Satisfiability of Regular Occupation Problems

Matija Pasch LMU Munich

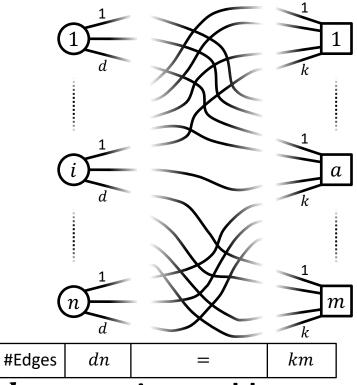
(with Konstantinos Panagiotou)

Contents

- Random Occupation Problems
- First and Second Moment Method
- Contraction Coefficient

Parameters

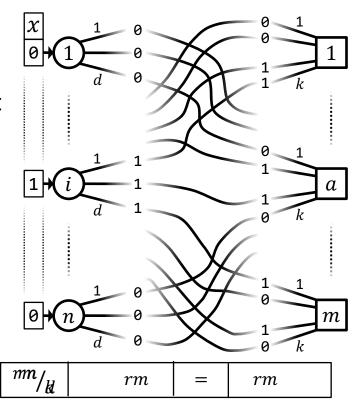
- Number n > 0 of variables
- Number m > 0 of constraints
- Variable degree d > 1
- Constraint degree k > 1
- Occupation number r > 0



• Instance of the d-regular r-in-k occupation problem A (d,k)-biregular graph g=([n],[m],E) with m=dn/k

Solutions of g

- Assignments $x \in \{0,1\}^n$
- x solution of g if each constraint sees r 1's on the k edges
- \rightarrow Restrict to $rn \in k\mathbb{Z}$



Decision Problem

Does there exist a solution x of g?

#Ones

Asymptotical Average Case

- Fix r, k and d
- For fixed n draw random instance G uniformly from all (d,k)-biregular graphs ([n],[m],E)
- Is G satisfiable with high probability in the large n limit?

History of Random Constraint Satisfaction Problems

- Probabilistic method for random graph models developed by Erdős and Rényi in the 1960s
- Introduction of non-rigorous replica/cavity method and solution space clustering picture by physicists in the 1980s [Mézard, Montanari '09]
- Active research to date, major recent successes include k-SAT satisfiability threshold for large k [Ding, Sly, Sun '15]

Satisfiability Thresholds

- Fix k and r
- We conjecture a sharp satisfiability threshold d^* with respect to d $\lim_{n \to \infty} \mathbb{P}[G \text{ satisfiable}] = 1 \text{ for } d < d^*$ $\lim_{n \to \infty} \mathbb{P}[G \text{ satisfiable}] = 0 \text{ for } d > d^*$
- Conjectured location of threshold

$$d^* = d^*(r,k) = \frac{kH\binom{r}{k}}{kH\binom{r}{k} - \ln\binom{k}{r}}$$
 Binary entropy $H(p) = -p \ln p - (1-p) \ln(1-p)$

Cooper et al (1996)

Confirmed sharp satisfiability threshold $d^*(r, k)$ for r = 1 and $k \ge 3$

Mora (2007)

Introduction of Occupation Problems

Mézard, Zdeborová (2008) and Krzakala, Zdeborová (2011)

Discussion of Occupation Problems with first and second moment

Moore (2016)

Confirmed sharp satisfiability threshold $d^*(r, k)$ for r = 1 and $k \ge 3$

Panagiotou, P. (2019)

- Confirmed sharp satisfiability threshold d*(r, k) for r = 2 and k = 4
- Confirmed $d^*(r,k)$ for r=2 and $k\geq 4$ modulo an analytical optimization problem

Applications

- The d-regular positive r-in-k SAT
- Existence of r-factors in k-regular d-uniform hypergraphs \rightarrow Perfect matchings for r=1

Contents

- Random Occupation Problems
- First and Second Moment Method
- Contraction Coefficient

Outline

- Configuration Model [Bollobás '80]
 - Draw bijection $G: [dn] \rightarrow [km]$ uniformly at random
 - Translate sharp satisfiability threshold to random graph using contiguity

First Moment Method

- G not satisfiable with high probability for $d > d^*$
- Markov's inequality for number Z of solutions of G

$$\lim_{n\to\infty} \mathbb{P}[Z>0] \le \lim_{n\to\infty} \mathbb{E}[Z] = 0$$

• Discussion of $\mathbb{E}[Z]$ straightforward compared to $\mathbb{E}[Z^2]$

Second Moment Method

- G satisfiable with positive probability for $d < d^*$
- Paley–Zygmund inequality for Z

$$\lim_{n \to \infty} \mathbb{P}[Z > 0] \ge \lim_{n \to \infty} \frac{\mathbb{E}[Z]^2}{\mathbb{E}[Z^2]} > 0$$

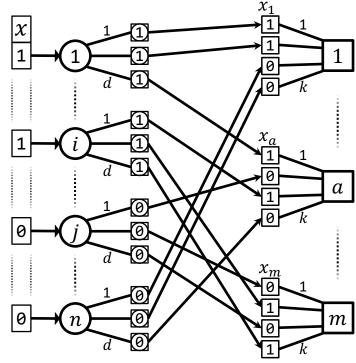
• Obtain Z>0 with high probability via small subgraph conditioning [Robinson, Wormald '94, Janson '95, Molloy et al '97]

Instances of the Problem

- Random bijection $G: [dn] \rightarrow [km]$ $\mathbb{P}[G = g] = \frac{1}{(dn)!}$
- Graphical representation with dn v-edges and km c-edges

Solutions

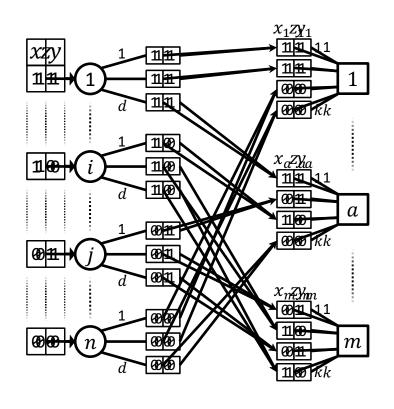
- Assignments x ∈ {0,1}ⁿ to variables
 ⇒ Constraint assignments $x_a ∈ {0,1}^k$
- Assignment x is a solution of g if the number of 1's of x_a equals r for all $a \in [m]$ $\Rightarrow x_a \in {[k] \choose r}$ for all $a \in [m]$



Pairs of Solutions

- Two solutions $x, y \in \{0,1\}^n$ $\Rightarrow x_a, y_a \in {[k] \choose r}$ for all $a \in [m]$
- Solution pair $z = (x, y) \in (\{0,1\}^n)^2$
- Equivalently $z \in (\{0,1\}^2)^n$
 - \rightarrow Assignment z to n variables with values in $\{0,1\}^2$
 - → Constraint assignments

$$z_a \in {[k] \choose r}^2$$
 for all $a \in [m]$

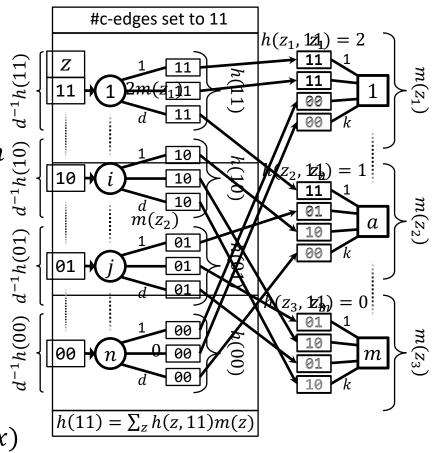


Second Moment

- Basic algebra yields $\mathbb{E}[Z^2] = \frac{1}{(dn)!} |\{(g,z) : z \text{ solution pair of } g\}|$
- Problem: There is no closed form for the number of pairs (q, z)

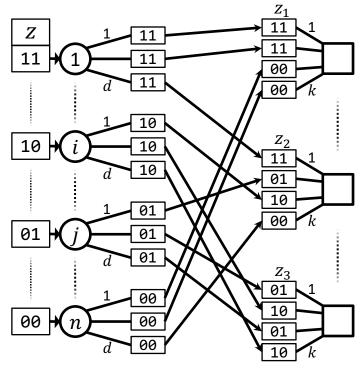
Second Moment Combinatorics

- Fix number m(z) of constraints that see $z \in {[k] \choose r}^2 \to \sum_z m(z) = m$
- For $x \in \{0,1\}^2$ we know the number h(z,x) of x's in z
- Number h(x) of c-edges set to x is $h(x) = \sum_{z} h(z, x) m(z)$ $\Rightarrow \sum_{x} h(x) = km$
- C-Edge assignment permutation of v-edge assignment
 - \rightarrow Number of v-edges set to x is h(x)
- V-Edge Assignment obtained from d copies of variable assignment
 → Number of variables set to x is $d^{-1}h(x)$
- Fixes number of constraint/variable partitions and bijections



Constraint/Edge Distributions

- Constraint distribution κ on $\binom{[k]}{r}^2$ $\kappa(z) = \frac{m(z)}{m} = \frac{1}{m} \text{#constraints with } z$
- Edge distribution $\kappa_{\rm e}$ on $\{0,1\}^2$ $\kappa_{\rm e}(x) = \frac{h(x)}{km} = \frac{1}{km} \text{\#c-edges set to } x$
- With $h(x) = \sum_{z} h(z, x) m(z)$ $\kappa_{e}(x) = \sum_{z} \frac{h(z, x)}{k} \kappa(z)$
- Matrix notation $\kappa_{\rm e} = W\kappa \text{ with } W_{xz} = \frac{h(z,x)}{k} = \frac{1}{k} \#x' \text{s in } z$
- W column stochastic transition probability matrix



Combinatorics for fixed κ

- Let $\mathbb{E}[Z^2] = \sum_{\kappa} E(\kappa)$ with contributions $E(\kappa)$ to $\mathbb{E}[Z^2]$ for fixed κ
- Compute $E(\kappa)$ combinatorically (similarly to $\mathbb{E}[Z]$)

• Asymptotics for fixed κ

- Fix (limiting) constraint distribution κ
- Stirling's formula $n! \sim \sqrt{2\pi n} (n/e)^n$ gives

$$\frac{E(\kappa)}{\mathbb{E}[Z]^2} \sim \frac{\sqrt{d}}{\sqrt{\prod_z \kappa(z)} \sqrt{2\pi m}^r} \exp(-n\phi_2(\kappa))$$

 $- \ \operatorname{Need} \phi_2(\kappa) \geq 0 \ \text{for all } \kappa \ \text{and} \ d < d^*, \ \text{otherwise}$ $\frac{\mathbb{E}[Z^2]}{\mathbb{E}[Z]^2} \to \infty \ \text{and Paley-Zygmund inequality trivial}$

Objective Function

- $\phi_2(\kappa) = d/k D(\kappa \| \kappa^*) (d-1)D(\kappa_e \| \kappa_e^*)$
- Relative entropy $D(p \parallel p^*) = \sum_{x} p(x) \ln \left(\frac{p(x)}{p^*(x)} \right)$
- Reference distribution κ^* uniform on $\binom{[k]}{r}^2$
- Results for r=2
 - If $\phi_2(\kappa) > 0$ for $\kappa \neq \kappa^*$, then $\frac{\mathbb{E}[Z^2]}{\mathbb{E}[Z]^2} \sim \sqrt{\frac{k-1}{k-d}}$ Proof based on Laplace's method for sums
 - If $\phi_2(\kappa) > 0$ for $\kappa \neq \kappa^*$, then Z > 0 whp Proof based on small subgraph conditioning
 - Showed for k=4 that $\phi_2(\kappa)>0$ for $\kappa\neq\kappa^*$ Proof based on connection to contraction coefficient

Contents

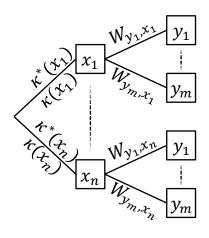
- Random Occupation Problems
- First and Second Moment Method
- Contraction Coefficient

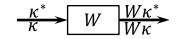
Contraction Coefficient

Contraction Coefficients

- Pair of random variables X^* and Y^*
- $-X^* \sim \kappa^*$ reference (input) distribution
- Channel W with $W_{yx} = \mathbb{P}[Y^* = y | X^* = x]$
- $-Y^* \sim W\kappa^*$ reference (output) distribution
- Contraction Coefficient

$$s^*(X^*, Y^*) = s^*(W, \kappa^*) = \sup_{\kappa \neq \kappa^*} \frac{D(W\kappa || W\kappa^*)}{D(\kappa || \kappa^*)}$$





Applications

- $s^*(X^*, Y^*)$ is correlation coefficient for X^* and Y^* → $0 \le s^*(X^*, Y^*) \le 1$
- Strengthens data processing inequality
 ⇒ D(Wκ || Wκ*) ≤ S*(W, κ*)D(κ || κ*)

Contraction Coefficient

Occupation Problem

- $-X^* \in {[k] \choose r}^2$ uniformly random constraint assignment
- $-Y^* \in \{0,1\}^2$ corresponding edge distribution

$$-W_{yx} = \mathbb{P}[Y^* = y | X^* = x] = \frac{1}{k} \# y' \sin x$$

 $-s^*(X^*,Y^*)=$ maximum distance of Y to Y^* compared to distance of X to X^* under a variation of X keeping $Y|X\sim Y^*|X^*$ fixed

Proposition (Contraction Coefficient)

For any r, k the following statements are equivalent

$$-\phi_2 \geq 0$$
 and $\phi_2(\kappa) = 0$ iff $\kappa = \kappa^*$ for all $d < d^*$

$$- s^*(X^*, Y^*) = \frac{H(r/k)}{\ln\binom{k}{r}}$$

Contraction Coefficient

Computing the Contraction Coefficient

- Easy bound
$$s^* \ge \frac{D(W\kappa || W\kappa^*)}{D(\kappa || \kappa^*)} = \frac{H(r/k)}{\ln \binom{k}{r}}$$
 for $\kappa(x, y) = \binom{k}{r}^{-1} \mathbb{1}\{x = y\}$

- Image of W is one-dimensional
- Explicit Minimization of $D(\kappa \parallel \kappa^*)$ for fixed $W\kappa = \rho$ possible
- Maximization over remaining degree of freedom only solved for r=2 and k=4 using basic analysis and numerics

Agenda

- Identify and exploit information-theoretic results on contraction coefficients to show conjecture for arbitrary r and k
- We know that $s^* = \frac{H(r/k)}{\ln\binom{k}{r}}$ if and only if $\inf_{\kappa} \frac{H(\frac{1}{k}\sum_h \kappa_h)}{H(\kappa)} = \frac{H(r/k)}{\ln\binom{k}{r}}$
 - \rightarrow Implications for subadditivity of entropy, i.e. $\inf_{\kappa} \frac{\sum_{h} \frac{1}{k} H(\kappa_h)}{H(\kappa)}$?

Thank you!