Foundational aspects of Graph Data Management

Wim Martens University of Bayreuth

EPIT Spring School on Theoretical Computer Science Luminy, 2019

Outline

- Graph Data Model
- Queries
- Graph Query Evaluation
- Graph Query Containment
- Graphs vs Trees
- "Real Queries"
- Data Value Comparisons

Notation

Notation and Basic Principles

If $n \in \mathbb{N}$, we use [n] to denote the set $\{1, ..., n\}$

Finite Automata

We denote a nondeterministic finite automaton (NFA) as

 $N = (S, A, \delta, I, F)$

where

- S is the finite set of states
- A is the finite alphabet
- $\delta \subseteq S \times A \times S$ is the transition relation
- $I \subseteq S$ is the set of initial states
- $F \subseteq S$ is the set of accepting states

The language of N is denoted L(N)

Notation and Basic Principles

Regular Expressions

Operators:

- (1) Kleene star
- (2) concatenation
- (3) disjunction

(denoted *) (omitted in notation) (denoted +)

Priorities of operators: first (1), then (2), then (3)

Example: $ab+cd^*$

The language of regular expression r is denoted L(r)

We use r^n to abbreviate *n*-fold concatenation of r

Motivation

Why Graph Databases?

- Graph databases are becoming more and more standard in industry [Neo4j, Tigergraph, Oracle, ...]
- They bring "reasoning about connectedness" to the masses (*)

...and they are a nice source of theory problems

(*) I heard this pitch from Hassan Chafi, Oracle

	collaborative	linked	
open	Wikidata Query Service (Be ×	Wim	
\wedge	← → C 🔒 https://query.wikidata.org	☆ =	\rightarrow
	Wikidata Query Service Examples Prefixes - Cols - CHelp -	<u>A</u> あ English	
	1 (Input a SPARQL query or choose a query example)	<u>s</u>	
ultilingual			
free			
\square			
$\langle \rangle$	Press [CTRL-SPACE] to activate auto completion. Data last updated: 9:44:36 AM GMT+2, Jun 15, 2016		
	► Run Clear		
open			
			/
multilingual			
free			

	Collaborative		linked	
open	Wikidata Query Service (Be ×		Wim	
← → C	https://query.wikidata.org		☆ =	-
	Vikidata Query Service Examples Prefixes - 🌣 Tools - 🛛 Help -	Að	English	
	country (P17) located in the administrative territorial entity (P191) population (P1082)			1
1 (Input	position held (P39) cubalace of (P270) date of birth (P569)		S /	
2	occupation (P106)			
ai	ImageGrid (Q24515278) sex or gender (P21) instance of (P31) Image (P10) father (P22) Map (Q245152	275)		
\backslash	BubbleChart (Q24515280) human (Q5) coordinate location (P625) date of death (P570)	., 0)		
fi	end time (P582) part of (P361) place of birth (P19) official website (P856)			
	Type to filter			1
	Cats /			
Pross (CTP)	Wikidata itama with a Wikianagiaa aitalink		$ \longrightarrow $	_
		•		
► Run	Even more cats, with pictures 🖍	۲		1
	Largest cities with female mayor 🖍	۲		1
	List of countries ordered by the number of their cities with female mayor 🖍	۲		
	Overall causes of death ranking 🖍	۲		
	WWII battle durations 🖍	۲		
	Children of Genghis Khan 🖍	۲		
open	Airports within 100km of Berlin 🖍	۲		-
	Schools between San Jose, CA and Sacramento, CA 🖍	۲		
	Whose birthday is today? 🖍	۲		
	Finding John and Sarah Connor 🖍	۲	/	/
ngual	Rock bands that start with "M" 🖍	۲		_
	Matter an address According to Accord and These A			

free

Wikidata: "US artists who died of poisoning"

collaborative

linked

structured

SELECT **?x** WHERE

open

ultilingual

free

open

free

multilingual

?x wdt:occupation/wdt:subclassof* wd:artist .
?x wdt:citizenship wd:United_States .
?x wdt:cause_of_death ?y .

?y wdt:subclass_of* wd:poisoning

(*): Original Wikidata query: politicians who died of cancer https://www.mediawiki.org/wiki/Wikibase/Indexing/SPARQL_Query_Examples#Politicians_who_died_of_cancer_.28of_any_type.29

Graph Queries By Example Wikidata: "US artists who died of poisoning"

Graph Queries By Example Wikidata: "US artists who died of poisoning"

Data Model

What are Graph Databases?

Currently, two main data models:

- Property Graph-like Databases
- RDF-like Databases

Property Graph Data Model

Labels L: person, profession, spouse Values V: Liz, Taylor, 10.10.1975 Properties P: first name, last name

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to $N\times N$
- a function from $N \cup E$ to (subsets of) labels L
- a function from $(N \cup E) \times P$ to (subsets of) values V

The G-Core model also directly incorporates a third set, containing paths [Angles et al., SIGMOD'18]

RDF Data Model

More formally, this is a set of triples from $I \times I \times (I \cup L)$

where

- I is the set of Internationalized Resource Identifiers (IRIs)
- *L* is the set of literals (constants)

These triples (s,p,o) are referred to as subject / predicate / object triples

(There are also *blank nodes*)

RDF Data Model

Profession	
Liz Taylor	stage actor
Liz Taylor	film actor
Subclass of	l.
film actor	actor

actor

artist

stage actor

actor

"RDF-like" graph database

RDF Data Model

"RDF-like" graph database

What We Consider Today

Edge-labeled, directed graphs

Graph Database

We assume that Σ is a countably infinite set of labels

Definition

A graph database (over Σ) is a pair G = (V, E) where

- V is a finite set of nodes

- $E \subseteq V \times \Sigma \times V$ is a finite set of edges

Plan

Conjunctive Queries (CQs)

Intuition

Not much different from CQs in relational DBs

Example (CQ on binary relations)

 $R(x, y) \land S(x, a) \land S(y, a)$ (uses variables x, y and constant a)

Conjunctive Queries

Definition (Conjunctive Query over Graphs)

A conjunctive query over graphs (CQ) is an expression of the form

$$\exists \overline{z} \big((x_1 \xrightarrow{a_1} y_1) \land \dots \land (x_n \xrightarrow{a_n} y_n) \big)$$

where

- \overline{z} is a tuple of variables from $\{x_1, ..., x_n, y_1, ..., y_n\}$ and - $\{a_1, ..., a_n\} \subseteq \Sigma$

Main technical difference with CQs over relations: we only use binary relations here

Conjunctive Queries

By

$$Q(\overline{o}) = \exists \overline{z} \left((x_1 \xrightarrow{a_1} y_1) \land \dots \land (x_n \xrightarrow{a_n} y_n) \right)$$

we denote that

$$Q = \exists \overline{z} \left((x_1 \xrightarrow{a_1} y_1) \land \dots \land (x_n \xrightarrow{a_n} y_n) \right)$$

is a conjunctive query and that $\overline{o} \subseteq \{x_1, ..., x_n, y_1, ..., y_n\}$ is the tuple of free variables (or output variables)

Conjunctive Queries: Example

Example (CQ on binary relations)

$$Q(x) = (x \xrightarrow{S} y) \land (x \xrightarrow{P} z) \land (y \xrightarrow{P} z)$$

Returns: {Q3, Q15}

Homomorphism h₁: { $x \mapsto Q3, y \mapsto Q15, z \mapsto stage actor$ }

Homomorphism $h_2: \{x \mapsto Q15, y \mapsto Q3, z \mapsto stage actor\}$

Regular Path Queries

Why regular path queries?

Conjunctive queries (and even first-order queries) on graphs are limited:

they can only express "local" properties [Gaifman 1982, Hanf 1965]

Regular path queries overcome this, using regular expressions to query paths

Definition

A path in graph G is a sequence $p = (v_0, a_1, v_1) (v_1, a_2, v_2) \dots (v_{n-1}, a_n, v_n)$ of edges of G

Regular Path Queries

Definition

A regular path query (RPQ) is an expression of the form

$$x \xrightarrow{r} y$$

where x and y are variables and r is a regular expression over Σ

(Notice that r can only mention a finite subset of Σ)

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Trail semantics is the default in Neo4j Cypher
- Simple path semantics was the first that was studied [Cruz, Mendelzon, Wood 1987]

Members of the OpenCypher project were discussing recently which of the semantics to use for Cypher (<u>www.opencypher.org</u>)

Consensus seems to be: "All should be supported"

Matching Paths

Let r be a regular expression and G be a graph

A path $p = (v_0, a_1, v_1) (v_1, a_2, v_2) \dots (v_{n-1}, a_n, v_n)$ in *G* matches *r*, if

 $a_1a_2 \dots a_n \in L(r)$

Semantics of RPQs

(every path semantics)

Let $Q = (x \xrightarrow{r} y)$ be a regular path expression and G be a graph

The semantics $\llbracket Q \rrbracket_G$ of Q on G = (V, E) is

 $\llbracket Q \rrbracket_G = \{(u, v) \in V \times V \mid \text{ there exists a path } p \text{ from } u \text{ to } v \text{ in } G \text{ that matches } r\}$

Matching Paths

Let r be a regular expression and G be a graph

A path $p = (v_0, a_1, v_1) (v_1, a_2, v_2) \dots (v_{n-1}, a_n, v_n)$ in *G* matches *r*, if

 $a_1a_2 \dots a_n \in L(r)$

Semantics of RPQs

(every path semantics)

Let $Q = (x \xrightarrow{r} y)$ be a regular path expression and G be a graph

The semantics $\llbracket Q \rrbracket_G$ of Q on G = (V, E) is

 $\llbracket Q \rrbracket_G = \{(u, v) \in V \times V \mid \text{ there exists a path } p \text{ from } u \text{ to } v \text{ in } G \text{ that matches } r\}$

Notice that we do not have any constraint on the path *p*

Hence, "every path" is eligible for the query

Notation

If $Q = (x \xrightarrow{r} y)$, we sometimes denote $\llbracket Q \rrbracket_G$ by $\llbracket r \rrbracket_G$

Simple Paths and Trails

Definition (Simple path, trail)

Let $p = (v_0, a_1, v_1) (v_1, a_2, v_2) \dots (v_{n-1}, a_n, v_n)$ be a path

Path p is a simple path if

- v_0 , v_n appear at most once and
- every node in $\{v_1, ..., v_{n-1}\}$ appears at most twice in p

Path p is a trail if

- every edge (v_{i-1}, a_i, v_i) appears at most once in p

Semantics of RPQs

(simple path semantics)

Let $Q = (x \xrightarrow{r} y)$ be an RPQ and G be a graph

The simple path semantics $\llbracket Q \rrbracket_G^s$ of Q on G = (V, E) is

 $\llbracket Q \rrbracket_G^s = \{(u, v) \in V \times V \mid \text{there exists a simple path } p$

from *u* to *v* in *G* that matches *r*}

Semantics of RPQs

(trail semantics)

Let $Q = (x \xrightarrow{r} y)$ be an RPQ and G be a graph

The trail semantics $\llbracket Q \rrbracket_G^t$ of Q on G = (V, E) is

 $\llbracket Q \rrbracket_G^t = \{(u, v) \in V \times V \mid \text{ there exists a trail } p \text{ from } u \text{ to } v \text{ in } G \text{ that matches } r\}$

RPQ Semantics: Examples

Take $r = (aa)^*$ then $(1,4) \in [[r]]_G, [[r]]_G^t$, and $[[r]]_G^s$

Take $r = (aa)^*a$ then $(1,4) \in \llbracket r \rrbracket_G^t$ but $(1,4) \notin \llbracket r \rrbracket_G^t$ or $\llbracket r \rrbracket_G^s$

Take
$$r = (ab)^*a$$

then $(1,4) \in \llbracket r \rrbracket_G^s$ and $\llbracket r \rrbracket_G^t$
but $(1,4) \notin \llbracket r \rrbracket_G^s$

Conjunctive Regular Path Queries

Definition (Conjunctive Regular Path Query)

A conjunctive regular path query (CRPQ) is an expression of the form

$$\exists \overline{z} \big((x_1 \xrightarrow{r_1} y_1) \land \dots \land (x_n \xrightarrow{r_n} y_n) \big)$$

where

- \overline{z} is a tuple of variables from $\{x_1, ..., x_n, y_1, ..., y_n\}$ and
- r_i is an RPQ over Σ for $i \in [n]$

Observation

Since every symbol a in Σ is a regular expression, every CQ over graphs is also a CRPQ

Conjunctive Regular Path Queries

Semantics of CRPQs

(every path semantics)

Let
$$Q = \exists \overline{z} ((x_1 \xrightarrow{r_1} y_1) \land \dots \land (x_n \xrightarrow{r_n} y_n))$$
 be a CRPQ and $G = (V, E)$ be a graph

Let $vars(Q) = \{x_1, ..., x_n, y_1, ..., y_n\}$ be the set of variables of Q

Then $\llbracket Q \rrbracket_G = \{ h(\overline{z}) \mid h \text{ is a homomorphism from } vars(Q) \text{ to } V$ such that $(h(x_i), h(y_i)) \in \llbracket x_i \xrightarrow{r_i} y_i \rrbracket_G \text{ for every } i \in [n] \}$

Simple path ($\llbracket Q \rrbracket_G^s$) and trail ($\llbracket Q \rrbracket_G^t$) semantics for CRPQs are defined analogously: we require that

$$(h(x_i), h(y_i)) \in \llbracket x_i \xrightarrow{r_i} y_i \rrbracket_G^s$$
 and
 $(h(x_i), h(y_i)) \in \llbracket x_i \xrightarrow{r_i} y_i \rrbracket_G^t$, respectively

CRPQs: Examples

 $Q_{aba}(x, y, z) = \left((x \xrightarrow{a^*} y) \land (y \xrightarrow{b^*} z) \land (z \xrightarrow{a^*} x) \right) \qquad G: \qquad A \xrightarrow{a^*} b \xrightarrow{b^*} b \xrightarrow{a^*} 4$

 $(1,2,3) \in [\![Q_{aba}]\!]_G?$ $(1,2,2) \in [\![Q_{aba}]\!]_G$? $(1,1,1) \in [\![Q_{aba}]\!]_G$? $(1,3,1) \in [[Q_{aba}]]_G$?

Query Evaluation

Evaluation Problems

CRPQ Evaluation(every path semantics)Input:Graph database G, tuple \bar{u} of nodes
conjunctive regular path query QQuestion:Is $\bar{u} \in \llbracket Q \rrbracket_G$?

The decision problems for simple path and trail semantics are defined analogously

Query Evaluation

RPQs

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let $Q = (x \xrightarrow{r} y)$ be the RPQ, let G be the graph, and (u,v) the pair of nodes

Let $N = (S, A, \delta, I, F)$ be an NFA for r

Construct a product $G \times N$, treating u as "initial state" in G(This is similar to a product between automata)

Accept iff there is a path from (i,u) to (f,v) in $G \times N$, for some $i \in I$ and $f \in F$

Example

RPQ Evaluation under Every Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

Lower bound:

Reduction from Hamiltonian Path

Let G be a directed graph with n nodes and (u,v) a pair of nodes of G Let G_a be obtained from G by labeling each edge with a

Then G has a Hamiltonian Path from u to v iff (u,v) in $\llbracket a^{n-1} \rrbracket_{G_a}^s$

OK, it's hard

Theorem

RPQ Evaluation under simple path semantics is NP-hard,

even for the RPQ $Q = (x \xrightarrow{(aa)^*} y)$

Reduction from

Even Length Simple Path

Given a directed graph G and node pairs (u,v),

is there a simple path of even length from u to v?

Even Length Simple Path is NP-complete

[Lapaugh, Papadimitriou, Networks 1984]

Proof (sketch)

Let G_a be the graph constructed before

Then G has a simple path of even length from u to v iff $(u, v) \in \llbracket (aa)^* \rrbracket_{G_a}^s$

Theorem

RPQ Evaluation under simple path semantics is NP-hard,

even for the RPQ $Q = (x \xrightarrow{a^*ba^*} y)$

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (u_1, v_1) and (u_2, v_2)

are there node-disjoint paths p_1 and p_2 , from u_1 to v_1 and from u_2 to v_2 respectively?

Two Disjoint Paths is NP-complete

[Fortune, Hopcroft, Wyllie TCS 1980]

Proof (sketch)

Let G_b be obtained from G_a by adding the edge (v_1, b, u_2) Then G has node-disjoint paths p_1 and p_2 , from u_1 to v_1 and from u_2 to v_2 iff $(u_1, v_2) \in [a^*ba^*]_{G_b}^s$

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q = (x \xrightarrow{a^*ba^*} y)$

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (u_1,v_1) and (u_2,v_2)

are there edge-disjoint paths p_1 and p_2 , from u_1 to v_1 and from u_2 to v_2 respectively?

Two Edge Disjoint Paths is NP-complete

Split graph [LaPaugh, Rivest JCSS 1980] [Perl, Shiloach JACM 1978]

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q = (x \xrightarrow{a*ba*} y)$

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (u_1, v_1) and (u_2, v_2)

are there edge-disjoint paths p_1 and p_2 , from u_1 to v_1 and from u_2 to v_2 respectively?

Two Edge Disjoint Paths is NP-complete

[Fortune, Hopcroft, Wyllie TCS 1980] [LaPaugh, Rivest JCSS 1980] [Perl, Shiloach JACM 1978]

Proof (sketch - same reduction as before)

Let G_b be obtained from G_a by adding the edge (v_1, b, u_2) Then G has edge-disjoint paths p_1 and p_2 , from u_1 to v_1 and from u_2 to v_2 iff $(u_1, v_2) \in \llbracket a^* b a^* \rrbracket_{G_b}^t$

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q = (x \xrightarrow{(aa)^*} y)$

Why?

Query Evaluation

CRPQs

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

Upper bound: Let $Q = \exists \overline{z} ((x_1 \xrightarrow{r_1} y_1) \land \dots \land (x_n \xrightarrow{r_n} y_n))$ be the query

For each regular expression r_i , we can compute in polynomial time a relation R_i containing the tuples $[\![r_i]\!]_G$

Then, evaluation for Q is the same as evaluation of the conjunctive query $Q_R = \exists \overline{z} (R_1(x_1, y_1) \land \dots \land R_n(x_n, y_n))$ over the relations R_i

CRPQs, Every Path Semantics

Let C be a class of CRPQs

Let C_{Rel} be the class of (relational) CQs, defined as $C_{Rel} = \{Q_R \mid Q \in C\}$

Corollary

Let C be a class of CRPQs Then Evaluation for C under every path semantics is tractable iff Evaluation for C_{Rel} is tractable in the relational model

CRPQs, Simple Path / Trail Semantics

Theorem

CRPQ Evaluation is NP-complete under simple path and under trail semantics

Proof (sketch)

Lower bound: already holds for RPQs Upper bound: simple guess-and-check algorithm

So, here we don't have a similar corollary that links to the complexity of CQs over relations

Overview

	RPQs	CRPQs
every path	PTIME	NP-complete
simple path	NP-complete	NP-complete
trail	NP-complete	NP-complete

Basic Containment Problems

RPQ Containment

Input: RPQs Q_1 and Q_2 Question: Is $\llbracket Q_1 \rrbracket_G \subseteq \llbracket Q_2 \rrbracket_G$ for every graph G?

CRPQ Containment

Input: CRPQs Q_1 and Q_2 Question: Is $\llbracket Q_1 \rrbracket_G \subseteq \llbracket Q_2 \rrbracket_G$ for every graph G?

The problems for simple path and trail semantics are analogous

Query Containment RPQs

RPQ Containment

Theorem

RPQ Containment is PSPACE-complete

Proof (sketch)

Let $Q_1 = (x_1 \xrightarrow{r_1} y_1)$ and $Q_2 = (x_2 \xrightarrow{r_2} y_2)$ be RPQs It is easy to see that $Q_1 \subseteq Q_2$ iff $L(r_1) \subseteq L(r_2)$

Testing $L(r_1) \subseteq L(r_2)$ for two given regular expressions r_1 and r_2 is PSPACE-complete

The same proof works for simple path and trail semantics

Query Containment CRPQs

CRPQ Containment

Theorem

[Calvanese et al. KR 2000 "The Four Italians"]

CRPQ Containment is EXPSPACE-complete

Proof (Plan)

Let Q_1 and Q_2 be the CRPQs

Upper bound: we reduce the problem to containment of NFAs

We first argue that there exist exponential-size NFAs A_1 and A_2 such that $Q_1 \subseteq Q_2$ iff $L(A_1) \subseteq L(A_2)$

Testing $L(A_1) \subseteq L(A_2)$ can then be done on the fly

Lower bound: we reduce from Exponential Corridor Tiling

Let $Q = \exists \overline{z} ((x_1 \xrightarrow{r_1} y_1) \land \dots \land (x_n \xrightarrow{r_n} y_n))$ be a CRPQ

A conjunctive query Q^e is an expansion of Q if it can be obtained from Q by "replacing each r_i by a path, labeled with a word in $L(r_i)$ "

Let
$$Q = \exists \overline{z} ((x_1 \xrightarrow{r_1} y_1) \land \dots \land (x_n \xrightarrow{r_n} y_n))$$
 be a CRPQ

Definition (Expansion of Q)

A conjunctive query Q^e is an expansion of Q if there exist words $w_i \in L(r_i)$

such that Q_e can be obtained from Q as follows:

Replace each atom $(x_i \xrightarrow{r_i} y_i)$

- by $(x_i = y_i)$ if $w_i = \varepsilon$
- -by a conjunction $(x_i \xrightarrow{a_1} \#_i^1) \land (\#_i^1 \xrightarrow{a_2} \#_i^2) \land \dots \land (\#_i^{k_i} \xrightarrow{a_{k_i}} y_i)$ such that $w_i = a_1 \cdots a_{k_i}$

We assume that all variables $\#_{j}^{j}$ are new and pairwise distinct

Observation

There is always a homomorphism from Q to Q^e , namely the identity

Let Q_1 and Q_2 be CRPQs

We assume w.l.o.g. that Q_1 and Q_2 have the same free variables \overline{z} and all other variables are disjoint

Lemma [Calvanese et al. 2000]

 $Q_1 \not\subseteq Q_2$ iff there exists an expansion Q_1^e of Q_1 ,

for which there is no homomorphism

from Q_2 to Q_1^e that is the identity on \overline{z}

This is what we will try to test with automata A_1 and A_2

Let
$$Q_1 = \exists \overline{z} ((x_1 \xrightarrow{r_1} y_1) \land \dots \land (x_n \xrightarrow{r_n} y_n))$$

We can encode expansions of Q_1 as words

 $x_1 w_1 y_1 x_2 w_2 y_2 \dots x_n w_n y_n$ over the alphabet $\Sigma \cup \text{Vars}(Q) \cup \{\$,\#\}$

Intuition:

- each $x_i \xrightarrow{r_i} y_i$ corresponds to $x_i w_i y_i$
- each word w_i is of the form $a_1 \# a_2 \# \dots \# a_{ki}$ where $a_1 \dots a_{ki}$ in $L(r_i)$
- each x_i , y_i and # can be seen as a variable in the expansion

Exercise

Given Q_1 , show that there is a polynomial size NFA that checks if a given word w encodes an expansion of Q_1

We can also encode expansions of Q_1 as words

 $X_{1}w_{1}Y_{1} X_{2}w_{2}Y_{2} \dots X_{n}w_{n}Y_{n}$ over the alphabet $\Sigma \cup 2^{Vars(Q)} \cup \{\$,\#\}$

Here the X_i and Y_i are sets of variables

The idea is that

 $\rightarrow a_1 \# a_2 \# \dots \# a_k \text{ for } a_1 \dots a_k \text{ in } L(r_i)$

- (1) word w_i is in $L^{\#'}(r_i)$ for all $i \in [n]$
- (2) $x_i \in X_i$ and $y_i \in Y_i$ for all $i \in [n]$

(4) whenever $w_i = \varepsilon$, then $X_i = Y_i$

Such words are called Q_1 -words

(3) the sets X_i , Y_i form a partition of Vars(Q)

(but sets are allowed to repeat!)

We can also encode expansions of Q_1 as words

 $X_1 w_1 Y_1 X_2 w_2 Y_2 \dots X_n w_n Y_n$ over the alphabet $\Sigma \cup 2^{Vars(Q)} \cup \{\$,\#\}$

Here the X_i and Y_i are sets of variables

The idea is that

 $\rightarrow a_1 \# a_2 \# \dots \# a_k \text{ for } a_1 \dots a_k \text{ in } L(r_i)$

(but sets are allowed to repeat!)

- (1) word w_i is in $L^{\#'}(r_i)$ for all $i \in [n]$
- (2) $x_i \in X_i$ and $y_i \in Y_i$ for all $i \in [n]$
- (3) the sets X_i , Y_i form a partition of Vars(Q)
- (4) whenever $w_i = \varepsilon$, then $X_i = Y_i$

Such words are called Q_1 -words

Can we recognize Q_1 -words with an automaton A_1 ?

(1) Polynomial size NFA $A_{1,1}$

- (2) Polynomial size NFA $A_{1,2}$
- (3) Exponential size NFA $A_{1,3}$

(4) Exponential size NFA $A_{1,4}$

Use $A_{1,1} \times A_{1,2} \times A_{1,3} \times A_{1,4} \times A_{wf}$ where A_{wf} tests well-formedness

We now want to define A_2

We first think about "annotated Q_1 -words", i.e., words of the form

 $(\ell_1,\gamma_1)\ldots(\ell_m,\gamma_m)$

where $\ell_1 \dots \ell_m$ is a Q_1 -word and $\gamma_i \subseteq \text{Vars}(Q_2)$ for all i

Intuition

The variables in γ_i are mapped to the node ℓ_i if $\ell_i \subseteq \text{Vars}(Q_1) \cup \{\#\}$

We now want to see:

Can an automaton A'_2 test if an annotated Q_1 -word W_a encodes a Q_1 -expansion Q_e such that Q_2 returns the same answer as Q_1 on Q_e ?

We have annotated Q_1 -word $(\ell_1, \gamma_1) \dots (\ell_m, \gamma_m)$ with Q_1 -word $W = \ell_1 \dots \ell_m$

Automaton A'_2 tests

(1) for every $l_i \subseteq Vars(Q_1)$ containing an output variable z, every occurrence l_j of l_i is annotated with a set γ_j that contains z

(2) if a variable $y \in Vars(Q_2)$ appears in (ℓ_i, γ_i) , then either:

- $l_i = \#$ and y only appears in γ_i , or

- $l_i \subseteq \text{Vars}(Q_1)$ and y appears in every γ_j for which $l_i = l_j$

(3) for every conjunct $(x'_i \xrightarrow{r'_i} y'_i)$ of Q_2 , whether

the path from x'_i to y'_i matches r'_i

How can this be done?

- (1) Exponential size NFA
- (2) Exponential size NFA

(3) Polynomial size two-way NFA \rightsquigarrow exponential size NFA

Automaton A_2 reads a Q_1 -word W, guesses the annotations, and simulates (1)-(3)

CRPQ Containment: Lower Bound

We reduce from exponential corridor tiling

Definition (Exponential Corridor Tiling)

A tiling system is a tuple $T = (T, H, V, t_s, t_f, n)$ where - *T* is a finite set of tile types

- $H \subseteq T \times T$ is the set of horizontal constraints
- $V \subseteq T \times T$ is the set of vertical constraints

- $t_s \in T$ is the start tile

- $t_f \in T$ is the finish tile

 $n \in \mathbb{N}$
Definition (Exponential Corridor Tiling)

Let $\mathbf{T} = (T, H, V, t_s, t_f, n)$ be a tiling system

It has an exponential corridor solution if there exists an $m \in \mathbb{N}$ and mapping bathroom : $[2^n] \times [m] \rightarrow T$

such that

- the start tile type is correct:
- the finishing tile type is correct:
- the horizontal constraints are correct:
- the vertical constraints are correct:

 $bathroom(1,1) = t_s$ $bathroom(2^n,m) = t_f$ (bathroom(x,y), bathroom(x+1,y)) in H(bathroom(x,y), bathroom(x,y+1)) in V

Theorem

Deciding if a tiling system has an exponential corridor solution

is EXPSPACE-complete

Let $\mathbf{T} = (T, H, V, t_s, t_f, n)$ be an instance of exponential tiling

Plan: define queries Q_1 and Q_2 such that $Q_1 \not\subseteq Q_2$ iff T does not have a valid tiling, i.e. every tiling has some error

 $Q_1(x_1, x_2) = (x_1 \xrightarrow{r} x_2)$ with $r = 0^n t_s ((0+1)^n T)^* 1^n t_f$

$$Q_{2}(x_{1}, x_{2}) = (x_{1} \xrightarrow{r_{pre}} y_{1}) \wedge \left(\bigwedge_{i=0}^{n} y_{1} \xrightarrow{r_{i}} y_{2}\right) \wedge (y_{2} \xrightarrow{r_{suff}} x_{2})$$

with $r_{pre} = ((0+1)^{n} T)^{*}$ and $r_{suff} = ((0+1)^{n} T)^{*}$

$$Q_{2}(x_{1}, x_{2}) = (x_{1} \xrightarrow{r_{pre}} y_{1}) \wedge (\bigwedge_{i=0}^{n} y_{1} \xrightarrow{r_{i}} y_{2}) \wedge (y_{2} \xrightarrow{r_{suff}} x_{2})$$

$$r_{i} = r_{H} + r_{Vi} + r_{c}$$

$$r_{i} = r_{H} + r_{Vi} + r_{c}$$

$$r_{V0} = \sum_{(t_{1}, t_{2}) \notin V} (0 + 1)^{n} t_{1} ((0 + 1)^{n} T)^{*} (0 + 1) t_{2}$$

$$r_{Vi} = r_{Vi}^{0} + r_{Vi}^{1} \quad \text{for } i > 0, \text{ with } r_{Vi}^{b} = (0 + 1)^{i-1} b (0 + 1)^{n-i} T$$

$$((0 + 1)^{*} b (0 + 1)^{*} T)^{*}$$

$$\overline{b}^{n} T$$

$$((0 + 1)^{*} b (0 + 1)^{*} T)^{*}$$

$$\overline{b}^{n} T$$

$$((0 + 1)^{*} b (0 + 1)^{n-i} T)^{*}$$

Exercise

Define r_c , which should match consecutive $(0+1)^n$ -blocks that don't encode consecutive binary numbers

CRPQ Containment

This concludes the proof!

Theorem

[Calvanese et al. KR 2000 "The Four Italians"]

CRPQ Containment is EXPSPACE-complete

Actually, the original proof also shows the result for conjunctive two-way regular path queries

Trees versus Graphs

"Those who don't learn from history ..." ... risk having their papers rejected by the old folks

But What About Acyclic CRPQs?

Let's call a CRPQ acyclic^(*) if its associated graph is a tree (igno

(ignoring edge directions)

Example $x \xrightarrow{a^*} y \land x \xrightarrow{b^*} z \land y$

(*) for the sake of simplicity -- "real" acyclicity should also include forests

But What About Acyclic CRPQs?

Let's call a CRPQ acyclic^(*) if its associated graph is a tree

For the sake of simplicity, let's only consider Boolean CRPQs

Denote by $\llbracket Q \rrbracket_{\mathbf{G}}$ the set of graphs on which Q is satisfied Denote by $\llbracket Q \rrbracket_{\mathbf{T}}$ the set of trees on which Q is satisfied

Important observation

If Q_1 and Q_2 are acyclic, then $\llbracket Q_1 \rrbracket_{\mathbf{G}} \subseteq \llbracket Q_2 \rrbracket_{\mathbf{G}}$ iff $\llbracket Q_1 \rrbracket_{\mathbf{T}} \subseteq \llbracket Q_2 \rrbracket_{\mathbf{T}}$

Intuition: A counterexample graph can be unfolded to a tree

(*) for the sake of simplicity -- "real" acyclicity should also include forests

But What About Acyclic CRPQs?

Papers where this argument has been made (almost certainly incomplete):

[Miklau, Suciu, JACM 2004] [Reutter, CoRR 2013] [Barcelo, Perez, Reutter, AMW 2013] [Czerwiński, M., Niewerth, Parys, JACM 2018]

What Does This Mean?

If you have queries that behave like

...then you can use results from tree patterns on XML data:

Theorem [Miklau, Suciu JACM 2004]

Containment of tree patterns is coNP-complete

Theorem [Czerwinski et al. JACM 2018]

Minimization of tree patterns is Σ_2^{P} -complete

(and minimization \neq deleting edges)

...and much, much more!

Data Values

Queries With Data Value Comparisons

Until now, we never compared labels with each other

Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts $x \sim y$ or $x \neq y$ satisfied if nodes x and y have the same, resp., different value

Such queries are usually considered on a different data model (data words, data trees, data graphs)but since we chose Σ infinite, the main argument also works here

Queries With Data Value Comparisions

Consider the query L_{eq} , matching all paths that contain two equal values

Let $\overline{L_{eq}}$ be its complement,

matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{eq}}$ on graph databases is NP-complete

Proof (sketch)

Reduction from Edge-Disjoint Paths

Let (G, u_1, v_1, u_2, v_2) be an instance of edge-disjoint paths Let G' be obtained from G by giving each edge a unique label, copying the entire graph, obtaining G_1 and G_2 , and adding the edge (v_1, u_2) Then G has edge-disjoint paths p_1 and p_2 , from u_1 to v_1 and from u_2 to v_2 iff G'has a path from u_1 to v_2 matching $\overline{L_{eq}}$

The $\overline{L_{eq}}$ problem can be circumvented by going to XPath-like languages on graphs [Libkin et al. JACM 16]

How Do Real RPQs Look Like?

Infinite languages

Expression Type	Relative
\mathbf{A}^{*}	29.10 %
a*	19.66 %
a*b	7.73 %
a+	1.54 %
A+	
$(ab^*)+c$	
a*b?	
abc*	
a*+b	
a+b+	
a+ + b+	
(ab)*	

Finite languages

Expression Type	Relative
A	32.10 %
$a_1 \dots a_k$	8.66 %
a_1 ? a_k ?	1.15 %
aA?	0.01 %
$a_1 a_2$? a_k ?	0.01 %
$A_1 \dots A_k$	
A?	

A, A_i: Set of symbols a,b,c,a_i: Symbols

Empty cells are < 0.01%

~250K RPQs in 56 M unique queries

How Do Real RPQs Look Like?

Infinite languages

Expression Type	Relative
a*	50.48 %
a*b	17.07 %
ab*c*	1.49 %
A*	0.60 %
ab*c	0.22 %
a*b*	0.11 %
abc*	0.05 %
a?b*	0.03 %
A+	0.01 %
Ab*	
other	

Finite languages

Expression Type	Relative
$a_1 \dots a_k$	24.26 %
А	5.52 %
A?	0.06 %
$a_1 a_2$? a_k ?	0.05 %
^a	0.04 %
abc?	0.01 %
other	

A, A_i: Set of symbols a,b,c,a_i: Symbols

Empty cells are < 0.01%

~55M RPQs in 207 M robotic queries

Almost All Expressions are Simple

Definition (Simple Transitive Expression)

An atomic expression is a disjunction $(a_1 + ... + a_n)$ of symbols We denote atomic expressions by A

A local expression is a concatenation of the form

 $A_1 \dots A_k$ "follow a path of length k"

"follow a path of length at most k"

 A_1 ?... A_k ?

A simple transitive expression (STE) is of the form

 $L_1 A^* L_2$

or

where L_1 and L_2 are local expressions

Here we allow $A = \emptyset$ to express some finite languages

How Do Real RPQs Look Like?

Infinite languages

Expression Type	Relative
A*	29.10 %
a*	19.66 %
a*b	7.73 %
a+	1.54 %
A+	
(ab*)+c	
a*b?	
abc*	
a*+b	
a+b+	
a+ + b+	
(ab)*	

Finite languages

Expression Type	Relative
А	32.10 %
a ₁ a _k	8.66 %
a_1 ? a_k ?	1.15 %
aA?	0.01 %
$a_1 a_2$? a_k ?	0.01 %
$A_1 \dots A_k$	
A?	

99.99% are STEs

How Do Real RPQs Look Like?

Infinite languages

Expression Type	Relative
a*	50.48 %
a*b	17.07 %
ab*c*	1.49 %
A*	0.60 %
ab*c	0.22 %
a*b*	0.11 %
abc*	0.05 %
a?b*	0.03 %
A+	0.01 %
Ab*	

Finite languages

Expression Type	Relative
a ₁ a _k	24.26 %
А	5.52 %
A?	0.06 %
$a_1 a_2$? a_k ?	0.05 %
^a	0.04 %
abc?	0.01 %
other	

other

98.40% are STEs

Why Am I Saying This? You can use this to prove theorems!

RPQ Evaluation(simple path semantics)Input:Graph database G, pair (u, v) of nodes
regular path query Q

Question: Is $(u, v) \in \llbracket Q \rrbracket_G^s$?

Is this still NP-complete for STEs?

Yes, take the reduction from Hamilton Path from before

But what if we take a closer look?

Why Am I Saying This? You can use this to prove theorems!

RPQ Evaluation for R

(simple path semantics)

Input: Graph database G, pair (u, v) of nodes, regular path query Q from R

Question: Is $(u, v) \in \llbracket Q \rrbracket_G^s$?

Theorem [Alon, Yuster, Zwick, JACM 1995]

Evaluation for a^k under simple path semantics is in FPT

Color coding technique

Theorem [Fomin et al., JACM 2016]

Evaluation for $a^k a^*$ under simple path semantics is in FPT

Representative sets technique

Why Am I Saying This?

You can use this to prove theorems!

RPQ Evaluation for **R**

(simple path semantics)

Input: Graph database G, pair (u, v) of nodes, regular path query Q from R

Question: Is $(u, v) \in \llbracket Q \rrbracket_G^s$?

Theorem [M., Trautner, ICDT'18]

Let R be a class^(*) of STEs

if **R** is cuttable, then Evaluation for R under simple path semantics is FPT otherwise, Evaluation for **R** under simple path semantics is W[1]-hard

(*) satisfying a mild condition, needed for the hardness proof

Why Am I Saying This?

You can use this to prove theorems!

RPQ Evaluation for **R**

(simple path semantics)

Input: Graph database G, pair (u, v) of nodes, regular path query Q from R

Question: Is $(u, v) \in \llbracket Q \rrbracket_G^s$?

Theorem [M., Trautner, ICDT'18]

Let R be a class^(*) of STEs

if **R** is cuttable, then Evaluation for R under simple path semantics is FPT otherwise, Evaluation for **R** under simple path semantics is W[1]-hard

(*) satisfying a mild condition, needed for the hardness proof

Concluding Remarks

Concluding Remarks

What Have We Done?

- Looked at the most studied query formalisms for graph databases:
 - RPQs and CRPQs
 - There is more: C2RPQs, UCRPQs, UC2RPQs, ...
- We studied their most important decision problems:

Evaluation and Containment

- We did brief excursions to tree-structures and data values
 - Both lead to an entire world of exciting research problems
- We showed that investigating actual queries can open exciting new perspectives on research problems

Graph Data Management is an exciting research direction, with plenty of theory questions and plenty of interest from industry about our results

Thank You!