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Triangulation = all faces of degree 3
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around the root ?
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How similar are two triangulations locally ?

The local distance :
leC(Ta T/) — (1 T SUP{HB'P(T) = BT(T/)})_l




What does a (large, random)
triangulation look like around theroot 7

The limit (in law) w.r.t d;,. is called the

local limit (= convergence (in law) of the )7 — (Af_.;u‘%;f)'%
balls of radius r). 2 AP =vA=SINN
V%

Question : let (7},) be a sequence of
random triangulations, whose size — o0, Is

there a local limit ? What does it look like
7
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[Angel, Schramm '02] : uniform planar
triangulations converge to an infinite
triangulation called the Uniform Infinite
Planar Triangulation (UIPT).
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of the UIPT
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Properties of the UIPT

Spatial Markov property : P(t C T) = Cp)\\cv\
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The PSHIT

Introduced by Curien in 2012

Defined in the same way as the
UIPT, by with A\ €]0, \.].

For A < A., has an hyperbolic
flavour : the "average degree” of a
vertex is higher than 6 (the value in
a regular planar triangulation), the
balls have exponential growth, ...

Image :
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Question : Can the PSHITs be interpreted as local limits ?



A conjecture

Let 2= — 6 with 6 € [0, 5.
Let (7,) be a sequence of random triangulations, such
that 1), is drawn uniformly among all triangulations of
genus g, with 2n triangles.

Conjecture [Benjamini, Curien '12| : (T},) has a local
limit, and it is a PSHIT of parameter A\, with A a
function of 6.

For g,, constant, the limit is the UIPT (well known,but
never written anywhere).
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A conjecture

Let 2= — 6 with 6 € [0, 5.
Let (7,) be a sequence of random triangulations, such
that 1), is drawn uniformly among all triangulations of
genus g, with 2n triangles.
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Conjecture [Benjamini, Curien '12| : (T},) has a local
limit, and it is a PSHIT of parameter A\, with A a
function of 6.
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For g, constant, the limit is the UIPT (well known,but
never written anywhere). image : N. Curien

A similar result [Angel, Chapuy, Curien, Ray "13] : the
local limit of one-faced maps of high genus is an infinite
hyperbolic tree

image : ACCR



The intuition behind the conjecture

For fixed genus . ..
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The intuition behind the conjecture

For fixed genus . ..

In the limit we see the "tangent plane of an
infinite triangulation™.

When the genus increases linearly with the size,
in the end we don't see the genus but we still
"feel the curvature”




Our result

Theorem [Budzinski, L. "18+] : the conjecture
of Benjamini and Curien is true.



Let's get to (a part of) the proof !



First idea :

Obtain precise asymptotics for 7(n, g) (the number of maps of genus g
with 2n triangles) as £ —



First idea :

Obtain precise asymptotics for 7(n, g) (the number of maps of genus g
with 2n triangles) as £ —

TOO HARD



Outline of the proof :

1) Tightness (+ planarity and one-endedness)
— every subsequence has a converging
subsubsequence

2) Every possible limit is a PSHIT with random
parameter A

3) A is deterministic and depends only on 6



Tightness : how do we prove it ?

Two main ingredients :

e [ he bounded ratio lemma : for % < % — ¢, there is a
constant C. s.t. :

T(n, g)
=19 -

e Planarity and one-endedness
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The bounded ratio lemma

g 1 L T(nag)
For oy < B) &, 7(n—1,9) < O&

There are n + 2 — 2g > 2en vertices,

and the average degree is
6n < §
n+2—2g — € _
— there are > en vertices of degree

< 6
— £

Pick such a vertex v, and contract
an adjacent edge

Remember deg(v) and an oriented
edge ...

. only one way to go backwards

Thus ent(n,g) < 2-6nr7(n—1, g)
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One-endedness and planarity
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Proven by using the Goulden—Jackson formula (and the bounded ratio lemma) :

(n+1)7(n,g) =4n(3n —2)(3n —4)71(n — 2,9 — 1) +4(3n — 1)7(n — 1, g)

_|_4 Zi—l—j:n—Z Zgl—l—gQ:g(Si + 2)(3] T 2)T(Z7 gl)T(j7 92)




One-endedness and planarity

O

*

Proven using algebraic
properties of maps
and the KP hierarchy

Proven by using the Goulden—Jackson formula (and the bounded ratio lemma) :

(n+1)7(n,g) =4n(3n —2)(3n —4)71(n — 2,9 — 1) +4(3n — 1)7(n — 1, g)

_|_4 Zi+j:n—2 Zgl—l—gQ:g(Si + 2)(3] T 2)T(Z7 gl)T(j7 92)

(Tutte equation is not enough)



to be continued ...
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Bonus : asymptotics

7(1n, gn) P
T(n—1, gn) > <(0)

Proof :

(<) € T) — )% in PSHITs

_ T(n_17gn> " .
= g n finite maps

(exercise !)

7(n, gn) = 1?9 exp(nf(0) + o(n))



What’s next ?

Boltzmann maps (arbitrary face degrees)

— requires a formula similar to Goulden—Jackson

but for bipartite maps with prescribed degrees
([L. 18+])

More info on high genus triangulations (diameter, ..

Maps decorated with " matter” 7

What happens when £ —; % ?

)



Thank you |



