampling integer partitions of n is the same as sampling 
lattice paths bounding regions of area n.



Monotone surfaces and height functions

2-d 3-d:     Disjoint paths

=

1) 2)



Monotone surfaces and height functions

2-d 3-d:  Vertex disjoint paths

=

0    1    0   2    1
1    0    1   0    2
0   1    0    1    0

0    2    0    1    2
2    0    2    0   1

Edge-disjoint paths

1) 2)

3)

i
i -1 (mod 3)

Assign colors using the rules:

i i+1 (mod 3)     or
i

i+1 (mod 3)

i i-1 (mod 3)      or
0



Monotone surfaces and height functions

2-d 3-d:  Vertex disjoint paths

=

0    1    0   2    1
1    0    1   0    2
0   1    0    1    0

0    2    0    1    2
2    0    2    0   1

Edge-disjoint paths = 3-colorings

i
i -1 (mod 3)

Assign colors using the rules:

i i+1 (mod 3)     or
i

i+1 (mod 3)

i i-1 (mod 3)      or

0    2    0   1    2
2    0    2   0   1
0   1    0    1  0

1    0    1   0    2
0    1    0   2    1
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The Mountain-Valley Markov Chain

To sample, repeat:

§ Pick v on the path;
§ If v marks a mountain/valley, invert w.p. 1/2.

This Markov chain is reversible and ergodic, so it
converges to the uniform distribution over lattice paths.

How long?

n n



The  mixing time

Def:  The total variation distance is 

||Pt,π|| =  max   __     ∑   |Pt(x,y) - π(x)|.
xÎ Ω yÎΩ 2

1

A Markov chain is  rapidly mixing if t(e) is  poly(n, log(e-1)).
(or polynomially mixing)

Def: Given e, the mixing time is

t(e) = min {t: ||Pt’,π|| < e,     t’ ≥ t }.A

A Markov chain is  slowly mixing if t(e) is at least exp(n).



The Mountain Valley Markov Chain

To sample, repeat:

§ Pick v on the path;
§ If v marks a mountain/valley, invert w.p. 1/2.

This Markov chain is reversible and ergodic, so it
converges to the uniform distribution over lattice paths.

How long? Answer:   Q(n3 log n)     [Wilson]

n n



Multiple paths

v

v

The mountain/valley chain on multiple (vertex disjoint) paths.



Multiple paths

There is a bijection between nonintersecting lattice paths and 
lozenge tilings (or dimer coverings).



Glauber dynamics for lozenges

Repeat:
§ Pick v in the lattice region;
§ Add / remove the “cube” at  v w.p. ½, if possible.

v v



Glauber dynamics for 3-colorings

Repeat:
§ Pick a cell uniformly;
§ Recolor the cell  w.p. ½, if possible.

0    1    0   2    1
1    0    1   0    2
0   1    0    1 0

0    2    0    1    2
2    0    2    0   1

0    1    0   2    1
1    0    1   0    2
0   1    0    2 0

0    2    0    1    2
2    0    2    0   1

This is also a “mountain-valley” move!



3-colorings of Zd:
d=2:     Yes    (simple coupling)
d=3:     Yes [Luby, R., Sinclair], [Martin, Goldberg, Patterson], [R., Tetali]
d=4:     ???

Sampling Monotonic Surfaces in Zd

Do the Mountain-Valley Chains converge in poly time?

Lattice paths, lozenge tilings and plane/space partitions:
d=2:     Yes    (simple coupling)
d=3:     Yes [Luby, R., Sinclair], [Wilson]
d≥4:     ???



3-colorings of Zd:
d=2:     Yes    (simple coupling)
d=3:     Yes [Luby, R., Sinclair], [Martin, Goldberg, Patterson], [R., Tetali]
d=4:     ???
d >> 4:   No! [Galvin, Kahn, R., Sorkin], [Peled]

Sampling Monotonic Surfaces in Zd

Lattice paths, lozenge tilings and plane/space partitions:
d=2:     Yes    (simple coupling)
d=3:     Yes [Luby, R., Sinclair], [Wilson]
d≥4.     ???

Do the Mountain-Valley Chains converge in poly time?
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Integer partitions as paths

Integer Partitions

Ferrers Diagrams:  

*  Sampling integer partitions of n is the same as sampling 
lattice paths bounding regions of area n.



We want to sample region of area n in an n x n lattice region.

Sample from all paths in the n x n grid
and output if its area is n.

Unbiased path: 
expected size is n2/2.

0 200 400 600 800 1000
0.000

0.002

0.004

0.006

0.008

0  n                                       n2/2                                               n2

Sampling Ferrers Diagrams 



Boltzmann Sampling

Solution: Use biased walks:  

Given l, the Gibbs (or Boltzmann) distribution gives 
a path with area k weight  lk.

[Cousins, Bhakta, Fahrbach, R. ‘17]

0 200 400 600 800 1000
0.000

0.002

0.004

0.006

0.008 Idea: Make a polynomial number of distributions
with parameters   l0, l1, … , lm-1 so that:

Ø li and li+1 are close (their distributions overlap a lot)

Ø We can sample efficiently from each distribution 

Ø (At least) one has nontrivial mass at n. 

Then sample from each until there is an output a region with area n.
(Each of these area n regions are equally likely for each distribution!)



Repeat:
Choose (v,d) in S x {+,-}.
If a square can be added at v,

and d = +, add it w.p. λ;
If a square can be removed at v,

and d = -, remove it  w.p. 1;
Otherwise do nothing.

Given 0 < λ < 1:

Converges to the distribution:
π(S) = λarea(S) / Z.

Sampling Biased Surfaces



Z2 Zd

How fast?

n

n

n

n

n

Generating Biased Surfaces



Biased Surfaces in Zd

[Benjamini, Berger, Hoffman, Mossel ’05]. 
d = 2; λ > 1 const, O(n2)  mixing time (optimal). 

[Greenberg, Pascoe, R. ’09]
d = 2, λ > 1  const
d ≥ 3,     λ > d2 

[Levin, Peres ’16]
d = 2; λ > 1, O(n2) mixing time.

[Caputo, Martinelli, Toninelli ’11]
d = 3; λ > 1, poly mixing time.

Q:  How long does the biased MC take to converge?

O(nd) mixing time.

The weighted chains for 
Boltzmann sampling

are fast for all λ.

ß
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Boltzmann Sampling

Solution: Use biased walks:  

Given l, the Gibbs (or Boltzmann) distribution gives 
a path with area k weight  lk.

Idea: Make a polynomial number of distributions
with parameters   l0, l1, … , lm-1 (m poly) so that:
ü li and li+1 are close (their distributions overlap a lot)

ü We can sample efficiently from each distribution 

Ø (At least) one has > 1/poly mass at n. 

Then sample from each until there is an output a region with area n.
(Each of these area n regions are equally likely for each distribution!)



0 200 400 600 800 1000
0.000

0.002

0.004

0.006

0.008Boltzmann Sampling

We have a polynomial number of distributions
with parameters   l0, l1, … , lm-1 .

Ø Does (at least) one have > 1/poly mass at n?



Method 1: Thm:  {p(k)} n=26 is logconcave.              [Desalvo, Pak ‘14]. 

Thus   {p(k) lk} n=26 is also logconcave (and hence unimodal) for all l.

Setting l = p(n)/p(n+1) skews the distribution so that the mode is at n.

∞

∞

(# partitions of size k)

But won’t easily generalize:
Skew partitions

0 200 400 600 800 1000
0.000

0.002

0.004

0.006

0.008Boltzmann Sampling

We have a polynomial number of distributions
with parameters   l0, l1, … , lm-1 .

Ø Does (at least) one have > 1/poly mass at n?

Yes!



• || Pi , Pi+1 || > 1/2 for all i

• P0 is concentrated below n.
• Pm-1 is concentrated above n.

Method 2

So there exists  j s.t. Pr [x < n] > 1/3 and Pr [x > n] > 1/3.

But the Mountain-Valley chain for bias lj is always rapidly mixing!  

Therefore  Pr [ x=n ] > 1/poly  on that distribution.                        [BCFR ‘17]

Boltzmann Sampling

We have:

0 200 400 600 800 1000
0.000

0.002

0.004

0.006

0.008Boltzmann Sampling

We have a polynomial number of distributions
with parameters   l0, l1, … , lm-1 .

Ø Does (at least) one have > 1/poly mass at n?

Yes!



Sampling Integer Partitions

poly

[Arrati
a 

-



Sampling lozenge tilings of fixed height

Sampling biased lozenge tilings is also fast.   [Caputo, Martinelli, Toninelli ’11]



Talk Outline

2.  Sampling biased monotonic surfaces 

• Integer partitions of size n
• Biased lozenge tilings

3. Sampling weighted 3-colorings: the “six-vertex model”

• The antiferroelectric phase
• The ferroelectric phase

1.  Sampling unweighted monotone surfaces and colorings



View 3-colorings of the grid (edge-disjoint paths) as an Eulerian orientation: 

1 2 3 4 5 6

v
v v v

vv
vv

v
v

v
v v v v

v
v

v

v vv
v vv

v

v
v
v

v v v v
v

v
vvv

v v v

ß
There are 6 possibilities for each internal vertex:

The 6-Vertex Model



Assign the Boltzmann weights  w1, w2, … , w6 > 0 to the 6 types:

1 2 3 4 5 6
The weight of a configuration x ÎW is   π(x) = Pi=1  wi

ni(x) / Z, 

where ni(x) is the number of vertices in x of type wi

and Z is the partition function.

6

The 6-Vertex Model

1                    2                    3                    4                    5                     6



a b c

In the paths representation, keeping only up and right arrows, we have:

The 6-Vertex Model

1                    2                   3                   4                   5                    6



In the paths representation, keeping only up and right arrows, we have:

Due to invariants, there are really only 2 parameters: a/c and b/c.

The 6-Vertex Model

a b c

1                    2                   3                   4                   5                    6



min(a2/c2,1) 

Glauber Dynamics

Glauber dynamics picks a cell and reverses all 4 edges if they 
form an oriented cycle      (with Metropolis transition probs).

min(c2/a2,1) 



Glauber dynamics picks a cell and reverses all 4 edges if they 
form an oriented cycle.      (with Metropolis transition probs).

min (a2 b2 / c4, 1)

min (c4 /a2 b2, 1)

Glauber Dynamics



min (c2/b2, 1)

min (b2 / c2, 1)

Glauber Dynamics

Glauber dynamics picks a cell and reverses all 4 edges if they 
form an oriented cycle.      (with Metropolis transition probs).



The (conjectured) phase diagram from physics:

The Phase Diagram

DO

AFE FE

FE

1 �/�

1

�/�

b/c

a/c

AFE

Ø The configuration is  ferroelectric if   a > b+c or  b > a + c.

Ø The configuration is  antiferroelectric if   c > a + b.

Ø Otherwise the configuration is disordered.                              



The (conjectured) phase diagram from physics:

DO

AFE FE

FE

1 �/�

1

�/�

a = b = c = 1

(unweighted
3-colorings)

Proven:
Fast
Slow

Conjectured:
Fast
Slow

Ferroelectric

Antiferroelectric

Disordered

The Phase Diagram

b/c

a/c



Proven results:

DO

AFE FE

FE

1 �/�

1

�/�

[Liu ‘18]

DO

AFE FE

FE

1 �/�

1

�/�

[Fahrbach, R. ‘19]

The Phase Diagram: Results



Thm (Ferroelectric):   If  a > b + c  or  b > a + c  then there exist boundary 
conditions for which Glauber dynamics mixes exponentially slowly.

Thm (Antiferroelectric):  If  ac + bc + 3ab < c2 then Glauber dynamics 
with free boundary conditions mixes exponentially slowly.

[Fahrbach, R. 19]

Results



Proven results:

DO

AFE FE

FE

1 �/�

1

�/�

[Fahrbach, R. ‘19]

The Phase Diagram: Results

b/c

a/c
Favoring intersections

over     straights  or     turns

a b c

1                 2                 3                 4                 5                 6

a > b + c



• Induce well-separated paths from boundary conditions.
• Adjust parameters so that the ground state has large weight.

Thm (Ferroelectric):  If  a > b + c  or  b > a + c  then there exist boundary 
conditions for which Glauber dynamics mixes exponentially slowly.

The Ferroelectric Region



Thm (Ferroelectric):    If a> b+c or b > a+c then there exist boundary 
conditions for which Glauber dynamics mixes exponentially slowly.

High entropy (# configurations) High energy (weight)

Neither

A Bad Cut in W

Correlated Random Walks



Proven results:

DO

AFE FE

FE

1 �/�

1

�/�

[Fahrbach, R. ‘19]

The Antiferroelectric Region

Favoring turns edges
over intersections  or     straights

a b c

1                 2                 3                 4                 5                 6



Thm (Antiferroelectric):  If ac + bc + 3ab < c2 then Glauber dynamics 
with free boundary conditions mixes exponentially slowly.

Main idea:  for large values of c, the ground state behaves like the 
Independent set model at low temperature.

Odd vertices                                      Even vertices

The Antiferroelectric Region



Thm (Antiferroelectric):  If ac + bc + 3ab < c2 then Glauber dynamics 
with free boundary conditions mixes exponentially slowly.

Main idea:  for large values of c, the ground state behaves like the 
Independent set model at low temperature.

The Antiferroelectric Region



Thm (Antiferroelectric):  If ac + bc + 3ab < c2 then Glauber dynamics 
with free boundary conditions mixes exponentially slowly.
Main idea:  for large values of c, the ground state behaves like the 
Independent set model at low temperature.

Mostly odd vertices                                        Mostly even vertices

The Antiferroelectric Region

Half / half



Use a Peierls Argument:  alter “cut” configurations to increase weight exponentially
s.t. the information needed to undo the map is a smaller exponential.

The Antiferroelectric Region



Use a Peierls Argument:  alter “cut” configurations to increase weight exponentially
s.t. the information needed to undo the map is a smaller exponential.

Peierls Argument

For each point on the “fault line”, we gain weight  c/a or  c/b.



Proven results:

DO

AFE FE

FE

1 �/�

1

�/� [Liu ‘18]

DO

AFE FE

FE

1 �/�

1

�/� [Fahrbach, R. ‘19]

The Phase Diagram: Results

• c/a, b/c > µn

(SAW connective const.)

• Count non-backtracking walks

• Use a generating function to allow 
a or b to be big if the other is small



Recap and Open Questions

2.  Sampling biased monotonic surfaces 

• Integer partitions of size n
• Biased lozenge tilings

3. Sampling weighted 3-colorings: the “six-vertex model”

• The antiferroelectric phase
• The ferroelectric phase

1. Sampling unweighted monotone surfaces and colorings
Higher dimensions?

Biased 3-colorings in high dimensions?

The disordered phase?



Thank you!




