Incremental query evaluation

Thomas Schwentick

Luminy, April 2019

Dynamic Complexity: Recent and Complex Updates

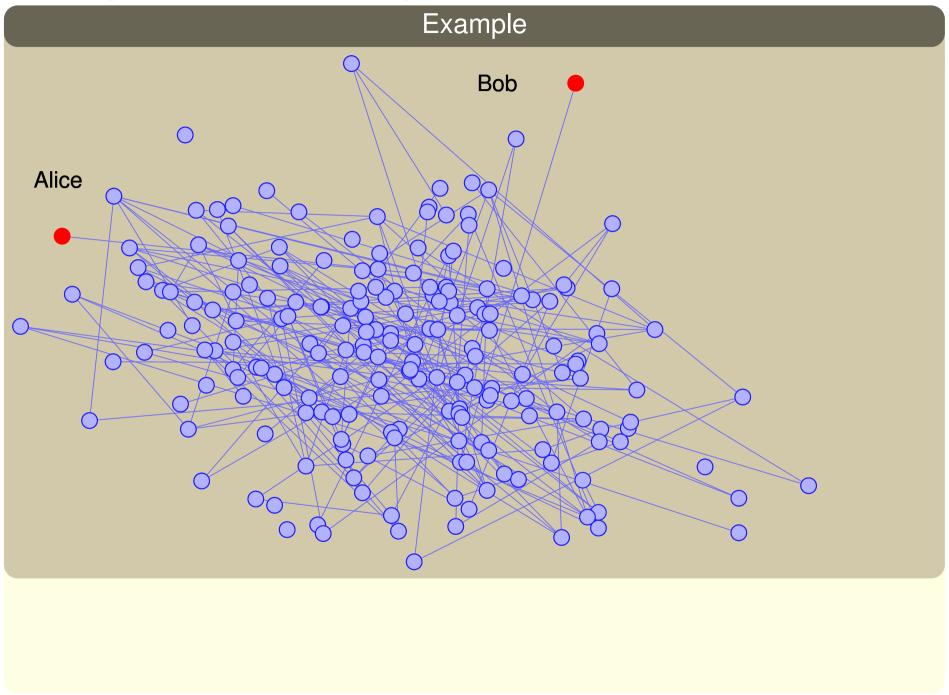
Thomas Schwentick

(with some borrowed slides from Nils Vortmeier and Thomas Zeume)

Luminy, April 2019

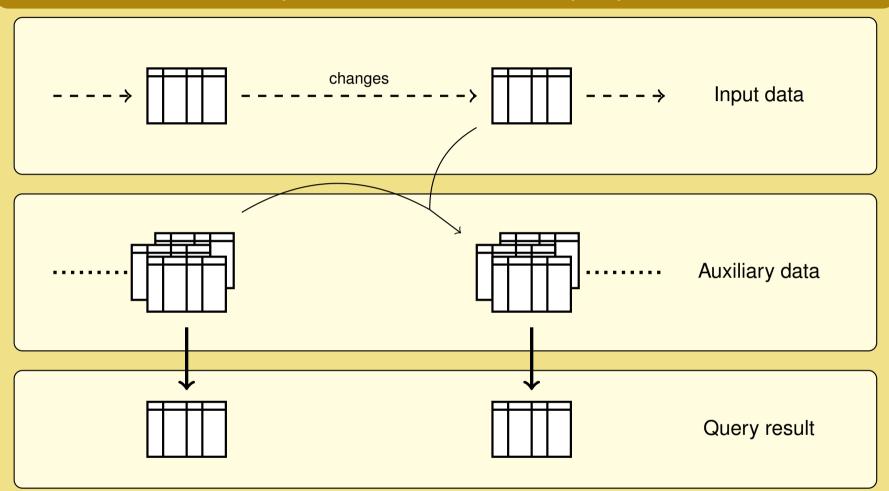
Lehrstuhl Logik in der Informatik

Dynamic Reachability in Practice: Social Networks



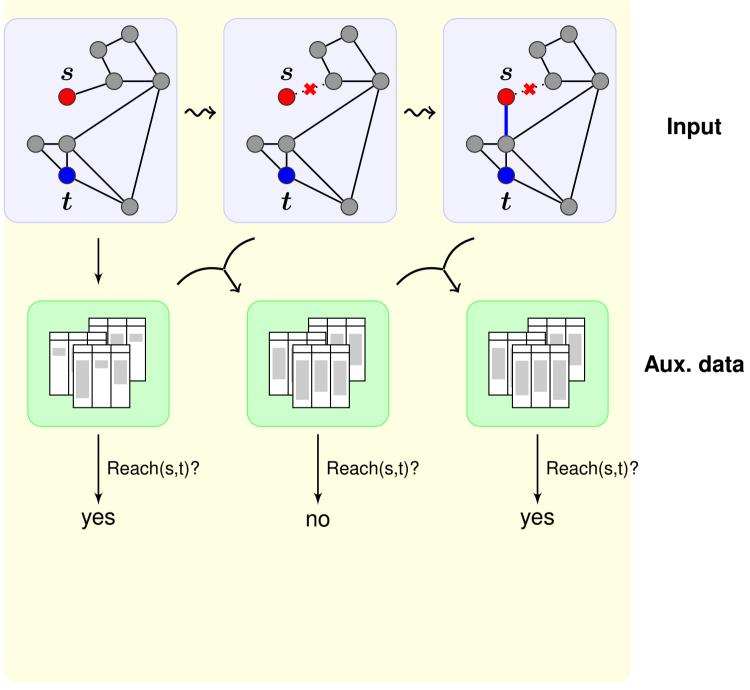
The Dynamic Setting

Dynamic Evaluation of a query



• **DynFO**: Auxiliary relations are updated using first-order logic

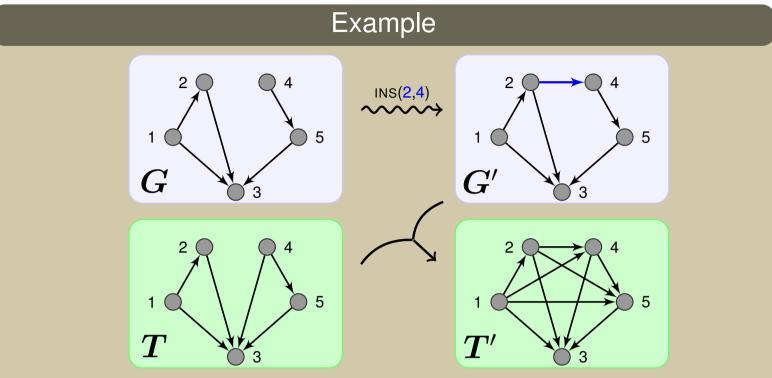
The Dynamic Setting: Reachability



The Dynamic Setting: Algorithms vs. Query Languages

- The field of *Dynamic Algorithms* studies algorithms that *maintain* a (graph) property faster than deciding it from scratch
- In *Dynamic Complexity* we think in terms of query languages
- In Databases (Theory) our main language is Relational Algebra \equiv Relational Calculus \approx First-Order Logic
- Incremental View Maintenance: Update FO-query results as efficiently as possible
- Different angle: can the result of a query q that is expressible in a stronger query language \mathcal{L}_1 be updated with a weaker query language \mathcal{L}_2
- Two natural questions:
 - (1) What expressive power is needed to *maintain* FO-expressible queries?
 - (2) Which queries that can not be expressed in FO, can be updated with FO?^{INST} Main topic of this talk

Example 1: Reachability under Insertions

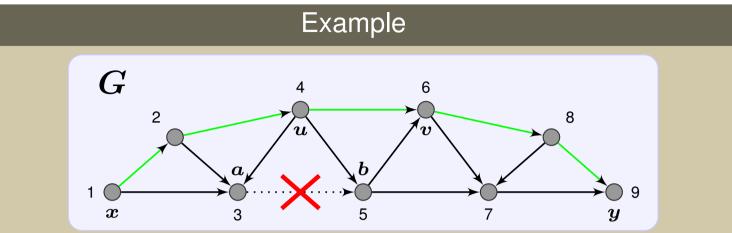


- Idea: store the transitive closure of the edge relation in a binary auxiliary relation T [Dong, Su 93/95; Patnaik, Immerman 94/97]
- Update rule:

on insert $(oldsymbol{u},oldsymbol{v})$ into $oldsymbol{E}$

- update $m{T}(m{x},m{y})$ as $m{T}(m{x},m{y}) \lor ig(m{T}(m{x},m{u}) \land m{T}(m{v},m{y})ig)$
- \blacktriangleright determines the pairs $({m x},{m y})$ in ${m T}$ after insertion of $({m u},{m v})$ to ${m E}$
- Transitive closure does not suffice for edge *deletions* [Dong, Libkin, Wong 95]

Example 2: Reachability in DAGs under Deletions



- For *directed acyclic* graphs, Reachability can be maintained with firstorder updates [Dong, Su 93/95; Patnaik, Immerman 94/97]
- Challenge: how to express, that there is still a path p from x to y after deleting edge (a, b)?

Simple cases E(x,y), $\neg T(x,a)$, $\neg T(b,y)$, \ldots

Otherwise p must have a last node $u \neq y$ from which a can be reached

$$egin{aligned} &\cdotsee\existsm{u},m{v}ig((m{u}+m{a}eem{v}+m{y})\wedge\ m{T}(m{x},m{u})\wedgem{E}(m{u},m{v})\wedgem{T}(m{v},m{y})\wedge\ m{T}(m{u},m{a})\wedge
egnegativeig] &\wedge
egnegative\ m{T}(m{v},m{a}) \wedgem{T}(m{v},m{a}) &\wedge
egnegative\ m{T}(m{v},m{a}) \wedgem{T}(m{v},m{a}) &\wedge
egnegative\ m{T}(m{v},m{a}) &\wedge
egnegative\ m{v} &\wedge m{T}(m{v},m{a}) &\wedge
egnegative\ m{T}(m{v},m{a}) &\wedge
egnegative\ m{v} &\wedge m{T}(m{v},m{a}) &\wedge
egnegative\ m{v} &\wedge m{v} &\wedge m{v} & m{v} &\wedge m{v} & m{v}$$

Dynamic Complexity: Our Setting

- Databases in this talk: graphs (directed/undirected, possibly labelled)
- Change operations:
 - Simple changes:
 - Insertion of a single tuple: insert (u, v)
 - Deletion of a single tuple: delete (u, v)
 - Complex changes: later
- Set of nodes is fixed, for each computation
 - n = number of nodes

- Dynamic program:
 - One update formula per change operation and auxiliary relation
 - One output formula
- Initialisation:
 - Source of technical complications
 - We ignore it for this talk
 - We can always assume the nodes are numbers $1, \ldots, n$ and formulas can use a linear order \leq on the nodes and addition and multiplication relations

Definition

 DynFO = queries that can be maintained by first-order logic with auxiliary relations under the given change operations

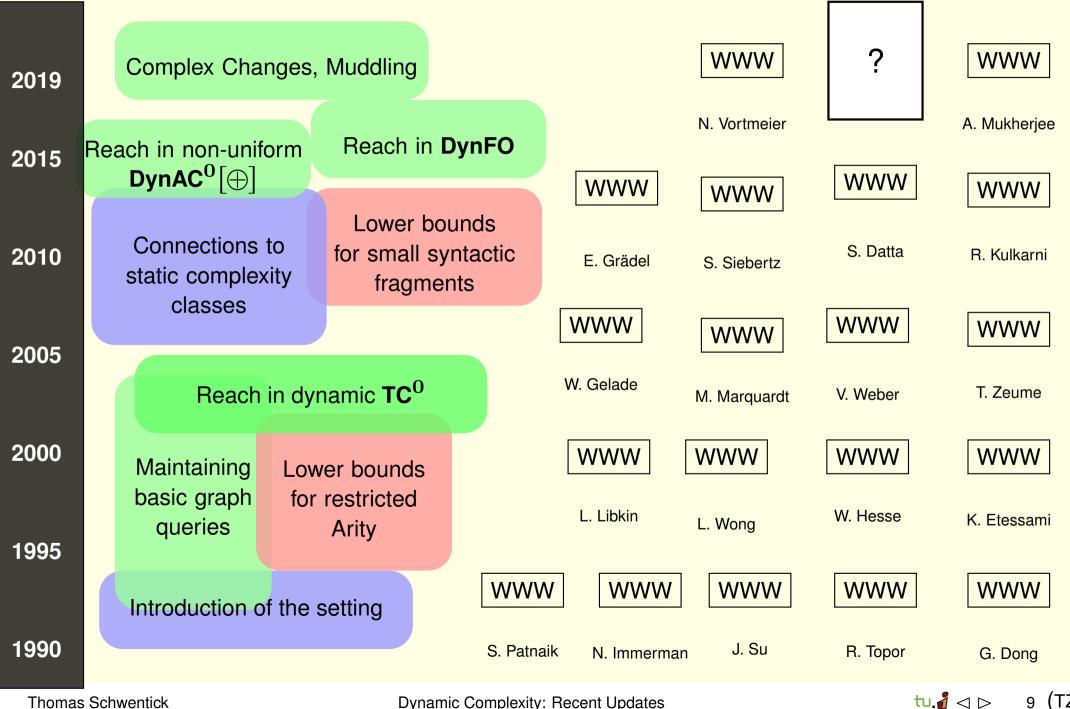
Motivation and Goals

• Why DynFO?

- captures essentially what can be maintained in a relational database
 core SQL
- meaningful from a complexity theoretic point of view:
 - FO(+, ×) ≡ uniform AC⁰
 ≡ circuit families of bounded depth and poly size
- the most natural logic

- General goals of our research:
- Understand the expressive power of **DynFO**
 - Which queries are in DynFO?
 - General techniques for DynFO programs
 - Which queries are not in DynFO?
 - Methods for inexpressibility results?
- What we learned:
- In the dynamic setting, first-order logic is much more powerful than in the static setting
- Inexpressibility results are hard to get

Short History of Dynamic Complexity



Thomas Schwentick

Dynamic Complexity: Recent Updates

9 (TZ)

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation Recent Upper Bound Techniques: Muddling Recent Upper Bound Techniques: Linear Algebra Lower Bounds

Conclusion

Methods for dynamic programs

- We will see various methods for upper bounds
- First we consider "traditional" methods
 - Ad-hoc programs for the problem at hand
 - Reductions
- Then we will have a look at more recent techniques
 - MSO-simulation
 - Muddling
 - Linear Algebra

Undirected Reachability in DynFO (1/3)

• We already know:

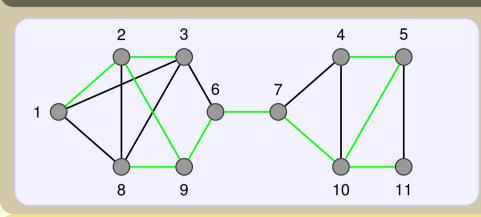
Theorem [Patnaik, Immerman 94/97]

- ACYCLIC REACH ∈ **DynFO**
- As another restriction of REACH, we now consider SYM-REACH:
 - Reachability for undirected graphs
- There are several proofs for SYM-REACH \in **DynFO**
 - We look at the simplest and first proof by

[Patnaik, Immerman 94/97]

Undirected Reachability in DynFO (2/3)

Example: Insertion



- Basic idea: maintain a spanning forest $m{F}$ and its transitive closure $m{T}$
- On arrival of a new edge, add it to $m{F}$, if it connects two distinct components

Example: Deletion

10

11

tu. $\sqrt[4]{} \triangleleft \triangleright 13! (NV)$

• Deletion is, again, more tricky

8

9

- How to modify the spanning tree if an edge (a, b) is deleted but its component remains connected?
 - ▶ Determine nodes u and v in the subtrees of a and b, respectively, such that $(u, v) \in E$, and add (u, v) to F
- This can be done with
 - a more sophisticated relation T with all triples (d, e, g) for which there is a path in F from d to e through g
 - some order on the edges to choose (u, v) uniquely

Dynamic Complexity: Recent Updates

Undirected Reachability in DynFO (3/3)

Theorem [Patnaik, Immerman 94/97]

- Sym-Reach \in **DynFO**
- Is the ternary auxiliary relation T necessary? \square No
- $\frac{k\text{-ary DynFO:}}{\text{with (at most) }k\text{-ary aux relations}}$ that can be maintained

Theorem [Dong, Su 95/98]

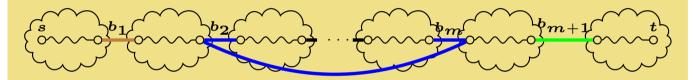
- SYM-REACH ∈ binary DynFO
- SYM-REACH ∉ unary **DynFO**

Undirected Reachability under Complex Changes

- So far we only considered very simple change operations:
 - Insertion or deletion of a single tuple
 - No change of the universe/domain
- What about other kinds of changes?
- "Arbitrary Changes"?
 - If the database can change arbitrarily in one step, only
 FO-properties can be maintained in DynFO
- What about complex changes that are *defined* by formulas $\psi(ec{y})$? Fractional Patnaik, Immerman 94]
- ... aka core SQL updates

Theorem [S., Vortmeier, Zeume 17]

- Reachability is in **DynFO** for undirected graphs in the presence of
 - single-tuple insertions and deletions and
 - FO-defined insertions
- Technique relies on a "bridge bound"



- In a nutshell each long path between connected components has a shortcut
- For insertions defined by unions of conjunctive queries (UCQs), the number of bridges is small
- → Prototypical implementation works quite well

₩.15

Reductions

- In Complexity, reductions are mostly used for lower bound results
- But of course, they can also yield upper bounds
- If for problems A,B and class ${\mathcal C}$ it holds
 - ► $A \leqslant B$,
 - ▶ $B \in C$ and
 - ▶ \mathcal{C} is closed under \leqslant then $A \in \mathcal{C}$
- → Under which reductions is DynFO closed?
 - Two requirements for such reductions:
 - ► FO-expressible
 - One change with respect to A should yield only few changes with respect to B
- bfo-reductions (\leqslant_{bfo}): FO-definable and one change wrt $m{A}$ yields only $\mathcal{O}(1)$ changes wrt $m{B}$

Regular Path Queries and Reachability

- ullet Let R be a regular language over Σ
- The regular path query q_R over graph databases asks for all pairs (u, v), for which there is a path from u to v with label sequence in R

- Let $oldsymbol{G} = (oldsymbol{V}, oldsymbol{E})$ with edge labels from alphabet $oldsymbol{\Sigma}$

- Let \mathcal{A} be a NFA for R with unique initial and final states s and t
- ullet Let the product graph $G imes \mathcal{A}$ have
 - \blacktriangleright node set $oldsymbol{V} imes oldsymbol{Q}$,
 - ▶ edge (i,p)
 ightarrow (j,q) if $i \xrightarrow{\sigma} j$ and $p \xrightarrow{\sigma} q$, for some $\sigma \in \Sigma$
- There is an $m{R}$ -path in $m{G}$ from $m{u}$ to $m{v}$ if and only if $(m{v},m{t})$ is reachable from $(m{u},m{s})$ in $m{G} imesm{\mathcal{A}}$
- And every change in G yields $\leqslant |Q|$ changes in $G imes \mathcal{A}$
- → If Reachability is in DynFO, then Regular Path Queries are in DynFO as well

tບ.∦ ⊲ ⊳ 16

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

Lower Bounds

Conclusion

Reachability under $\log n$ insertions (1/2)

Theorem [Vortmeier, Zeume 19 (unpublished)]

- Reachability is in DynFO* under log n insertions
 - *: If formulas can use + and \times

Proof idea

- The basic idea is
 - (1) to compute Reachability for the $\log n$ affected nodes, and
 - (2) to combine this information with the Reachability information for the rest of the graph

Proof idea (cont.)

- How can (1) be done?
- Reachability between two nodes x, y can be expressed by a monadic second-order (MSO) formula: orall X $(X(x) \land orall v orall w (X(v) \land E(v, w) \rightarrow X(w))$ $\rightarrow X(y))$
- Quantification of X is a-priori restricted to the subset W of affected nodes of size $\log n$
- The second-order ∃X quantification
 can be replaced by a first-order quantification ∃x
 over all nodes!
 - Since one node of the graph carries $\log n$ bits of information
 - And this information can be decoded with the help of
 - $+ \text{ and } \times$

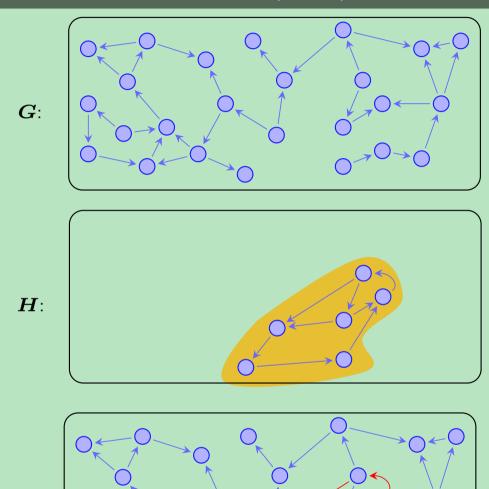
t∪.∦ ⊲ ⊳ 18

Reachability under $\log n$ insertions (1/2)

Proof idea (cont.)

- Assume that the transitive closure T_G of graph G is given
- After insertion of $\log n$ nodes
- ... let the graph H be defined on the effected nodes in the resulting graph G' ...
- ... with the newly inserted edges
- ... and additional edges for paths in ${\pmb G}$
- Compute transitive closure T_H of H
- Combine T_H with T_G to get $T_{G'}$

Proof idea (cont.)



G':

tu.**i** ⊲ ⊳ 19 (NV)

Contents

Introduction

Classical Results and Upper Bound Techniques Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra Lower Bounds

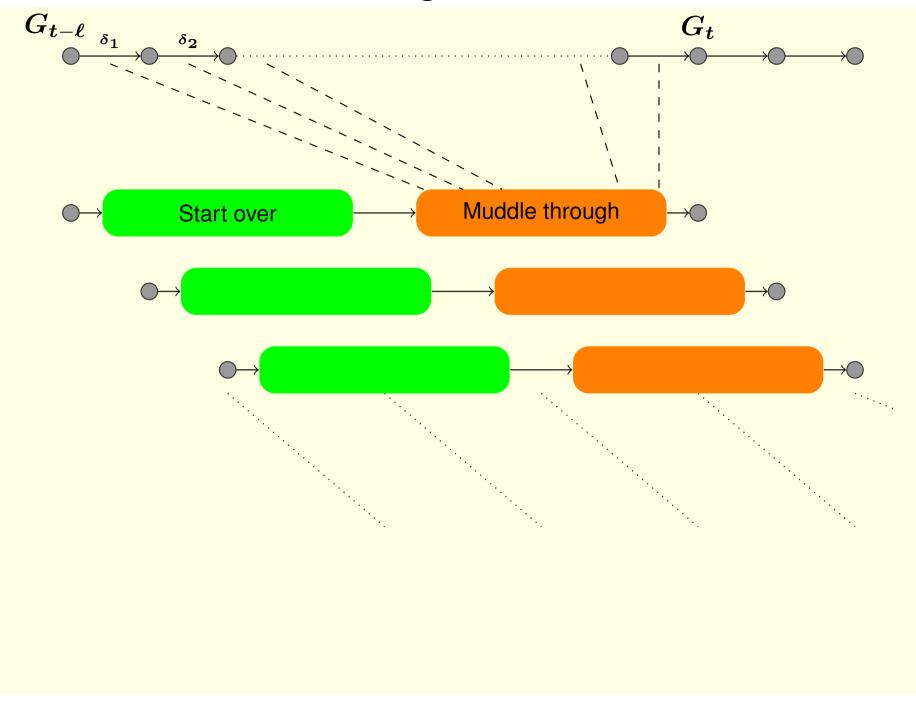
Conclusion

Muddling

- Basic idea of muddling:
 - To give the correct answer for graph G_t (at time t) do the following:
 - (1) Compute a solution from scratch for $G_{t-\ell}$ for a suitable ℓ Start over
 - (2) Update the computed solution for the ℓ changes between $t \ell$ and t with constant speed-up

Real Muddle through

Muddling: basic idea



Muddling Lemma

Muddling Lemma [Datta, Mukherjee, S., Vortmeier, Zeume 17]

- A query Q is in **DynFO**, if it has the following property:
 - From a graph G of size n
 - ... one can compute auxiliary relations in AC^1 ...
 - ... with which the query can be maintained for $\log n$ change steps
- AC¹ is a complexity class based on circuits of logarithmic depth
 LOGSPACE ⊆ NL ⊆ AC¹
- **AC**¹ can be characterised in terms of a limited fixed-point process:

Immerman

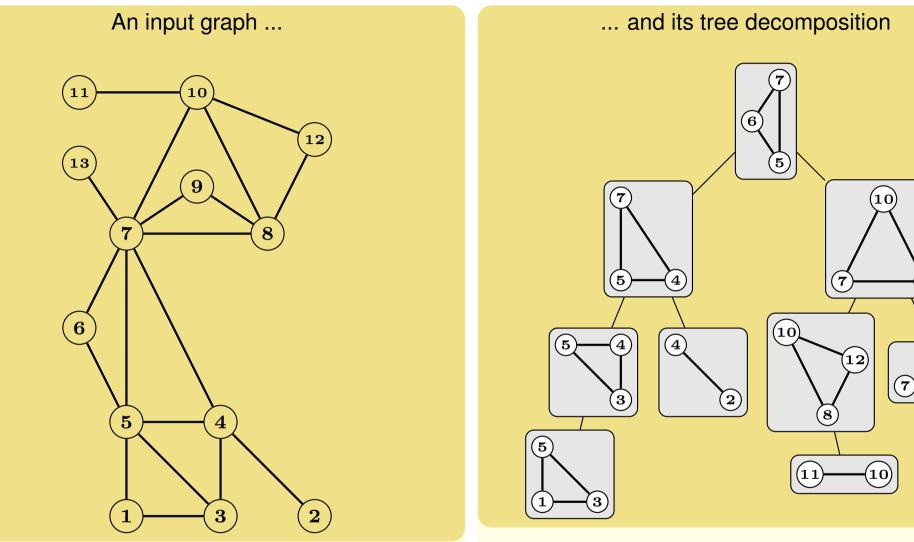
▶ $AC^1 = IND(\log n)$,

i.e., all queries that can be evaluated by $\mathcal{O}(\log n)$ many applications of the same FO-formula

• Example: $\log n + 1$ applications of

 $arphi(x,y)=E(x,y)ee \exists zT(x,z)\wedge T(z,y)$ yield the transitive closure of a graph

Tree decompositions



tu.**∦** ⊲ ⊳ 24 (NV)

8

 $(\mathbf{9})$

(13)

8

Application 1: 3-COL on bounded tree-width Graphs

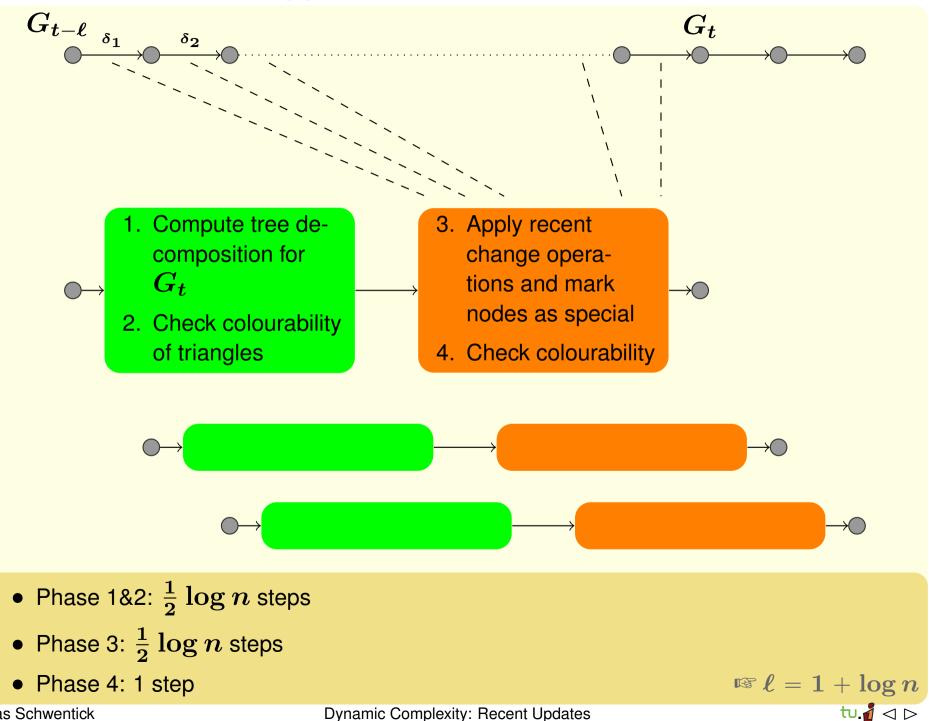
Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

- 3-COL can be maintained in **DynFO** on graphs of bounded tree-width
- Tree decompositions can be computed in logarithmic space

[Elberfeld, Jakoby, Tantau 10]

- ...thus in AC^1
- ...thus in $\mathsf{IND}(\log n)$
- Challenge: A small change of the graph might induce a big change of the tree decomposition
- Approach: use slightly outdated tree decomposition and muddle through for $\mathcal{O}(\log n)$ many "special" nodes

Application 1: Illustration



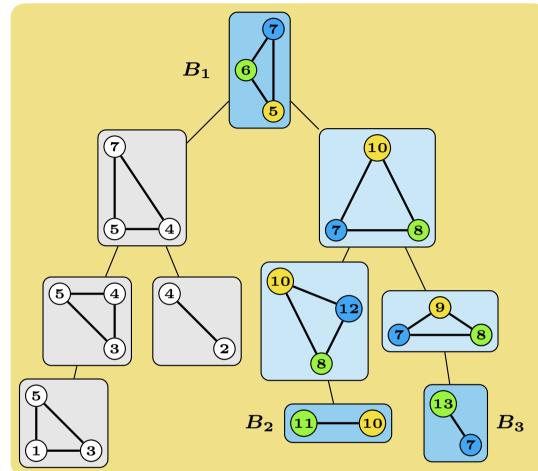
Thomas Schwentick

Dynamic Complexity: Recent Updates

26

Application 1: More detail (1/2)

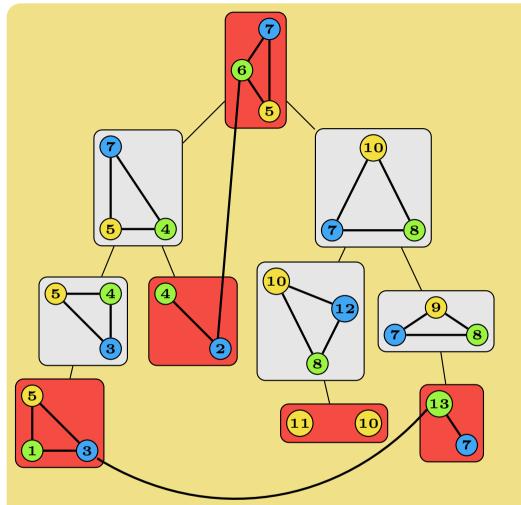
- Compute colourability information for all *triangles* of the decomposition
- Triangle: Three bags B_1, B_2, B_3
 - B_2 is in the subtree of B_1
 - B_3 is in the subtree of B_1
 - B_2 is no predecessor or descendant of B_3
- Boundary: All nodes in B_1, B_2, B_3
- Which colourings of boundaries of triangles can be extended to valid 3-colourings of the inner part of the induced graph?
 Image: Slightly simplified



tu.**∄** ⊲ ⊳ 27 (NV)

Application 1: More detail (2/2)

- If v is affected by a change: declare one bag of v as special modes
- After $\log n$ changes: $\mathcal{O}(\log n)$ nodes are special
- Existentially quantify colouring $oldsymbol{C}$ of special nodes
 - → MSO on subgraph with $\mathcal{O}(\log n)$ nodes, again
- Check: C is a valid 3-colouring of the graph induced by the special nodes
- Use auxiliary relations to check that $m{C}$ can be extended for the whole graph



Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

• Every MSO-definable query can be maintained in **DynFO** on graphs of bounded tree-width

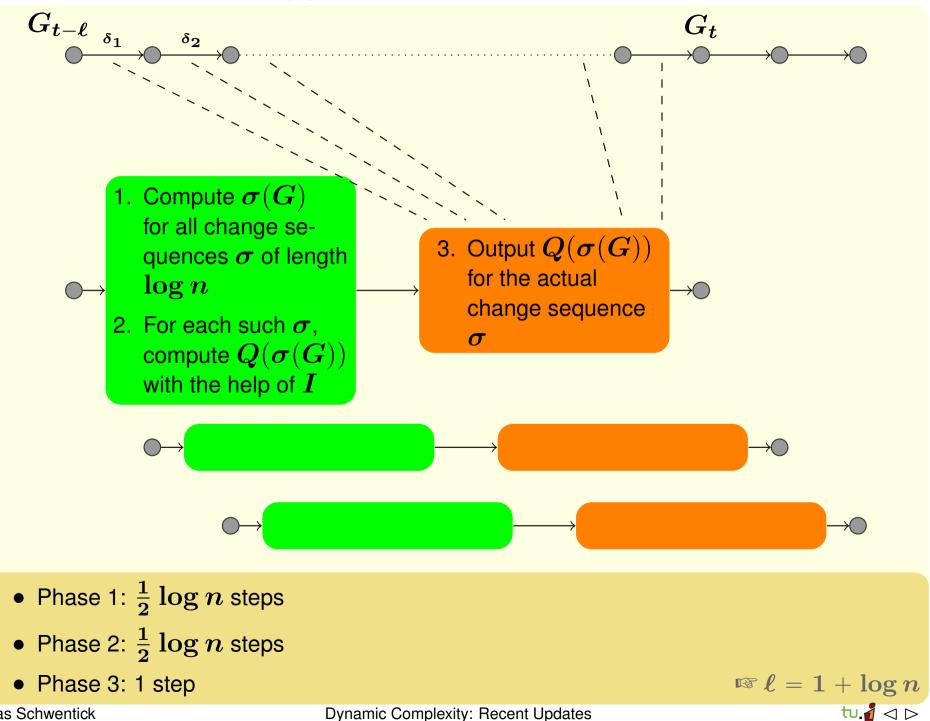
Application 2: Parameter-free definable changes

- Setting:
 - Fixed, finite set Δ of possible first-order definable change operations
 - No parameters
- Examples for parameter-free changes:
 - Delete all edges between blue and red nodes
 - Insert an edge between each green node x and yellow node y if they have a joint neigbour

Theorem [Schwentick, Vortmeier, Zeume 17]

- In this setting, every AC¹-definable query* can be maintained in DynFO
- *: with suitable initialisation
- For a proof sketch, let Q be some AC^1 -definable query
- Let $oldsymbol{I}$ be a IND $(\log n)$ -program for $oldsymbol{Q}$

Application 2: Illustration



Thomas Schwentick

Dynamic Complexity: Recent Updates

30

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

Lower Bounds

Conclusion

Results about Reachability

Conjecture [Patnaik, Immerman 97]

- Reachability is in **DynFO**
- Reachability is in DynFO for ...
 - acyclic graphs [Patnaik, Immerman 94/97]
 - undirected graphs

[Patnaik, Immerman 94/97; Dong, Su 98, Grädel, Siebertz 12]

• embedded planar graphs [Datta, Hesse, Kulkarni 14]

• Reachability is in DynFO extended by ...

- counting quantifiers [Hesse 01]
- modulo-2 counting quantifiers [Datta, Hesse, Kulkarni 14]

Theorem [Datta, Kulkarni, Mukherjee, TS, Zeume 15]

• Reachability is in **DynFO**

Theorem [Datta, Kulkarni, Mukherjee, Zeume 18]

• Reachability is in **DynFO**, even under under $\frac{\log n}{\log \log n}$ changes insertions and deletions!

Reachability in DynFO: Outline

Definition: REACH

Input: Directed Graph G

Result: All pairs (s, t) for which there is a path from s to t in G

Definition: FULLRANK

- Input: $m{m} imes m{m}$ -matrix $m{A}$ with values from $\{0,\ldots,m\}$
- **Question:** Does A have full rank m?

Definition: FULLRANKMODP

Input:	$m \times m$ -matrix A with values from
	$\{0,\ldots,m\}$, prime $p\leqslant m^{2}$
Question:	Does A have full rank m over $\mathbb{Z}_p?$

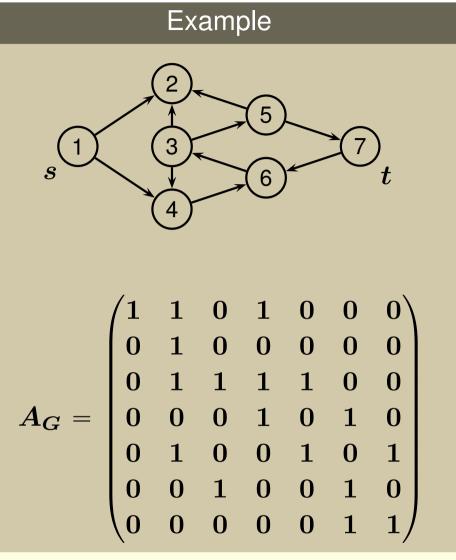
Structure of the proof

- We show:
 - (1) Reach $\leq_{btt[+,\times]}$ FullRank
 - (2) FullRank \leq_{bfo-tt} FullRankModP
 - (3) FullRankModP \in **DynFO** $(+, \times)$
 - (4) For domain independent Q:

 $oldsymbol{Q} \in \mathsf{DynFO}(+, imes) \Rightarrow oldsymbol{Q} \in \mathsf{DynFO}$

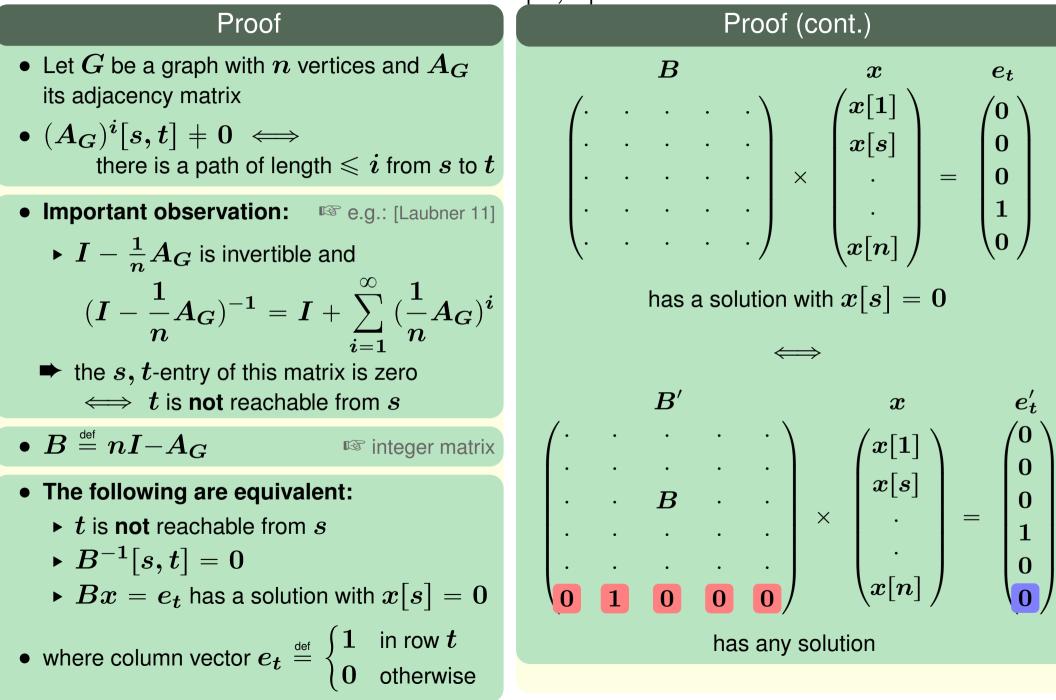
- Further ingredients:
 - ► DynFO is closed under ≤_{bfo-tt}-reductions
 - ► DynFO(+, ×) is closed under ≤_{btt[+,×]}reductions
 - REACH is domain independent
- All steps (1)-(4) are relatively simple and build on previous work

Step 1: REACH $\leq_{btt[+,\times]}$ FULLRANK (1/4)

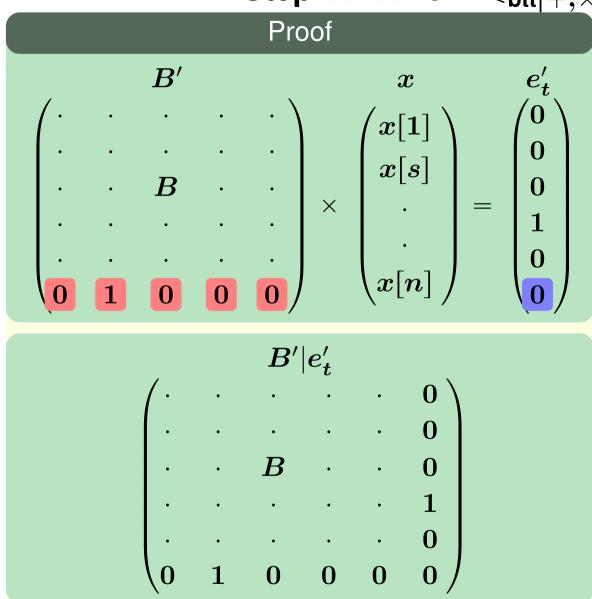


	ł	Exa	mp	le			
$(A_G)^2 =$	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	2 1 2 0 2 1 0	0 0 1 1 0 2 1	2 0 2 1 0 1 0	0 0 2 0 1 1 0	1 0 1 2 1 1 2	0 0 1 0 2 0 1/
$(A_G)^{f 8} =$			• • • •	• • • •	· · · · · · · · ·	5	

Step 1: REACH $\leq_{btt[+,\times]}$ FULLRANK (2/4)



Step 1: REACH $\leq_{btt[+,\times]}$ FULLRANK (3/4)



Proof (cont.)

•
$$B'x = e'_t$$
 has any solution
 $\iff e'_t \in \mathsf{RowSpace}(B')$
 $\iff \mathsf{rank}(B') = \mathsf{rank}(B'|e'_t)$

Since
$$m{B}$$
 is invertible,
 $\mathrm{rank}(m{B}') = \mathrm{rank}(m{B}) = m{n}$

• Putting everything together: t is reachable from s

$$\iff B'x = e'_t$$
 has **no** solution \iff rank $(B'|e'_t) = n + 1$ $\iff B'|e'_t$ has full rank

• Crucial:

• One edge change in G only yields one change in $B'|e'_t$

$$\rightarrow \leq_{\mathsf{btt}[+,\times]}$$
-reduction

$$ullet$$
 All numbers in $B'|e_t'$ are $\leqslant n$

Step 1: REACH $\leq_{btt[+,\times]}$ FULLRANK (4/4)

• What does REACH $\leq_{btt[+,\times]}$ FULLRANK exactly mean?

- "fo" says that all parts are first-order definable:
 - $A_{s,t}$ is first-order definable from G,s,t,+, imes
 - ▶ REACH(G) is first-order definable from the query results FULLRANK($A_{s,t}$), for all s, t
- "b" stands for "bounded expansion":
 - Each single edge change in G affects only a (constantly) bounded number of entries in A_{s,t}
- "tt" stands for "truth-table reduction":
 - For each pair s, t of nodes of G, one instance $A_{s,t}$ of FULLRANK is constructed
- " $[+, \times]$ " basically indicates that the the nodes of G are numbers $1, \ldots, n$ of G and reduction can use addition and multiplication

In general, more parameters possible...

Step 2: FullRank \leq_{bfo-tt} FullRankModP

Proof (cont.)

• Challenge: for the next step, numbers in matrices can become exponentially large

 \mathbb{R} cannot be handled over domain $\{0,\ldots,m\}$

- Claim: The following are equivalent:
 - An m imes m-matrix A with values from $\{0, \dots, m\}$ has full rank m
 - For some prime $p \leqslant m^2$, A has full rank m over
 \mathbb{Z}_p

Step 3: FULLRANKMODP E DynFO (1/2)

Proof (cont.)

• It remains to maintain $\mathrm{rank}(oldsymbol{A})$ over $\mathbb{Z}_{oldsymbol{p}}$ for primes $oldsymbol{p} \leqslant oldsymbol{m}^{2}$

Proof (cont.)

- Idea: Maintain a Gaussian elimination, i.e.:
 - ullet an invertible matrix $oldsymbol{U}$ and
 - ▶ a matrix E in reduced row-echelon form such that UA = E [F

[Frandsen, Frandsen 09]

• Reduced row-echelon form:

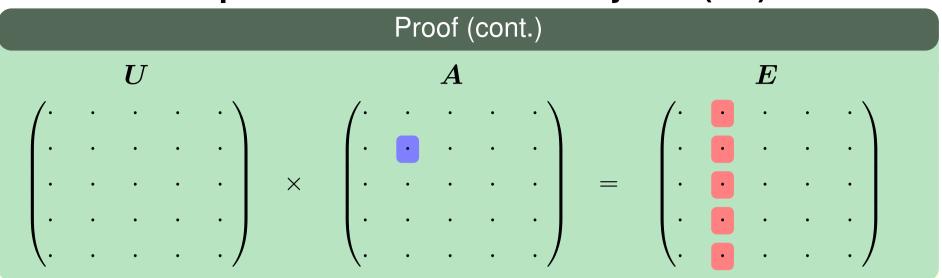
- ▶ The first non-zero (= *leading*) entry in every row is 1
- ► The column of such a leading entry is all-zero otherwise
- Rows are sorted in a "diagonal" fashion

/1	4	0	2	0	$2 \setminus$
0	0	1	3	0	4
0	0	0	0	1	2 4 7 0
0	0	0	0	0	0/

- Thanks to
 - $\blacktriangleright \ \mathrm{rank}({\boldsymbol{E}}) = \mathrm{rank}({\boldsymbol{U}}{\boldsymbol{A}}) = \mathrm{rank}({\boldsymbol{A}}), \, \mathrm{and}$
 - \blacktriangleright the structure of E

we get: $\mathsf{rank}(oldsymbol{A}) = \mathsf{number}$ of non-zero rows of $oldsymbol{E}$

Step 3: FULLRANKMODP E DynFO (2/2)



- A change of A[i,j] can only affect the j-th column of E
- To bring E back to reduced echelon form:
 - (i) If new leading entries occur in column j:
 - keep one with a maximum number of successive zeros in its row, and
 - \blacktriangleright set all other entries of column j to 0 by appropriate row operations
 - (ii) If a former leading entry of a row $m{k}$ is lost in column $m{j}$ (by the change in $m{A}$ or by (i))
 - Take the next non-zero-entry on row k
 - Clean its column by appropriate row operations
 - (iii) If needed: move the (≤ 2) rows whose leading entry has changed to their correct row positions (and adapt them so that their leading entries are 1)
 - (iv) Update $oldsymbol{U}$ accordingly
- These update operations can be specified by first-order formulas

Step 4: From DynFO $(+, \times)$ to DynFO: Challenge

- Steps 1-3: REACH \in **DynFO** $(+, \times)$
- How to obtain a **DynFO**-program P' from a **DynFO**(+, ×)-program P?

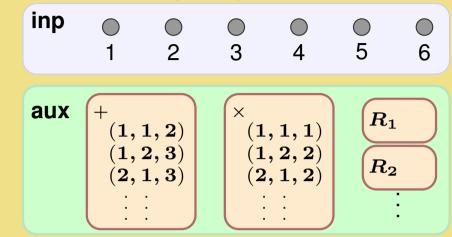
Proof idea

• Arithmetic for active elements can be built on the fly for the activated elements

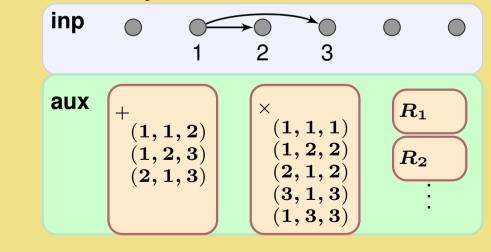
[Etessami '98]

- We show that for domain independent queries, this approach can be extended to programs which use arithmetic for *all* elements from the very beginning
- *Domain independent:* invariant under adding isolated nodes

• Illustration of $DynFO(+, \times)$:

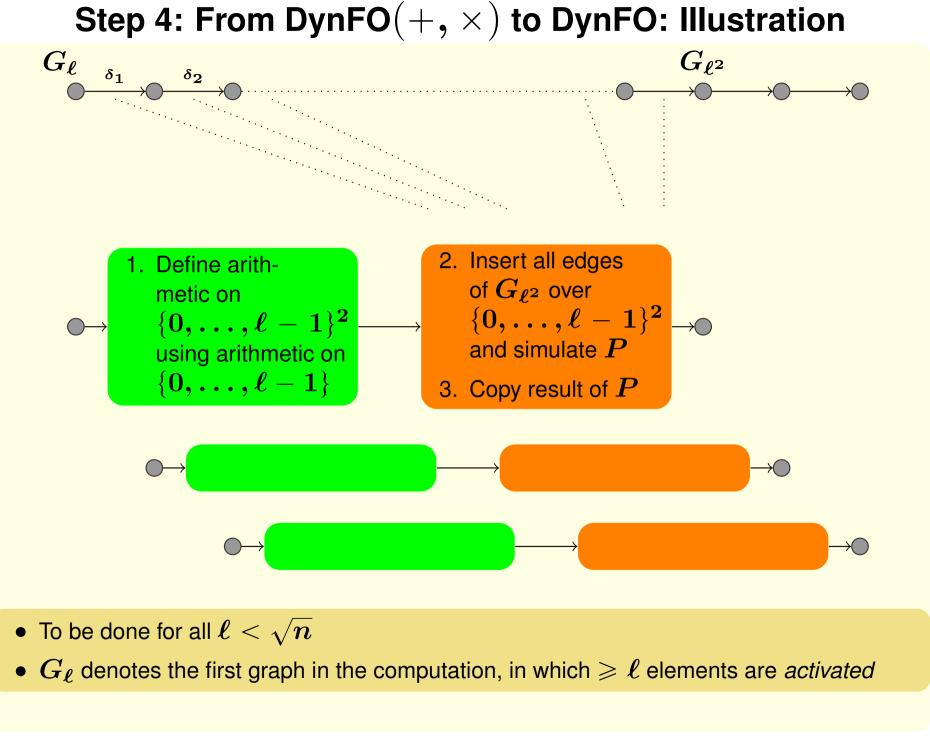


- Updates can use arithmetic from the very beginning
- Illustration of DynFO:



Initially, updates can not use arithmetic

tu.∦ ⊲ ⊳ 41 (TZ)



Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

▷ Lower Bounds

Conclusion

Lower bounds: a sad state

- Easy observation: $oldsymbol{q} \in \mathsf{DynFO} \Rightarrow oldsymbol{q} \in \mathsf{PTIME}$
 - Just insert the tuples of *D* into an empty database one by one, and compute all updates
- So far there are no other general lower bound results for DynFO
- We cannot rule out that: **DynFO** = **P**
- Most existing lower bounds apply to
 - auxiliary relations of bounded arity or
 - restricted logics or
 - ► both...

Reachability is not in unary DynFO (1/2)

Theorem [Dong Su 95/98]

- REACH ∉ unary **DynFO**
- unary DynFO: Update programs with unary auxiliary relations

Proof sketch

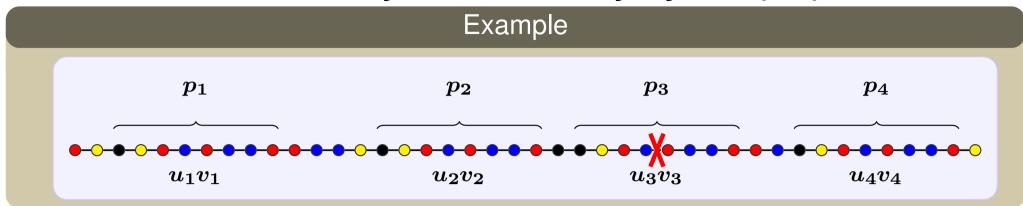
- Proof by contradiction with a locality argument
- Assume there is a unary dynamic program for REACH with ${m}$ unary aux relations and a rule

on delete $({m u},{m v})$ from ${m E}$ update ${m Q}({m x},{m y})$ as ${m \varphi}({m u},{m v},{m x},{m y})$

with arphi of quantifier-depth k

- The aux relations induce, for each node, one of 2^m colours
- Consider a graph consisting of a sufficiently long path with $\geqslant 4(2\cdot 4^k+2)2^{m(2\cdot 4^k+2)}$ nodes

Reachability is not in unary DynFO (2/2)



Proof sketch (cont.)

- Since the path is long enough, there must exist four disjoint subpaths of length $2 \cdot 4^k + 2$ each with identical color (relations) sequence
- Let $(u_1, v_1), \ldots, (u_4, v_4)$ be the innermost edges of these paths
- After deletion of (u_3, v_3) ,
 - u_2 is still reachable from v_1 , but
 - ▶ u_4 is no longer reachable from v_1
- The 4^k -neighborhoods of (v_1, u_3, v_3, u_2) and (v_1, u_3, v_3, u_4) are isomorphic
- $igstarrow arphi(u_3,v_3,v_1,u_2)\equiv arphi(u_3,v_3,v_1,u_4)$ by Gaifman's Theorem
- After deletion of (u_3, v_3) , the program gives the same answer for (v_1, u_2) and (v_1, u_4)

The program is wrong with respect to either (v_1, u_2) or (v_1, u_4) , the desired contradiction

Thomas Schwentick

Dynamic programs with quantifier-free formulas

• Hesse initiated the study of dynamic programs with quantifier-free update formulas [Hesse 03]

Definition

- DynProp:
 - Queries that can be maintained in DynFO with quantifier-free formulas and aux relations
- DynQF:
 - Queries that can be maintained in DynFO with quantifier-free formulas and aux functions (and relations)

DynQF formulas can use "if-then-else"-terms

 Quantifier-free update formulas? Isn't that extremely weak?

Theorem [Hesse 03]

Reachability is in **DynProp** for deterministic graphs
 Image: Second second

Theorem [Hesse 03]

Reachability is in **DynQF** for undirected graphs
 no quantifiers, unary aux functions & relations

Alternating Reachability is not in DynProp

 Alternating Reachability \nother DynProp Proof idea 7 F 2mA B $C_{2}^{\binom{2m}{m}}$ Ξ

Theorem [Gelade, Marguardt, Schwentick 08/12]

• A:2m existential nodes

 v_1,\ldots,v_{2m}

- B: one universal node per size-m-subset of A
- C: one existential node per subset of $oldsymbol{B}$

Thomas Schwentick

Dynamic Complexity: Recent Updates

Proof idea (cont.)

- Assume: *P* is a **DynProp** program for Alternating Reachability
 Image and let *m* be large enough
- There are $> {f 2^2}^m$ nodes in C
- There are $< 2^{2^m}$ isomorphism types for tuples $(s,t,v_1,\ldots,v_{2m},r)$

if m is sufficiently large with respect to ${\cal P}$

- There are $r \neq r'$ in C with the same tuple type together with $s, t, v_1, \ldots, v_{2m}$
- There is a set $I \subseteq A$ such that insertion of all edges $(u, t), u \in I$, makes t (alternatingly) reachable from exactly one of r and r'
 - However, after adding either (s, r) or (s, r')the tuples $(s, t, v_1, \ldots, v_{2m}, r)$ and $(s, t, v_1, \ldots, v_{2m}, r')$ still have the same type
 - Contradiction

Some Further Inexpressibility Results

Theorem [Gelade, Marquardt, Schwentick 08/12]

• FO \subseteq DynProp

Theorem [Zeume, Schwentick 13]

• REACH ∉ binary **DynProp**

Theorem [Zeume 14]

- If only edge insertions are allowed:
 - k-CLIQUE can be maintained in (k-1)-ary
 DynProp

▶ k-CLIQUE \notin (k-2)-ary **DynProp**

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

Lower Bounds

⊳ Conclusion

Conclusion

- **DynFO** is far more powerful than expected
- Upper bound results might be even "practical"
- Lower bounds for **DynFO** seem hopeless
- A lot remains to be done
 - Applications of the Reachability result
 - Implementations
 - Further exploration of linear algebra approaches
 - ▶ ...

References (1/2)

- Guozhu Dong and Jianwen Su. First-order incremental evaluation of datalog queries. In DBPL 1993, pages 295–308, 1993
- Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. In *PODS* 1994, pages 210–221, 1994
- Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. *J. Comput. Syst. Sci.*, 55(2):199–209, 1997
- Guozhu Dong and Jianwen Su. Arity bounds in first-order incremental evaluation and definition of polynomial time database queries. *J. Comput. Syst. Sci.*, 57(3):289–308, 1998
- D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC¹. *Journal of Computer and System Sciences*, 41:274– 306, 1990

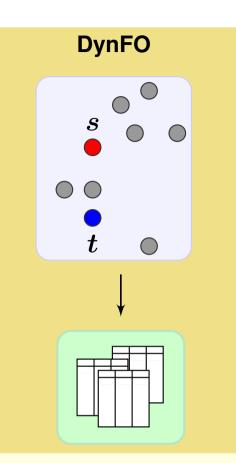
- Kousha Etessami. Dynamic tree isomorphism via first-order updates. In *PODS*, pages 235– 243. ACM Press, 1998
- William Hesse. The dynamic complexity of transitive closure is in DynTC⁰. In *ICDT 2001*, pages 234–247, 2001
- Bastian Laubner. The structure of graphs and new logics for the characterization of Polynomial Time. PhD thesis, Humboldt University of Berlin, 2011
- Gudmund Skovbjerg Frandsen and Peter Frands Frandsen. Dynamic matrix rank. *Theor. Comput. Sci.*, 410(41):4085–4093, 2009
- Samir Datta, William Hesse, and Raghav Kulkarni. Dynamic complexity of directed reachability and other problems. In *ICALP (1)*, pages 356– 367, 2014

References (2/2)

- Samir Datta, Anish Mukherjee, Nils Vortmeier, and Thomas Zeume. Reachability and distances under multiple changes. In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 120:1–120:14, 2018
- Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. A strategy for dynamic programs: Start over and muddle through. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 98:1–98:14, 2017
- Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. Dynamic complexity under definable changes. In 20th International Conference on Database Theory, ICDT 2017, pages 19:1–19:18, 2017
- Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas Zeume. Reachability is in dynfo. In *International Colloquium on Automata, Languages, and Programming, ICALP 2015, Proceedings, Part II*, pages 159–170, 2015

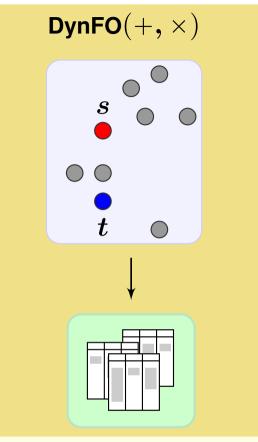
- Thomas Zeume and Thomas Schwentick. Dynamic conjunctive queries. In Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 38–49, 2014
- Thomas Zeume and Thomas Schwentick. On the quantifier-free dynamic complexity of reachability. In Mathematical Foundations of Computer Science 2013, pages 837–848, 2013
- Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. The dynamic complexity of formal languages. *ACM Trans. Comput. Log.*, 13(3):19, 2012

Three initialisation settings

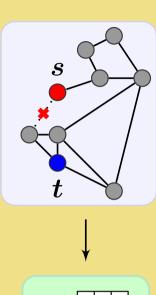


 Start from empty input and empty auxiliary data

[Patnaik, Immerman 94/97]



- Start from empty input and precomputed auxiliary arithmetic relations + and ×
 - depending on the universe
- Other initialisations of the auxiliary relations possible



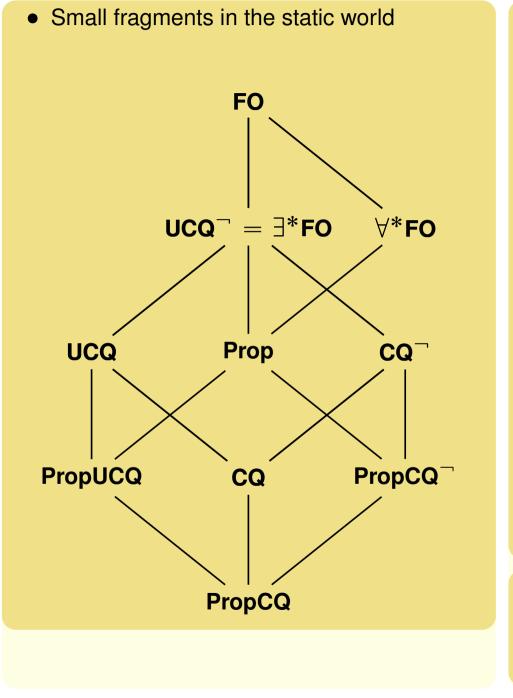
- Starts from non-empty input and precomputed auxiliary data
 - depending on the actual input
- Interesting, but not considered in this talk...

Thomas Schwentick

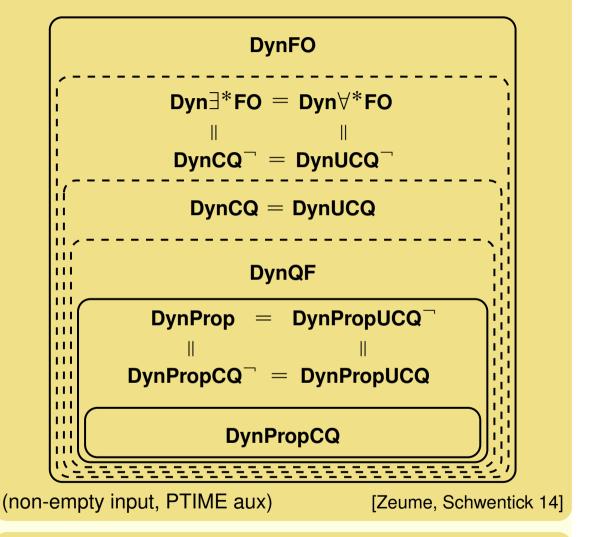
Dynamic Complexity: Recent Updates

₩.1 < > 54 !

How do small fragments of DynFO relate?



• Small fragments in the dynamic world



- Many static classes coincide in the dynamic world
- Linear hierarchy of classes!
- Further: $FO \subseteq DynCQ^{\neg}$

Dynamic Complexity of Formal Languages

Theorem [Patnaik, Immerman 94/97]

- Reg \subseteq DynFO
- All Dyck languages can be maintained in **DynFO**

Theorem [Hesse 03]

• Reg \subseteq DynQF

Theorem [Gelade, Marquardt, TS 09/12]

• With respect to formal languages: **DynProp** = **Reg**

Theorem [Gelade, Marquardt, TS 09/12]

- CFL \subseteq DynFO
- All Dyck languages can be maintained in **DynQF**

Corollary

● DynProp ⊊ DynQF