
Incremental query evaluation

Thomas Schwentick

Luminy, April 2019

Lehrstuhl Logik in der Informatik

Dynamic Complexity: Recent and

Complex Updates

Thomas Schwentick

(with some borrowed slides from Nils Vortmeier and Thomas Zeume)

Luminy, April 2019

Lehrstuhl Logik in der Informatik

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 0-1

Dynamic Reachability in Practice: Social Networks

(NV)

Example

Alice

Bob

Alice

Bob

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 1

The Dynamic Setting

Dynamic Evaluation of a query

changes
Input data

Auxiliary data

Query result

‚ DynFO: Auxiliary relations are updated using first-order logic

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 2

The Dynamic Setting: Reachability

Input

t

s

Aux. data

Reach(s,t)?

yes

t

s

Reach(s,t)?

no

t

s

Reach(s,t)?

yes

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 3

The Dynamic Setting: Algorithms vs. Query Languages
‚ The field of Dynamic Algorithms studies algorithms that maintain

a (graph) property faster than deciding it from scratch

‚ In Dynamic Complexity we think in terms of query languages

‚ In Databases (Theory) our main language is

Relational Algebra” Relational Calculus « First-Order Logic

‚ Incremental View Maintenance: Update FO-query results as

efficiently as possible

‚ Different angle: can the result of a query q that is expressible in

a stronger query language L1 be updated with a weaker query

language L2

‚ Two natural questions:

(1) What expressive power is needed to maintain FO-expressible

queries? ☞ later

(2) Which queries that can not be expressed in FO, can be up-

dated with FO? ☞ Main topic of this talk

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 4

Example 1: Reachability under Insertions

Example

1

2

3

4

5

G

1

2

3

4

5

T

INS(2,4)

1

2

3

4

5

G1

1

2

3

4

5

T 1

‚ Idea: store the transitive closure of the edge relation in a binary auxiliary

relation T ☞[Dong, Su 93/95; Patnaik, Immerman 94/97]

‚ Update rule:

on insert pu, vq intoE

update T px, yq as T px, yq _
`

T px, uq ^ T pv, yq
˘

§ determines the pairs px, yq in T after insertion of pu, vq toE

‚ Transitive closure does not suffice for edge deletions [Dong, Libkin, Wong 95]

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 5

Example 2: Reachability in DAGs under Deletions

Example

1

2

3

4

5

6

7

8

9

x y

G

a b

u v

‚ For directed acyclic graphs, Reachability can be maintained with first-

order updates [Dong, Su 93/95; Patnaik, Immerman 94/97]

‚ Challenge: how to express, that there is still a path p from x to y after

deleting edge pa, bq?
Simple cases Epx, yq, T px, aq, T pb, yq, . . .
Otherwise p must have a last node u ­“ y from which a can be

reached

¨ ¨ ¨ _ Du, v
`

pu ­“ a _ v ­“ yq^
T px, uq ^ Epu, vq ^ T pv, yq^ T pu, aq ^ T pv, aq

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 6

Dynamic Complexity: Our Setting
‚ Databases in this talk: graphs (di-

rected/undirected, possibly labelled)

‚ Change operations:

§ Simple changes:

� Insertion of a single tuple: insert pu, vq
� Deletion of a single tuple: delete pu, vq

§ Complex changes: later

‚ Set of nodes is fixed, for each computation

§ n “ number of nodes

‚ Dynamic program:

§ One update formula per change operation

and auxiliary relation

§ One output formula

‚ Initialisation:

§ Source of technical complications

§ We ignore it for this talk

§ We can always assume the nodes are num-

bers 1, . . . , n and formulas can use a

linear orderď on the nodes and addition

and multiplication relations

Definition

‚ DynFO
def“ queries that can be maintained by

first-order logic with auxiliary relations under

the given change operations

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 7

Motivation and Goals
‚ Why DynFO?

‚ captures essentially what can be maintained in a

relational database ☞ core SQL

‚ meaningful from a complexity theoretic point of

view:

§ FOp`,ˆq ” uniform AC0

” circuit families of bounded depth and poly

size

‚ the most natural logic

‚ General goals of our research:

‚ Understand the expressive power of DynFO

§ Which queries are in DynFO?

� General techniques for DynFO programs

§ Which queries are not in DynFO?

� Methods for inexpressibility results?

‚ What we learned:

‚ In the dynamic setting, first-order logic is much

more powerful than in the static setting

‚ Inexpressibility results are hard to get

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 8

Short History of Dynamic Complexity

(TZ)

WWW WWW WWWWWWWWW

WWW WWW WWWWWW

WWW WWWWWW WWW

WWW WWW WWWWWW

WWWWWW

S. Patnaik N. Immerman G. DongR. ToporJ. Su

L. Libkin W. Hesse K. EtessamiL. Wong

M. Marquardt T. Zeume
W. Gelade

V. Weber

E. Grädel S. Siebertz
R. KulkarniS. Datta

A. MukherjeeN. Vortmeier

?

1990

1995

2000

2005

2010

2015

2019

Introduction of the setting

Maintaining

basic graph

queries

Lower bounds

for restricted

Arity

Reach in dynamic TC0

Lower bounds

for small syntactic

fragments

Connections to

static complexity

classes

Reach in non-uniform

DynAC0r‘s
Reach in DynFO

Complex Changes, Muddling

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 9

Contents

Introduction

� Classical Results and Upper Bound Tech-
niques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

Lower Bounds

Conclusion

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 10

Methods for dynamic programs
‚ We will see various methods for upper bounds

‚ First we consider “traditional” methods

§ Ad-hoc programs for the problem at hand

§ Reductions

‚ Then we will have a look at more recent techniques

§ MSO-simulation

§ Muddling

§ Linear Algebra

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 11

Undirected Reachability in DynFO (1/3)
‚ We already know:

Theorem [Patnaik, Immerman 94/97]

‚ ACYCLIC REACH P DynFO

‚ As another restriction of REACH, we now consider

SYM-REACH:

§ Reachability for undirected graphs

‚ There are several proofs for SYM-REACH P DynFO

§ We look at the simplest and first proof by

[Patnaik, Immerman 94/97]

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 12

Undirected Reachability in DynFO (2/3)

(NV)

Example: Insertion

1

2 3 4 5

6 7

8 9 10 11

‚ Basic idea: maintain a spanning forest F
and its transitive closure T

‚ On arrival of a new edge, add it to F , if it

connects two distinct components

Example: Deletion

1

2 3 4 5

6 7

8 9 10 11

a b

u v

‚ Deletion is, again, more tricky

‚ How to modify the spanning tree if an edge pa, bq
is deleted but its component remains connected?

§ Determine nodes u and v in the subtrees of a
and b, respectively, such that pu, vq P E, and

add pu, vq to F

‚ This can be done with

§ a more sophisticated relation T with all triples

pd, e, gq for which there is a path in F from d
to e through g

§ some order on the edges to choose pu, vq
uniquely

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 13

Undirected Reachability in DynFO (3/3)

Theorem [Patnaik, Immerman 94/97]

‚ SYM-REACH P DynFO

‚ Is the ternary auxiliary relation T necessary? ☞ No

‚ k-ary DynFO: queries in DynFO that can be maintained

with (at most) k-ary aux relations

Theorem [Dong, Su 95/98]

‚ SYM-REACH P binary DynFO

‚ SYM-REACH R unary DynFO

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 14

Undirected Reachability under Complex Changes
‚ So far we only considered very

simple change operations:

§ Insertion or deletion of a sin-

gle tuple

§ No change of the uni-

verse/domain

‚ What about other kinds of

changes?

‚ “Arbitrary Changes”?

§ If the database can change

arbitrarily in one step, only

FO-properties can be main-

tained in DynFO

‚ What about complex changes

that are defined by formulas

ψp~yq? ☞[Patnaik, Immerman 94]

‚ ... aka core SQL updates

Theorem [S., Vortmeier, Zeume 17]

‚ Reachability is in DynFO for undirected graphs in the pres-

ence of

§ single-tuple insertions and deletions and

§ FO-defined insertions

‚ Technique relies on a “bridge bound”

s tb1 b2
¨ ¨ ¨

bm
bm`1

‚ In a nutshell each long path between connected components

has a shortcut

‚ For insertions defined by unions of conjunctive queries

(UCQs), the number of bridges is small

➞ Prototypical implementation works quite well

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 15

Reductions
‚ In Complexity, reductions are mostly

used for lower bound results

‚ But of course, they can also yield upper

bounds

‚ If for problemsA,B and class C it

holds

§ A ď B,

§ B P C and

§ C is closed underď
thenA P C

➞ Under which reductions is DynFO

closed?

‚ Two requirements for such reductions:

§ FO-expressible

§ One change with respect toA should

yield only few changes with respect to

B

‚ bfo-reductions (ďbfo):

FO-definable and one change wrtA
yields only Op1q changes wrtB

Regular Path Queries and Reachability

‚ LetR be a regular language over Σ

‚ The regular path query qR over graph databases

asks for all pairs pu, vq, for which there is a path from

u to v with label sequence inR

‚ LetG “ pV,Eq with edge labels from alphabet Σ

‚ Let A be a NFA forR with unique initial and final

states s and t

‚ Let the product graphG ˆA have

§ node set V ˆQ,

§ edge pi, pq Ñ pj, qq if i
σÑj and p

σÑq, for

some σ P Σ

‚ There is anR-path inG from u to v if and only if

pv, tq is reachable from pu, sq inG ˆA

‚ And every change inG yieldsď |Q| changes inGˆ
A

➞ If Reachability is in DynFO, then Regular Path

Queries are in DynFO as well

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 16

Contents

Introduction

Classical Results and Upper Bound Techniques

� Recent Upper Bound Techniques: MSO-
Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

Lower Bounds

Conclusion

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 17

Reachability under logn insertions (1/2)

Theorem [Vortmeier, Zeume 19 (unpublished)]

‚ Reachability is in DynFO˚ under

logn insertions

˚: If formulas can use ` and ˆ

Proof idea

‚ The basic idea is

(1) to compute Reachability for the

logn affected nodes, and

(2) to combine this information with

the Reachability information for

the rest of the graph

Proof idea (cont.)

‚ How can (1) be done?

‚ Reachability between two nodes x, y can be expressed

by a monadic second-order (MSO) formula:

@X
`

Xpxq ^ @v@w
`

Xpvq ^ Epv, wq Ñ Xpwq
˘

Ñ Xpyq
˘

‚ Quantification ofX is a-priori restricted to the subsetW
of affected nodes of size logn

➨ The second-order DX quantification ☞ restricted to W!

can be replaced by a first-order quantification Dx
☞ over all nodes!

§ Since one node of the graph carries logn bits of

information

§ And this information can be decoded with the help of

` andˆ

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 18

Reachability under logn insertions (1/2)

(NV)

Proof idea (cont.)

‚ Assume that the transitive clo-

sure TG of graphG is given

‚ After insertion of logn nodes

‚ ... let the graphH be defined

on the effected nodes in the

resulting graphG1 ...

‚ ... with the newly inserted edges

...

‚ ... and additional edges for paths

inG

‚ Compute transitive closure TH

ofH

‚ Combine TH with TG to get

TG1

Proof idea (cont.)

G:

H :H :

G1
:

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 19

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

� Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

Lower Bounds

Conclusion

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 20

Muddling
‚ Basic idea of muddling:

§ To give the correct answer for graphGt (at time t) do

the following:

(1) Compute a solution from scratch forGt´ℓ for a

suitable ℓ ☞ Start over

(2) Update the computed solution for the ℓ changes

between t ´ ℓ and t with constant speed-up

☞ Muddle through

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 21

Muddling: basic idea
Gt´ℓ Gtδ1 δ2

Start over Muddle through

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 22

Muddling Lemma

Muddling Lemma [Datta, Mukherjee, S., Vortmeier, Zeume 17]

‚ A queryQ is in DynFO, if it has the following property:

§ From a graphG of size n

§ ... one can compute auxiliary relations in AC1 ...

§ ... with which the query can be maintained for logn change steps

‚ AC1 is a complexity class based on circuits of logarithmic depth

‚ LOGSPACE Ď NL Ď AC1

‚ AC1 can be characterised in terms of a limited fixed-point process:

☞ Immerman

§ AC1 “ INDplognq,
i.e., all queries that can be evaluated by Oplognq many applica-

tions of the same FO-formula

§ Example: logn`1 applications of

ϕpx, yq “ Epx, yq _ DzT px, zq ^ T pz, yq
yield the transitive closure of a graph

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 23

Tree decompositions

(NV)

An input graph ...

1 23

45

6

7 8

9

1011

12

13

... and its tree decomposition

5

6

7

45

7

2

4

3

45

1 3

5

7 8

9

7 8

10

8

10

12

1011

7

13

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 24

Application 1: 3-COL on bounded tree-width Graphs

Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

‚ 3-COL can be maintained in DynFO on graphs of bounded tree-width

‚ Tree decompositions can be computed in logarithmic space

[Elberfeld, Jakoby, Tantau 10]

‚ ...thus in AC1

‚ ...thus in INDplognq
‚ Challenge: A small change of the graph might induce a big change of

the tree decomposition

‚ Approach: use slightly outdated tree decomposition and muddle through

for Oplognq many “special” nodes

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 25

Application 1: Illustration
Gt´ℓ Gtδ1 δ2

1. Compute tree de-

composition for

Gt

2. Check colourability

of triangles

3. Apply recent

change opera-

tions and mark

nodes as special

4. Check colourability

‚ Phase 1&2:
1

2
logn steps

‚ Phase 3:
1

2
logn steps

‚ Phase 4: 1 step ☞ ℓ “ 1 ` logn
Thomas Schwentick Dynamic Complexity: Recent Updates . � � 26

Application 1: More detail (1/2)

(NV)

‚ Compute colourability information for all trian-

gles of the decomposition

‚ Triangle: Three bagsB1, B2, B3

§ B2 is in the subtree ofB1

§ B3 is in the subtree ofB1

§ B2 is no predecessor or descendant ofB3

‚ Boundary: All nodes inB1, B2, B3

‚ Which colourings of boundaries of triangles can

be extended to valid 3-colourings of the inner

part of the induced graph? ☞ slightly simplified

5

6

7

B1

45

7

2

4

3

45

1 3

5

7 8

9

8

9

7

10

8

10

8

12

1011B2

7

13

B3

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 27

Application 1: More detail (2/2)

(NV)

‚ If v is affected by a change: declare one bag of

v as special ☞ special nodes

‚ After logn changes: Oplognq nodes are

special

‚ Existentially quantify colouringC of special

nodes

➞ MSO on subgraph with Oplognq nodes,

again

‚ Check: C is a valid 3-colouring of the graph

induced by the special nodes

‚ Use auxiliary relations to check thatC can be

extended for the whole graph

5

6

7

45

7

2

4

3

45

1 3

5

7 8

9

7 8

10

8

10

12

1011

7

13

Theorem [Datta, Mukherjee, S., Vortmeier, Zeume 17]

‚ Every MSO-definable query can be maintained

in DynFO on graphs of bounded tree-width

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 28

Application 2: Parameter-free definable changes
‚ Setting:

§ Fixed, finite set ∆ of possible first-order definable

change operations

� No parameters

‚ Examples for parameter-free changes:

§ Delete all edges between blue and red nodes

§ Insert an edge between each green node x and

yellow node y if they have a joint neigbour

Theorem [Schwentick, Vortmeier, Zeume 17]

‚ In this setting, every AC1-definable query˚ can be main-

tained in DynFO

‚ ˚: with suitable initialisation

‚ For a proof sketch, letQ be some AC1-definable query

‚ Let I be a INDplognq-program forQ

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 29

Application 2: Illustration
Gt´ℓ Gtδ1 δ2

1. Compute σpGq
for all change se-

quences σ of length

logn

2. For each such σ,

computeQpσpGqq
with the help of I

3. OutputQpσpGqq
for the actual

change sequence

σ

‚ Phase 1:
1

2
logn steps

‚ Phase 2:
1

2
logn steps

‚ Phase 3: 1 step ☞ ℓ “ 1 ` logn
Thomas Schwentick Dynamic Complexity: Recent Updates . � � 30

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

� Recent Upper Bound Techniques: Linear Al-
gebra

Lower Bounds

Conclusion

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 31

Results about Reachability

Conjecture [Patnaik, Immerman 97]

‚ Reachability is in DynFO

‚ Reachability is in DynFO for ...

§ acyclic graphs [Patnaik, Immerman 94/97]

§ undirected graphs

[Patnaik, Immerman 94/97; Dong, Su 98, Grädel, Siebertz 12]

§ embedded planar graphs [Datta, Hesse, Kulkarni 14]

‚ Reachability is in DynFO extended by ...

§ counting quantifiers [Hesse 01]

§ modulo-2 counting quantifiers [Datta, Hesse, Kulkarni 14]

Theorem [Datta, Kulkarni, Mukherjee, TS, Zeume 15]

‚ Reachability is in DynFO

Theorem [Datta, Kulkarni, Mukherjee, Zeume 18]

‚ Reachability is in DynFO, even under under
logn

log logn
changes

☞ insertions and deletions!

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 32

Reachability in DynFO: Outline

Definition: REACH

Input: Directed GraphG

Result: All pairs ps, tq for which there is a path

from s to t inG

Definition: FULLRANK

Input: m ˆ m-matrixA with values from

t0, . . . ,mu
Question: DoesA have full rankm?

Definition: FULLRANKMODP

Input: m ˆ m-matrixA with values from

t0, . . . ,mu, prime p ď m2

Question: DoesA have full rankm over Zp?

Structure of the proof

‚ We show:

(1) REACH ďbttr`,ˆs FULLRANK

(2) FULLRANK ďbfo-tt FULLRANKMODP

(3) FULLRANKMODP P DynFOp`,ˆq
(4) For domain independentQ:

Q P DynFOp`,ˆqñQ P DynFO

‚ Further ingredients:

§ DynFO is closed underďbfo-tt-reductions

§ DynFOp`,ˆq is closed underďbttr`,ˆs-

reductions

§ REACH is domain independent

‚ All steps (1)-(4) are relatively simple and build

on previous work

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 33

Step 1: REACH ďbttr`,ˆs FULLRANK (1/4)

Example

1

2

3

4

5

6

7
s t

AG “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 0 1 0 0 0

0 1 0 0 0 0 0

0 1 1 1 1 0 0

0 0 0 1 0 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 0

0 0 0 0 0 1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Example

pAGq2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 2 0 2 0 1 0

0 1 0 0 0 0 0

0 2 1 2 2 1 1

0 0 1 1 0 2 0

0 2 0 0 1 1 2

0 1 2 1 1 1 0

0 0 1 0 0 2 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

pAGq8 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨ ¨ 57

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 34

Step 1: REACH ďbttr`,ˆs FULLRANK (2/4)

Proof

‚ LetG be a graph with n vertices andAG

its adjacency matrix

‚ pAGqirs, ts ­“ 0 ðñ
there is a path of lengthď i from s to t

‚ Important observation: ☞ e.g.: [Laubner 11]

§ I ´ 1

n
AG is invertible and

pI ´ 1

n
AGq´1 “ I `

8
ÿ

i“1

p 1
n
AGqi

➨ the s, t-entry of this matrix is zero

ðñ t is not reachable from s

‚ B def“ nI´AG ☞ integer matrix

‚ The following are equivalent:

§ t is not reachable from s

§ B´1rs, ts “ 0

§ Bx “ et has a solution with xrss “ 0

‚ where column vector et
def“

"

1 in row t

0 otherwise

Proof (cont.)

B x et

¨

˚

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‹

‚

ˆ

¨

˚

˚

˚

˚

˚

˚

˝

xr1s

xrss

¨

¨

xrns

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

0

0

0

1

0

˛

‹

‹

‹

‹

‹

‚

has a solution with xrss “ 0

ðñ
B1 x e1

t
¨

˚

˚

˚

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ B ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

0 1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

ˆ

¨

˚

˚

˚

˚

˚

˚

˝

xr1s

xrss

¨

¨

xrns

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0

1

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‚

has any solution

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 35

Step 1: REACH ďbttr`,ˆs FULLRANK (3/4)

Proof

B1 x e1t
¨

˚

˚

˚

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ B ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
0 1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

ˆ

¨

˚

˚

˚

˚

˚

˚

˝

xr1s
xrss
¨
¨

xrns

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0

1

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‚

B1|e1t
¨

˚

˚

˚

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨ 0

¨ ¨ ¨ ¨ ¨ 0

¨ ¨ B ¨ ¨ 0

¨ ¨ ¨ ¨ ¨ 1

¨ ¨ ¨ ¨ ¨ 0

0 1 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

Proof (cont.)

‚ B1x “ e1t has any solution

ðñ e1t P RowSpacepB1q
ðñ rankpB1q “ rankpB1|e1tq

‚ SinceB is invertible,

rankpB1q “ rankpBq “ n
‚ Putting everything together:

t is reachable from s
ðñ B1x “ e1t has no solution

ðñ rankpB1|e1tq “ n ` 1

ðñ B1|e1t has full rank

‚ Crucial:

§ One edge change inG only yields one

change inB1|e1t
➞ ďbttr`,ˆs-reduction

§ All numbers inB1|e1t areď n

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 36

Step 1: REACH ďbttr`,ˆs FULLRANK (4/4)
‚ What does REACH ďbttr`,ˆs FULLRANK exactly mean?

‚ “fo” says that all parts are first-order definable:

§ As,t is first-order definable fromG, s, t,`,ˆ
§ REACHpGq is first-order definable from the query

results FULLRANKpAs,tq, for all s, t

‚ “b” stands for “bounded expansion”:

§ Each single edge change inG affects only a (con-

stantly) bounded number of entries inAs,t

‚ “tt” stands for “truth-table reduction”:

§ For each pair s, t of nodes ofG, one instanceAs,t

of FULLRANK is constructed

‚ “r`,ˆs” basically indicates that the the nodes ofG are

numbers 1, . . . , n ofG and reduction can use addition

and multiplication

✎ In general, more parameters possible...

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 37

Step 2: FULLRANK ďbfo-tt FULLRANKMODP

Proof (cont.)

‚ Challenge: for the next step, numbers in matrices can

become exponentially large

☞ cannot be handled over domain t0, . . . ,mu

‚ Claim: The following are equivalent:

§ Anmˆm-matrixA with values from t0, . . . ,mu
has full rankm

§ For some prime p ď m2,A has full rankm over

Zp

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 38

Step 3: FULLRANKMODP P DynFO (1/2)

Proof (cont.)

‚ It remains to maintain rankpAq
over Zp for primes p ď m2

Proof (cont.)

‚ Idea: Maintain a Gaussian elimination, i.e.:

§ an invertible matrixU and

§ a matrixE in reduced row-echelon form

such thatUA “ E [Frandsen, Frandsen 09]

‚ Reduced row-echelon form:

§ The first non-zero (= leading) entry in every row is 1

§ The column of such a leading entry is all-zero otherwise

§ Rows are sorted in a “diagonal” fashion

¨

˚

˚

˝

1 4 0 2 0 2

0 0 1 3 0 4

0 0 0 0 1 7

0 0 0 0 0 0

˛

‹

‹

‚

‚ Thanks to

§ rankpEq “ rankpUAq “ rankpAq, and

§ the structure ofE

we get: rankpAq “ number of non-zero rows ofE

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 39

Step 3: FULLRANKMODP P DynFO (2/2)

Proof (cont.)

U A E
¨

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‚

ˆ

¨

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‚

‚ A change ofAri, js can only affect the j-th column ofE

‚ To bringE back to reduced echelon form:

(i) If new leading entries occur in column j:

§ keep one with a maximum number of successive zeros in its row, and

§ set all other entries of column j to 0 by appropriate row operations

(ii) If a former leading entry of a row k is lost in column j (by the change inA or by (i))

§ Take the next non-zero-entry on row k
§ Clean its column by appropriate row operations

(iii) If needed: move the (ď 2) rows whose leading entry has changed to their correct

row positions (and adapt them so that their leading entries are 1)

(iv) UpdateU accordingly

‚ These update operations can be specified by first-order formulas

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 40

Step 4: From DynFOp`,ˆq to DynFO: Challenge

(TZ)

‚ Steps 1-3: REACH P DynFOp`,ˆq

‚ How to obtain a DynFO-program P 1 from a

DynFOp`,ˆq-program P ?

Proof idea

‚ Arithmetic for active elements can be built on

the fly for the activated elements

[Etessami ’98]

‚ We show that for domain independent

queries, this approach can be extended

to programs which use arithmetic for all

elements from the very beginning

‚ Domain independent: invariant under adding

isolated nodes

‚ Illustration of DynFOp`,ˆq:
inp

1 2 3 4 5 6

aux `
p1, 1, 2q
p1, 2, 3q
p2, 1, 3q

.

.

.

.

.

.

ˆ
p1, 1, 1q
p1, 2, 2q
p2, 1, 2q

.

.

.

.

.

.

R1

R2

.

.

.

§ Updates can use arithmetic from the very be-

ginning

‚ Illustration of DynFO:

inp

1 2 3

aux `
p1, 1, 2q
p1, 2, 3q
p2, 1, 3q

ˆ
p1, 1, 1q
p1, 2, 2q
p2, 1, 2q
p3, 1, 3q
p1, 3, 3q

R1

R2

.

.

.

§ Initially, updates can not use arithmetic

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 41

Step 4: From DynFOp`,ˆq to DynFO: Illustration

Gℓ Gℓ2δ1 δ2

1. Define arith-

metic on

t0, . . . , ℓ ´ 1u2
using arithmetic on

t0, . . . , ℓ ´ 1u

2. Insert all edges

ofGℓ2 over

t0, . . . , ℓ ´ 1u2
and simulate P

3. Copy result of P

‚ To be done for all ℓ ă ?n
‚ Gℓ denotes the first graph in the computation, in whichě ℓ elements are activated

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 42

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

� Lower Bounds

Conclusion

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 43

Lower bounds: a sad state
‚ Easy observation: q P DynFO ñ q P PTIME

§ Just insert the tuples of D into an empty database

one by one, and compute all updates

‚ So far there are no other general lower bound results for

DynFO

‚ We cannot rule out that: DynFO “ P

‚ Most existing lower bounds apply to

§ auxiliary relations of bounded arity or

§ restricted logics or

§ both...

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 44

Reachability is not in unary DynFO (1/2)

Theorem [Dong Su 95/98]

‚ REACH R unary DynFO

‚ unary DynFO: Update programs with unary auxiliary

relations

Proof sketch

‚ Proof by contradiction with a locality argument

‚ Assume there is a unary dynamic program for REACH

withm unary aux relations and a rule

on delete pu, vq fromE
updateQpx, yq as ϕpu, v, x, yq

with ϕ of quantifier-depth k

‚ The aux relations induce, for each node, one of 2m

colours

‚ Consider a graph consisting of a sufficiently long path

withě 4p2 ¨ 4k ` 2q2mp2¨4k`2q nodes

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 45

Reachability is not in unary DynFO (2/2)

Example

p1 p2 p3 p4

u1v1 u2v2 u3v3 u4v4

Proof sketch (cont.)

‚ Since the path is long enough, there must exist four disjoint subpaths of length 2 ¨ 4k ` 2 each

with identical color (relations) sequence

‚ Let pu1, v1q, . . . , pu4, v4q be the innermost edges of these paths

‚ After deletion of pu3, v3q,
§ u2 is still reachable from v1, but

§ u4 is no longer reachable from v1

‚ The 4k-neighborhoods of pv1, u3, v3, u2q and pv1, u3, v3, u4q are isomorphic

➨ ϕpu3, v3, v1, u2q ” ϕpu3, v3, v1, u4q by Gaifman’s Theorem

➨ After deletion of pu3, v3q, the program gives the same answer for pv1, u2q and pv1, u4q

➨ The program is wrong with respect to either pv1, u2q or pv1, u4q, the desired contradiction

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 46

Dynamic programs with quantifier-free formulas
‚ Hesse initiated the study of dynamic programs

with quantifier-free update formulas [Hesse 03]

Definition

‚ DynProp:

§ Queries that can be maintained in DynFO

with quantifier-free formulas and aux rela-

tions

‚ DynQF:

§ Queries that can be maintained in DynFO

with quantifier-free formulas and aux func-

tions (and relations)

✎ DynQF formulas can use “if-then-else”-terms

‚ Quantifier-free update formulas? Isn’t that ex-

tremely weak?

Theorem [Hesse 03]

‚ Reachability is in DynProp for deterministic

graphs ☞no quantifiers, aux relations

Theorem [Hesse 03]

‚ Reachability is in DynQF for undirected graphs

☞ no quantifiers, unary aux functions & relations

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 47

Alternating Reachability is not in DynProp

Theorem [Gelade, Marquardt, Schwentick 08/12]

‚ Alternating Reachability R DynProp

Proof idea

t

A 2m

I

B
`

2m

m

˘

C 2

´

2m

m

¯rr1

s

D

D

@

D

D

‚ A: 2m existential nodes

v1, . . . , v2m

‚ B: one universal node per size-m-

subset ofA

‚ C : one existential node per subset ofB

Proof idea (cont.)

‚ Assume: P is a DynProp program for Alternating

Reachability ☞ and let m be large enough

‚ There areą 22m

nodes inC

‚ There areă 22m

isomorphism types for tuples

ps, t, v1, . . . , v2m, rq
ifm is sufficiently large with respect to P

➨ There are r ­“ r1 inC with the same tuple type

☞ together with s, t, v1, . . . , v2m

➨ There is a set I Ď A such that insertion of all edges

pu, tq, u P I , makes t (alternatingly) reachable from

exactly one of r and r1

‚ However, after adding either ps, rq or ps, r1q
the tuples ps, t, v1, . . . , v2m, rq and

ps, t, v1, . . . , v2m, r1q still have the same type

➨ Contradiction

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 48

Some Further Inexpressibility Results

Theorem [Gelade, Marquardt, Schwentick 08/12]

‚ FO ­Ď DynProp

Theorem [Zeume, Schwentick 13]

‚ REACH R binary DynProp

Theorem [Zeume 14]

‚ If only edge insertions are allowed:

§ k-CLIQUE can be maintained in pk´1q-ary

DynProp

§ k-CLIQUE R pk´2q-ary DynProp

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 49

Contents

Introduction

Classical Results and Upper Bound Techniques

Recent Upper Bound Techniques: MSO-Simulation

Recent Upper Bound Techniques: Muddling

Recent Upper Bound Techniques: Linear Algebra

Lower Bounds

� Conclusion

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 50

Conclusion
‚ DynFO is far more powerful than expected

‚ Upper bound results might be even “practical”

‚ Lower bounds for DynFO seem hopeless

‚ A lot remains to be done

§ Applications of the Reachability result

§ Implementations

§ Further exploration of linear algebra approaches

§ ...

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 51

References (1/2)
‚ Guozhu Dong and Jianwen Su. First-order in-

cremental evaluation of datalog queries. In

DBPL 1993, pages 295–308, 1993

‚ Sushant Patnaik and Neil Immerman. Dyn-FO:

A parallel, dynamic complexity class. In PODS

1994, pages 210–221, 1994

‚ Sushant Patnaik and Neil Immerman. Dyn-

FO: A parallel, dynamic complexity class. J.

Comput. Syst. Sci., 55(2):199–209, 1997

‚ Guozhu Dong and Jianwen Su. Arity bounds

in first-order incremental evaluation and defi-

nition of polynomial time database queries. J.

Comput. Syst. Sci., 57(3):289–308, 1998

‚ D. A. M. Barrington, N. Immerman, and

H. Straubing. On uniformity within NC1. Jour-

nal of Computer and System Sciences, 41:274–

306, 1990

‚ Kousha Etessami. Dynamic tree isomorphism

via first-order updates. In PODS, pages 235–

243. ACM Press, 1998

‚ William Hesse. The dynamic complexity of

transitive closure is in DynTC0. In ICDT 2001,

pages 234–247, 2001

‚ Bastian Laubner. The structure of graphs and

new logics for the characterization of Polyno-

mial Time. PhD thesis, Humboldt University of

Berlin, 2011

‚ Gudmund Skovbjerg Frandsen and Pe-

ter Frands Frandsen. Dynamic matrix rank.

Theor. Comput. Sci., 410(41):4085–4093, 2009

‚ Samir Datta, William Hesse, and Raghav Kulka-

rni. Dynamic complexity of directed reachability

and other problems. In ICALP (1), pages 356–

367, 2014

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 52

References (2/2)
‚ Samir Datta, Anish Mukherjee, Nils Vortmeier, and

Thomas Zeume. Reachability and distances under

multiple changes. In 45th International Colloquium

on Automata, Languages, and Programming, ICALP

2018, July 9-13, 2018, Prague, Czech Republic, pages

120:1–120:14, 2018

‚ Samir Datta, Anish Mukherjee, Thomas Schwentick,

Nils Vortmeier, and Thomas Zeume. A strategy for

dynamic programs: Start over and muddle through.

In 44th International Colloquium on Automata, Lan-

guages, and Programming, ICALP 2017, July 10-14,

2017, Warsaw, Poland, pages 98:1–98:14, 2017

‚ Thomas Schwentick, Nils Vortmeier, and Thomas

Zeume. Dynamic complexity under definable changes.

In 20th International Conference on Database Theory,

ICDT 2017, pages 19:1–19:18, 2017

‚ Samir Datta, Raghav Kulkarni, Anish Mukherjee,

Thomas Schwentick, and Thomas Zeume. Reachability

is in dynfo. In International Colloquium on Automata,

Languages, and Programming, ICALP 2015, Proceed-

ings, Part II, pages 159–170, 2015

‚ Thomas Zeume and Thomas

Schwentick. Dynamic conjunctive

queries. In Proc. 17th International Con-

ference on Database Theory (ICDT),

Athens, Greece, March 24-28, 2014,

pages 38–49, 2014

‚ Thomas Zeume and Thomas

Schwentick. On the quantifier-free

dynamic complexity of reachability. In

Mathematical Foundations of Computer

Science 2013, pages 837–848, 2013

‚ Wouter Gelade, Marcel Marquardt, and

Thomas Schwentick. The dynamic com-

plexity of formal languages. ACM Trans.

Comput. Log., 13(3):19, 2012

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 53

Three initialisation settings
DynFO

t

s

‚ Start from empty input and

empty auxiliary data

[Patnaik, Immerman 94/97]

DynFOp`,ˆq

t

s

‚ Start from empty input and

precomputed auxiliary arith-

metic relations` andˆ
§ depending on the universe

✎ Other initialisations of the

auxiliary relations possible

t

s

‚ Starts from non-empty

input and precomputed

auxiliary data

§ depending on the ac-

tual input

✎ Interesting, but not consid-

ered in this talk...

!Thomas Schwentick Dynamic Complexity: Recent Updates . � � 54

How do small fragments of DynFO relate?
‚ Small fragments in the static world

FO

UCQ “ D˚FO @˚FO

UCQ CQ

CQ

FO

UCQ “ D˚FO @˚FO

UCQ CQ

CQ

Prop

PropUCQ PropCQ

PropCQ

‚ Small fragments in the dynamic world

DynFO

DynD˚FO Dyn@˚FO

DynCQ DynUCQ

“

“

““

DynCQ DynUCQ“

DynQF

DynProp DynPropUCQ

DynPropCQ DynPropUCQ

“

“ “

“

DynPropCQ

(non-empty input, PTIME aux) [Zeume, Schwentick 14]

‚ Many static classes coincide in the dynamic world

‚ Linear hierarchy of classes!

‚ Further: FO Ď DynCQ

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 55

Dynamic Complexity of Formal Languages

Theorem [Patnaik, Immerman 94/97]

‚ Reg Ď DynFO

‚ All Dyck languages can be maintained in DynFO

Theorem [Hesse 03]

‚ Reg Ď DynQF

Theorem [Gelade, Marquardt, TS 09/12]

‚ With respect to formal languages: DynProp “ Reg

Theorem [Gelade, Marquardt, TS 09/12]

‚ CFL Ď DynFO

‚ All Dyck languages can be maintained in DynQF

Corollary

‚ DynProp Ĺ DynQF

Thomas Schwentick Dynamic Complexity: Recent Updates . � � 56

