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= 6=
Map = embedding up to homeomorphism of
a connected multigraph (loops and multiple
edges allowed) in a compact connected
orientable surface.
Rooted = an oriented edge is distinguished

Genus g of the map = genus of the surface
= # of handles

Triangulation = all faces of degree 3
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How similar are two triangulations locally ?

The local distance :
dloc(T, T

′) = (1 + sup{r|Br(T ) = Br(T
′)})−1



The limit (in law) w.r.t dloc is called the
local limit (= convergence (in law) of the
balls of radius r).

Question : let (Tn) be a sequence of
random triangulations, whose size →∞, is
there a local limit ? What does it look like
?

What does a (large, random)
triangulation look like around the root ?
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[Angel, Schramm ’02] : uniform planar
triangulations converge to an infinite
triangulation called the Uniform Infinite
Planar Triangulation (UIPT).
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Properties of the UIPT

Spatial Markov property : P(t ⊂ T) = Cpλ
|v|
c

⊂
λc = rcv of the
series of planar
triangulations !

Peeling process : Discover T step by step, unveil triangles.

λc= (x2)or

p = 7, |v| = 9



The PSHIT

Introduced by Curien in 2012

Defined in the same way as the
UIPT, by with λ ∈]0, λc].

For λ < λc, has an hyperbolic
flavour : the ”average degree” of a
vertex is higher than 6 (the value in
a regular planar triangulation), the
balls have exponential growth, . . .
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Question : Can the PSHITs be interpreted as local limits ?



A conjecture
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Let gn
n → θ with θ ∈ [0, 12 [.

Let (Tn) be a sequence of random triangulations, such
that Tn is drawn uniformly among all triangulations of
genus gn with 2n triangles.

Conjecture [Benjamini, Curien ’12] : (Tn) has a local
limit, and it is a PSHIT of parameter λ, with λ a
function of θ.

For gn constant, the limit is the UIPT (well known,but
never written anywhere).



A conjecture

A similar result [Angel, Chapuy, Curien, Ray ’13] : the
local limit of one-faced maps of high genus is an infinite
hyperbolic tree

image : ACCR
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Let gn
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For fixed genus . . .

In the limit we see the ”tangent plane of an
infinite triangulation”.

When the genus increases linearly with the size,
in the end we don’t see the genus but we still
”feel the curvature”

The intuition behind the conjecture



Our result

Theorem [Budzinski, L. ’18+] : the conjecture
of Benjamini and Curien is true.



Let’s get to (a part of) the proof !



First idea :

Obtain precise asymptotics for τ(n, g) (the number of maps of genus g
with 2n triangles) as g

n
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First idea :

Obtain precise asymptotics for τ(n, g) (the number of maps of genus g
with 2n triangles) as g

n
→ θ

TOO HARD



Outline of the proof :

1) Tightness (+ planarity and one-endedness)

2) Every possible limit is a PSHIT with random
parameter Λ

3) Λ is deterministic and depends only on θ

→ every subsequence has a converging
subsubsequence



Tightness : how do we prove it ?

Two main ingredients :

• The bounded ratio lemma : for g
n <

1
2 − ε, there is a

constant Cε s.t. :

τ(n, g)

τ(n− 1, g)
< Cε

• Planarity and one-endedness
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The bounded ratio lemma

Thus εnτ(n, g) ≤ 6
ε
· 6nτ(n− 1, g)

There are n+ 2− 2g ≥ 2εn vertices,
and the average degree is

6n
n+2−2g ≤

3
ε

→ there are ≥ εn vertices of degree
≤ 6

ε

Pick such a vertex v, and contract
an adjacent edge

Remember deg(v) and an oriented
edge . . .

. . . only one way to go backwards

d

For g
n <

1
2 − ε, τ(n,g)

τ(n−1,g) < Cε



One-endedness and planarity

Proven by using the Goulden–Jackson formula (and the bounded ratio lemma) :

(n+ 1)τ(n, g) = 4n(3n− 2)(3n− 4)τ(n− 2, g − 1) + 4(3n− 1)τ(n− 1, g)

+4
∑
i+j=n−2

∑
g1+g2=g

(3i+ 2)(3j + 2)τ(i, g1)τ(j, g2)

∞



One-endedness and planarity

Proven by using the Goulden–Jackson formula (and the bounded ratio lemma) :

(n+ 1)τ(n, g) = 4n(3n− 2)(3n− 4)τ(n− 2, g − 1) + 4(3n− 1)τ(n− 1, g)

+4
∑
i+j=n−2

∑
g1+g2=g

(3i+ 2)(3j + 2)τ(i, g1)τ(j, g2)

∞

Proven using algebraic
properties of maps
and the KP hierarchy

(Tutte equation is not enough)



to be continued ...
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τ(n, gn) = n2gn exp(nf(θ) + o(n))

τ(n, gn)

τ(n− 1, gn)
→ c(θ)

Proof :

Bonus : asymptotics

Proof :
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What’s next ?

More info on high genus triangulations (diameter, . . . )

What happens when g
n →

1
2 ?

Maps decorated with ”matter” ?

Boltzmann maps (arbitrary face degrees)

→ requires a formula similar to Goulden–Jackson
but for bipartite maps with prescribed degrees
([L. 18+])



Thank you !


