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Definitions-I

I Minimal surfaces are the solutions of the most basic variational problem
in Geometry: minimizing area.

I Plateau Problem (Lagrange, 1762): question of existence of surfaces of
least area having a given closed curve as boundary.

I Plateau’s Problem became a central question in the field, until it was
independently solved in 1930 by Douglas and Rado (as mappings of the
unit disk). The search for solving the Plateau’s problem in greater
generality lead to the development of Geometric Measure Theory in the
1960s.
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Definitions-II

I If the graph of a function u : Ω ⊂ R2 → R minimizes area then

div

(
∇u√

1 + |∇u|2

)
= 0.

I This is equivalent to the vanishing of the mean curvature

H = k1 + k2

where k1, k2 are the principal curvatures.

I It is also equivalent to the Gauss map

N : Σ→ S2

being anti-holomorphic.
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Finite topology

I All examples discovered since the helicoid had infinite topology. The
next finite topology example was discovered only in 1982!

Costa 1982 Costa-Hoffman-Meeks 1983
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Variational Theory-I

Let F : (−ε, ε)× Σ→ R3 be a smooth variation with F (0, ·) = id|Σ and
X = ∂F

∂t (0, ·) its initial velocity.

I The first variation of area says that

|Σt |′(0) = −
∫

Σ
〈 ~H,X 〉+

∫
∂Σ
〈ν,X 〉

where Σt = Ft(Σ), ~H = H ~N is the mean curvature vector and ν is the
outward unit conormal vector of ∂Σ.

I Assuming Σ minimal and X = ϕN, where ϕ ∈ C∞0 (Σ), we compute the
second variation:

Q(ϕ,ϕ) = |Σt |′′(0) =

∫
Σ
|∇ϕ|2 − |A|2ϕ2 = −

∫
Σ
ϕLϕ

where L = ∆ + |A|2, and A(X ,Y ) = −〈∇XN,Y 〉 the 2nd fundamental
form.

I The Morse index of Σ is the number of negative eigenvalues of L. Thus,
a minimal surface of index k minimizes area up to second order in all
directions orthogonal to a k-dimensional space.
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Variational Theory-II

I The theme of this lecture will be on understanding the relationship
between the index and the geometry and topology of Σ.

I Recent focus on the Morse index has been motivated by Marques-Neves
work on minmax theory. The index is also a natural property of the
minimal surface in light of applications to geometry.

I Some examples:

Morse index =1 Morse index =5 Morse index = +∞
I Thm(Fisher-Colbrie 1985) Σ ⊂ R3 has finite index if and only if it has

finite total curvature,
∫

Σ |K | <∞.
I Remark. Σ has finite index =⇒ Σ is stable outside a compact set.
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Index vs Topology

I How are the index and the topology of a minimal surface related?

They are intricately related to each other via the Gauss map
N : Σ→ S2.

I Detecting the topology from N is easier:

Thm(Jorge-Meeks 1982) If Σ has finite total curvature, genus g , and r
ends, then

deg(N) = − 1

4π

∫
Σ
K = g + r − 1.
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Index vs Topology-II

I The index, on the other hand, is more elusive.

By Riemann, Σ is minimal if and only if the Gauss map is
(anti)-holomorphic, and thus, conformal:

I Therefore, the second variation of Σ is a conformal invariant of the
induced metric on 〈·, ·〉 on Σ. Hence, we may calculate the index with
respect to the metric N∗(ds2), where ds2 is the standard metric of S2.
Issue: branch points!
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Index vs Topology-III

Recently, we were able to prove following index estimate:

I Thm(Chodosh-M 14) Let Σ be minimal surface in R3 with genus g and
r ends. Then

ind(Σ) ≥ 2

3
(g + r)− 1.

First time the number of ends appeared on a lower bound for the index.
Upper bounds had been known for a long time (Tysk 87).Combining
with the Jorge-Meeks formula we arrive at:

I Thm(Chodosh-M 14) For Σ minimal surface in R3 with genus g and r
ends:

−1

3
+

2

3

(
− 1

4π

∫
Σ
K

)
≤ ind(Σ) ≤ (7.7)

(
− 1

4π

∫
Σ
K

)
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Classification with minimal surfaces with low index

What is known so far:

I ind(Σ) = 0 (stable) ⇒ Σ is a flat plane (doCarmo-Peng,
Fisher-Colbrie-Schoen, Pogorelov circa 1980).

I ind(Σ) = 1 ⇒ Σ is a multiple of the catenoid (Lopez-Ros 1989).

I ind(Σ) = 2 ⇒ no such Σ can exist (Chodosh-M 14).

I ind(Σ) = 3 ⇒ ?

More recently, we showed:

I Thm(Chodosh-M 18) There exists no embedded minimal surface of
index 3.
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Immersed minimal surfaces - Index vs Total Curvature

I Motivation: Folklore conjecture (Fischer-Colbrie, Gulliver,
Grigor’yan-Yau) For any immersed minimal surface of R3, we have

ind(Σ) ≥ C

∫
Σ
|K |,

where C is an absolute constant.
I The bound ind(Σ) ≥ 2

3 (g + r)− 1 is also true for immersed minimal
surfaces. However, it lacks key topological-geometrical information: the
multiplicity of the ends.

Enneper surface: sphere with one puncture of mult. 3, has index 1
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Immersed minimal surfaces-II

I Thm(Chodosh-M 18) Suppose Σ has genus g and r ends E1,E2, . . . ,Er ,
with multiplicities respectively d1, d2, . . . , dr . Then

ind(Σ) ≥ 1

3

2g + 2
r∑

j=1

(dj + 1)− 5

 .

I Together with the generalized Jorge-Meeks formula:

− 1

4π

∫
Σ
K = g − 1 +

1

2

r +
r∑

j=1

dj

 ,

the above index estimate proves the conjecture.
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One-sided minimal surfaces

I For an one-sided immersions X : Σ→ R3, the Morse index and total
curvature can be defined using the two-sheeted orientable covering:

π : Σ̂→ Σ.

I Thm(Chodosh-M 18) Let Σ be a one-sided immersed minimal surface in
R3 of finite total curvature. Let Σ̂ be the orientable double cover of Σ
and suppose Σ̂ has genus g and s = 2r ends E1,E2, . . . ,Er , τ(E1), τ(E2),
. . . , τ(Er ), where τ : Σ̂→ Σ̂ is the deck transformation. Then:

ind(Σ) ≥ 1

3

g + 2
r∑

j=1

(dj + 1)− 4

 .

Using the above we confirm the following conjecture of Choe:

I Thm(Chodosh-M 18) There are no one-sided minimal surface in R3 with
index 1.
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A slide about the proof

I Our proof uses harmonic 1-forms on Σ to generate test functions for the
second variation of area. It is inspired in the following Lemma of Ros:

I Lemma(Ros 06) For Σ non-flat minimal surface in R3 and ω a harmonic
1-form on Σ. Then, for k = 1, 2, 3

∆ 〈ω, dxk〉 − 2K 〈ω, dxk〉 = 2 〈∇ω,A〉Nk ,

where N = (N1,N2,N3) is the normal vector and (x1, x2, x3) are the
coordinates of Σ. Moreover, 〈∇ω,A〉 ≡ 0 if and only if
ω = Span{∗dx1, ∗dx2, ∗dx3}.

I Ros uses harmonic 1-forms in L2(Σ) to show that ind(Σ) ≥ 2g
3 .

I Our main idea is to work with on appropriate weighted L2 spaces and
take advantage of the integrability of K .
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