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The d-regular r-in-k Occupation Problem

* Parameters 1
: (:E 11
— Number n > 0 of variables —
k
— Number m > 0 of constraints

— Variable degreed > 1

— Constraint degree k > 1 —Ja
— Occupation numberr > 0 ko
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* Instance of the d-regular r-in-k occupatlon problem
A (d, k)-biregular graph g = (|[n], [m], E) withm = dn/k
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The d-regular r-in-k Occupation Problem

* Solutions of g
— Assignments x € {0,1}"

— x solution of g if each constraint
seesr 1's on the k edges
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* Decision Problem
Does there exist a solution x of g?
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The d-regular r-in-k Occupation Problem

* Asymptotical Average Case

— Fixr,kand d

— For fixed n draw random instance G uniformly from all
(d, k)-biregular graphs ([n], [m], E)

— Is G satisfiable with high probability in the large n limit?

* History of Random Constraint Satisfaction Problems

— Probabilistic method for random graph models developed by
Erd6s and Rényi in the 1960s

— Introduction of non-rigorous replica/cavity method and solution

space clustering picture by physicists in the 1980s
[Mézard, Montanari ‘09]

— Active research to date, major recent successes include k-SAT
satisfiability threshold for large k [ping, sly, sun “15]
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The d-regular r-in-k Occupation Problem

« Satisfiability Thresholds
— Fixkandr

— We conjecture a sharp satisfiability threshold d* with respect to d
lim P|G satisfiable] = 1 ford < d*

n—>co

lim P|G satisfiable] = 0 ford > d*

n—>0co

— Conjectured location of threshold
kH(7/,)
kH("/),) = 1n (I,f)

Binary entropy H(p) = —pInp — (1 — p) In(1 — p)

d*=d*(r, k) =
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The d-regular r-in-k Occupation Problem

* Cooper et al (1996)
Confirmed sharp satisfiability threshold d*(r, k) forr = 1and k > 3

 Mora (2007)

Introduction of Occupation Problems

 Mézard, Zdeborova (2008) and Krzakala, Zdeborova (2011)

Discussion of Occupation Problems with first and second moment
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The d-regular r-in-k Occupation Problem

 Moore (2016)
Confirmed sharp satisfiability threshold d*(r, k) forr = 1and k > 3

* Panagiotou, P. (2019)
— Confirmed sharp satisfiability threshold d*(r, k) forr =2 and k = 4

— Confirmed d*(r, k) forr = 2 and k = 4 modulo an analytical
optimization problem

* Applications
— The d-regular positive r-in-k SAT

— Existence of r-factors in k-regular d-uniform hypergraphs
— Perfect matchingsforr =1

Occupation Problems — Satisfiability Thresholds



 Random Occupation Problems

* First and Second Moment Method

e Contraction Coefficient
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First and Second Moment Method

e Qutline

— Configuration Model [Bollobas '80]
 Draw bijection G: [dn] — [km] uniformly at random
* Translate sharp satisfiability threshold to random graph using contiguity

— First Moment Method
* ( not satisfiable with high probability for d > d*

* Markov’s inequality for number Z of solutions of ¢
lim P[Z > 0] < lim E[Z] =0
n—>00

n—->00

« Discussion of E[Z] straightforward compared to E[Z?]

— Second Moment Method

* ( satisfiable with positive probability for d < d*
* Paley—Zygmund inequality for Z

lim P[Z > 0] = li E[Z)°
nl—r>rc>lo 2> ]_nl—r>rc>loIE[Z2]

* Obtain Z > 0 with high probability via small subgraph conditioning
[Robinson, Wormald 94, Janson 95, Molloy et al ‘97]

>0
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First and Second Moment Method

_ X1
* Instances of the Problem x| 1 {1
L . 1 1 (O— . 1
— Random bijection G: [dn] = [km] — G 0
1 L o
PG =g] = (an)! i L )
— Graphical representation with 1 - - 1kl
dn v-edges and km c-edges : a
b s
. k
* Solutions o] —@ °
P . d \@
— Assignments x € {0,1}" to variables | | o
. . k 1 Mo
-> Constraint assignments x, € {0,1} g = ; -
— Assignment x is a solution of g if i G 7

the number of 1's of x, equals r for all a € [m]
k]
>xa € . )foralla € [m]
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First and Second Moment Method

. . X121
* Pairs of Solutions xky 1 !
: ns( 1 {1 (= 1
— Two solutions x, y € {0,1}"
k] REE ‘
exa,yae([ )foraIIaE [m] I I
r nleh( i gk
— Solution pair z = (x,y) € ({0,1}")? = .
— Equivalently z € ({0,1}%)" R - -
> Assignment z to n variables with @ j
values in {0,1}? iy @ X
- Constraint assignments R B
K1)’ e .
Zae(r) foralla € [m] d k

e Second Moment

— Basic algebra yields E[Z?] = (d T l{(g, z) : z solution pair of g}|

— Problem: There is no closed form for the number of pairs (g, z)
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First and Second Moment Method

Hc-edges setto 11

e Second Moment Combinatorics
— Fix number m(z) of constraints

("2)w

thatsee z € ([I;])zé Y,m(z) =m

— For x € {0,1}* we know the
number h(z,x) of x’sin z

(22 w

— Number h(x) of c-edges set to x is
h(x) = Xz h(z, x)m(z)

d=1h(00) d~'h(01) d'h(10) d~'h(11)

> Y, h(x) =km £ = 3

2ach(x) | 1[ee fnk—2Leet/ s | Nl &

— C-Edge assignment permutation of T{eel] - — ~
v-edge assignment J

h(11) =Y, h(z, 11)m(2)

- Number of v-edges set to x is h(x)

— V-Edge Assignment obtained from d copies of variable assignment
-> Number of variables set to x is d " 1h(x)

— Fixes number of constraint/variable partitions and bijections
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First and Second Moment Method

. . . . Z1
* Constraint/Edge Distributions z 177 11 N
I 9 11 (1 [11 }—
— Constraint distribution x on ([ ]) o AT g
m(z) " r T
kK(z) = = —#constraints with z [ 10 (i 10 Zy
m m > T 11 NI
— Edge distribution ke on {0,1}? 2
Ke(x) = M) _ 1 ge_edges set to x e 00 Ik
€  km  km 5 01 P\ - 21
— With h(x) = )., h(z,x)m(z) Zy
h(z,x) ' " 1_Jo0
Ke(X) = Xz K K(2) 00 A n 00 ;2
. : d 199 10 'k
— Matrix notation
. h(z,x) 1 ;o
Ke = Wk with W,., = . =E#xsmz

— W column stochastic transition probability matrix
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First and Second Moment Method

e Combinatorics for fixed k
— Let E[Z?] = X, E (k) with contributions E (k) to E[Z?] for fixed k

— Compute E (x) combinatorically (similarly to E[Z])

* Asymptotics for fixed K
— Fix (limiting) constraint distribution k

— Stirling’s formula n! ~ vV2mn(™/e)™ gives
W) VT~ na(0)
E[Z]? 1/HZK(Z)mr ’

— Need ¢,(k) = 0 forall k and d < d¥, otherwise

2
EE]Z] — o0 and Paley—Zygmund inequality trivial
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First and Second Moment Method

* Objective Function
— ¢o(k) =4/, D(xc Il k*) — (d — 1)D (ke Il Ke)

— Relative entropy D(p Il p*) = Xxp(x) In (5*(();)))

2
— Reference distribution k™ uniform on ([I;])

e Results forr = 2

Elz?] [kt
E[Z]2 | k—d
Proof based on Laplace’s method for sums
— If p, (k) > 0 fork + k™, then Z > 0 whp
Proof based on small subgraph conditioning

— Showed for k = 4 that ¢,(x) > 0 for k # k*
Proof based on connection to contraction coefficient

— If p,(k) > 0 for k # k¥, then
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 Random Occupation Problems

* First and Second Moment Method

e Contraction Coefficient
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Contraction Coefficient

e Contraction Coefficients

Pair of random variables X" and Y™

X* ~ k™ reference (input) distribution
Channel W with W,,, = P[Y" = y|X™ = x]
Y* ~ Wk™ reference (output) distribution
Contraction Coefficient

S*(X*,Y*) = s*(W, k™) = sup,cex DWWk

D(kllk*)

* Applications

— s*(X*,Y") is correlation coefficient for X*and Y*

->0<s"(X",Y")<1
Strengthens data processing inequality
>D(Wk || WKk*) < D(x Il k*)
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Contraction Coefficient

* Occupation Problem

2
— X" € ([l;]) uniformly random constraint assignment

— Y* € {0,1}* corresponding edge distribution
£ 3 1 V4 .
- Wy = P[Y* = y|X* = x] = #y'sinx

— s*(X*,Y*) = maximum distance of Y to Y* compared to

distance of X to X™ under a variation of X keeping Y|X ~ Y*|X™ fixed

( Proposition (Contraction Coefficient)
For any r, k the following statements are equivalent

— ¢, = 0and ¢p,(k) =0iffk = k™ foralld < d*
H("/;)

in(()

o

\
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Contraction Coefficient

 Computing the Contraction Coefficient

_ v o DOWilwie) _ H(7/) _ (T e =
Easy bound s™ > Dkl ln(,;) for k(x,y) = (r) I{x =y}

— Image of W is one-dimensional
— Explicit Minimization of D(k || k*) for fixed Wk = p possible
— Maximization over remaining degree of freedom
only solved for r = 2 and k = 4 using basic analysis and numerics
* Agenda

— ldentify and exploit information-theoretic results on contraction
coefficients to show conjecture for arbitrary r and k

« _ H(/W) . . H(thKh) _H("/)
— We know that s™ = ﬁ if and only if inf, ’;{(K) = ln(i‘fk)
S pH (<) ,

— Implications for subadditivity of entropy, i.e. inf,. HOO
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