Sampling Algorithms and Phase Transitions

Dana Randall

Georgia Institute of Technology

Monotone surfaces

2-d

- Exclusion processes
- Permutations
- Dyck Paths (> diagonal)
- Integer partitions

- Plane partitions
- Lozenge tilings
- Dimer model on hexagonal lattice

One path

Integer partitions as paths

Integer Partitions

Ferrers Diagrams:

* Sampling integer partitions of n is the same as sampling lattice paths bounding regions of area n.

Monotone surfaces and height functions

2-d

3-d: Disjoint paths

Monotone surfaces and height functions

Edge-disjoint paths

Monotone surfaces and height functions

3-d: Vertex disjoint paths

Assign colors using the rules:

i i+1 (mod 3) or i+1 (mod 3)
i i i-1 (mod 3) or
$$\frac{i}{i-1 \pmod{3}}$$

Edge-disjoint paths = 3-colorings

Talk Outline

- 1. Sampling *unweighted* monotone surfaces and colorings
- 2. Sampling *biased* monotonic surfaces
 - Integer partitions of size n
 - Biased lozenge tilings
- 3. Sampling weighted 3-colorings: the "six-vertex model"
 - The antiferroelectric phase
 - The ferroelectric phase

Talk Outline

- 1. Sampling *unweighted* monotone surfaces and colorings
- 2. Sampling *biased* monotonic surfaces
 - Integer partitions of size n
 - Biased lozenge tilings
- 3. Sampling weighted 3-colorings: the "six-vertex model"
 - The antiferroelectric phase
 - The ferroelectric phase

The Mountain-Valley Markov Chain

This Markov chain is reversible and ergodic, so it converges to the uniform distribution over lattice paths.

How long?

The mixing time

<u>Def</u>: The total variation distance is

$$||\mathsf{P}^{\mathsf{t}},\pi|| = \max_{\mathbf{x}\in\Omega} \frac{1}{2} \sum_{\mathbf{y}\in\Omega} |\mathsf{P}^{\mathsf{t}}(\mathbf{x},\mathbf{y}) - \pi(\mathbf{x})|$$

<u>Def</u>: Given **E**, the mixing time is

 $\tau(\varepsilon) = \min \{t: ||\mathsf{P}^{t'}, \pi|| < \varepsilon, \forall t' \ge t \}.$

A Markov chain is rapidly mixing if $\tau(\varepsilon)$ is poly(n, log(ε^{-1})). (or polynomially mixing)

A Markov chain is slowly mixing if $\tau(\varepsilon)$ is at least exp(n).

The Mountain Valley Markov Chain

This Markov chain is reversible and ergodic, so it converges to the uniform distribution over lattice paths.

How long? Answer: $\Theta(n^3 \log n)$ [Wilson]

Multiple paths

The mountain/valley chain on multiple (vertex disjoint) paths.

Multiple paths

There is a bijection between nonintersecting lattice paths and lozenge tilings (or dimer coverings).

Glauber dynamics for lozenges

Repeat:

- Pick v in the lattice region;
- Add / remove the "cube" at v w.p. ½, if possible.

Glauber dynamics for 3-colorings

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	1	0	2	1

0	2	0	1	2
2	0	2 0		1
0	1	0	2	0
1	0	1	0	2
0	1	0	2	1

Repeat:

- Pick a cell uniformly;
- Recolor the cell w.p. ½, if possible.

This is also a "mountain-valley" move!

Sampling Monotonic Surfaces in Z^d

Do the Mountain-Valley Chains converge in poly time?

Lattice paths, lozenge tilings and plane/space partitions:

- d=2: Yes (simple coupling)
- d=3: Yes [Luby, R., Sinclair], [Wilson]
- d≥4: ???

3-colorings of Z^d:

- d=2: Yes (simple coupling)
- d=3: Yes [Luby, R., Sinclair], [Martin, Goldberg, Patterson], [R., Tetali]

d=4: ???

Sampling Monotonic Surfaces in Z^d

Do the Mountain-Valley Chains converge in poly time?

Lattice paths, lozenge tilings and plane/space partitions:

- d=2: Yes (simple coupling)
- d=3: Yes [Luby, R., Sinclair], [Wilson]
- d≥4. ???

3-colorings of Z^d:

- d=2: Yes (simple coupling)
- d=3: Yes [Luby, R., Sinclair], [Martin, Goldberg, Patterson], [R., Tetali]
- d=4: ???
- d >> 4: No! [Galvin, Kahn, R., Sorkin], [Peled]

Talk Outline

- 1. Sampling *unweighted* monotone surfaces and colorings
- 2. Sampling *biased* monotonic surfaces
 - Integer partitions of size n
 - Biased lozenge tilings
- 3. Sampling weighted 3-colorings: the "six-vertex model"
 - The antiferroelectric phase
 - The ferroelectric phase

Integer partitions as paths

Integer Partitions

Ferrers Diagrams:

* Sampling integer partitions of n is the same as sampling lattice paths bounding regions of area n.

Sampling Ferrers Diagrams

We want to sample region of area n in an n x n lattice region.

Solution: Use biased walks:

[Cousins, Bhakta, Fahrbach, R. '17]

Given λ , the Gibbs (or Boltzmann) distribution gives a path with area k weight λ^k .

<u>Idea</u>: Make a polynomial number of distributions with parameters $\lambda_0, \lambda_1, \dots, \lambda_{m-1}$ so that:

- > λ_i and λ_{i+1} are close (their distributions overlap a lot)
- We can sample efficiently from each distribution

(At least) one has nontrivial mass at n.

Then sample from each until there is an output a region with area n. (Each of these area n regions are equally likely for each distribution!)

Sampling Biased Surfaces

Given $0 < \lambda < 1$:

Repeat:
Choose (v,d) in S x {+,-}.
If a square can be added at v,
and d = +, add it w.p. λ;
If a square can be removed at v,
and d = -, remove it w.p. 1;
Otherwise do nothing.

Converges to the distribution:

 $\pi(S) = \lambda^{\operatorname{area}(S)} / Z.$

Generating Biased Surfaces

Biased Surfaces in Z^d

Q: How long does the biased MC take to converge?

[Benjamini, Berger, Hoffman, Mossel '05]. d = 2; $\lambda > 1$ const, O(n²) mixing time (optimal). [Greenberg, Pascoe, R. '09] $d = 2, \quad \lambda > 1 \text{ const} \\ d \ge 3, \quad \lambda > d^2$ $O(n^d) \text{ mixing time.}$ [Levin, Peres '16] The weighted chains for d = 2; $\lambda > 1$, O(n²) mixing time. \Rightarrow Boltzmann sampling are fast for all λ .

[Caputo, Martinelli, Toninelli '11] d = 3; $\lambda > 1$, poly mixing time.

Solution: Use biased walks:

Given λ , the Gibbs (or Boltzmann) distribution gives a path with area k weight λ^k .

Then sample from each until there is an output a region with area n. (Each of these area n regions are equally likely for each distribution!)

Does (at least) one have > 1/poly mass at n?

Yes!

<u>Method 1:</u> <u>**Thm**</u>: $\{p(k)\}_{n=26}^{\infty}$ is logconcave.

[Desalvo, Pak '14].

Thus $\{p(k) \lambda^k\}_{n=26}^{\infty}$ is also logconcave (and hence unimodal) for all λ . (# partitions of size k)

Setting $\lambda = p(n)/p(n+1)$ skews the distribution so that the mode is at n.

But won't easily generalize:

- <u>Method 2</u> We have: $|| \Pi_i, \Pi_{i+1} || > 1/2$ for all i
 - Π_0 is concentrated below n.
 - Π_{m-1} is concentrated above n.

So there exists j s.t. Pr[x < n] > 1/3 and Pr[x > n] > 1/3.

But the Mountain-Valley chain for bias λ_i is always rapidly mixing!

Therefore $\Pr[x=n] > 1/poly$ on that distribution.

[BCFR '17]

Sampling Integer Partitions

Runtime	Space	Skew Partitions	
O(n ^{2.5})	$O(n^{2.5})$		
		рогу	
$\widetilde{O}(n^{0.5})$	$\widetilde{O}(n^{0.5})$		
		N/A	
$O(n^{2.25})$	$\widetilde{O}(n^{0.5})$	$O(n^{16})$	
		O(n)	
	Runtime $O(n^{2.5})$ $\widetilde{O}(n^{0.5})$ $O(n^{2.25})$	Runtime Space $O(n^{2.5})$ $O(n^{2.5})$ $\widetilde{O}(n^{0.5})$ $\widetilde{O}(n^{0.5})$ $O(n^{2.25})$ $\widetilde{O}(n^{0.5})$	

Sampling lozenge tilings of fixed height

Sampling biased lozenge tilings is also fast. [Caputo, Martinelli, Toninelli '11]

Talk Outline

- 1. Sampling *unweighted* monotone surfaces and colorings
- 2. Sampling *biased* monotonic surfaces
 - Integer partitions of size n
 - Biased lozenge tilings
- 3. Sampling weighted 3-colorings: the "six-vertex model"
 - The antiferroelectric phase
 - The ferroelectric phase

View 3-colorings of the grid (edge-disjoint paths) as an Eulerian orientation:

There are 6 possibilities for each internal vertex:

Assign the Boltzmann weights $W_1, W_2, ..., W_6 > 0$ to the 6 types:

The weight of a configuration $x \in \Omega$ is $\pi(x) = \prod_{i=1}^{6} w_i n_i(x) / Z$,

where $n_i(x)$ is the number of vertices in x of type w_i

and Z is the partition function.

In the paths representation, keeping only up and right arrows, we have:

In the paths representation, keeping only up and right arrows, we have:

Due to invariants, there are really only 2 parameters: a/c and b/c.

Glauber Dynamics

Glauber dynamics picks a cell and reverses all 4 edges if they form an oriented cycle (with Metropolis transition probs).

Glauber Dynamics

Glauber dynamics picks a cell and reverses all 4 edges if they form an oriented cycle. (with Metropolis transition probs).

Glauber Dynamics

Glauber dynamics picks a cell and reverses all 4 edges if they form an oriented cycle. (with Metropolis transition probs).

The Phase Diagram

The (conjectured) phase diagram from physics:

> The configuration is ferroelectric if a > b+c or b > a + c.

- > The configuration is antiferroelectric if c > a + b.
- Otherwise the configuration is disordered.

The Phase Diagram

The (conjectured) phase diagram from physics:

The Phase Diagram: Results

Proven results:

[Liu '18]

[Fahrbach, R. '19]

[Fahrbach, R. 19]

<u>Thm</u> (Ferroelectric): If a > b + c or b > a + c then there exist boundary conditions for which Glauber dynamics mixes exponentially slowly.

<u>Thm</u> (Antiferroelectric): If $ac + bc + 3ab < c^2$ then Glauber dynamics with free boundary conditions mixes exponentially slowly.

The Phase Diagram: Results

Proven results:

[Fahrbach, R. '19]

The Ferroelectric Region

<u>Thm</u> (Ferroelectric): If a > b + c or b > a + c then there exist boundary conditions for which Glauber dynamics mixes exponentially slowly.

- Induce well-separated paths from boundary conditions.
- Adjust parameters so that the ground state has large weight.

A Bad Cut in Ω

<u>Thm</u> (Ferroelectric): If a > b+c or b > a+c then there exist boundary conditions for which Glauber dynamics mixes exponentially slowly.

Proven results:

[Fahrbach, R. '19]

<u>Thm</u> (Antiferroelectric): If $ac + bc + 3ab < c^2$ then Glauber dynamics with free boundary conditions mixes exponentially slowly.

<u>Main idea</u>: for large values of c, the ground state behaves like the Independent set model at low temperature.

Odd vertices

Even vertices

<u>Thm</u> (Antiferroelectric): If $ac + bc + 3ab < c^2$ then Glauber dynamics with free boundary conditions mixes exponentially slowly.

<u>Main idea</u>: for large values of c, the ground state behaves like the Independent set model at low temperature.

<u>**Thm**</u> (Antiferroelectric): If $ac + bc + 3ab < c^2$ then Glauber dynamics

with free boundary conditions mixes exponentially slowly.

Main idea: for large values of c, the ground state behaves like the Independent set model at low temperature.

Use a Peierls Argument: alter "cut" configurations to increase weight exponentially s.t. the information needed to undo the map is a smaller exponential.

Peierls Argument

Use a Peierls Argument: alter "cut" configurations to increase weight exponentially s.t. the information needed to undo the map is a smaller exponential.

For each point on the "fault line", we gain weight c/a or c/b.

The Phase Diagram: Results

Proven results:

c/a, b/c > μⁿ
 (SAW connective const.)

- Count non-backtracking walks
- Use a generating function to allow a or b to be big if the other is small

Recap and Open Questions

- 1. Sampling *unweighted* monotone surfaces and colorings *Higher dimensions?*
- 2. Sampling *biased* monotonic surfaces
 - Integer partitions of size n
 - Biased lozenge tilings

Biased 3-colorings in high dimensions?

- 3. Sampling weighted 3-colorings: the "six-vertex model"
 - The antiferroelectric phase
 - The ferroelectric phase

The disordered phase?

