
Graph Data Management

Wim Martens

EPIT Spring School on Theoretical Computer Science

University of Bayreuth

Luminy, 2019

Foundational aspects of



- Graph Data Model 
- Queries 
- Graph Query Evaluation 
- Graph Query Containment 

- Graphs vs Trees 
- "Real Queries" 
- Data Value Comparisons

Outline



Notation



Notation and Basic Principles
If n ∈ℕ, we use [n] to denote the set {1,..., n}

Finite Automata
We denote a nondeterministic finite automaton (NFA) as 

N = (S, A, 𝛿, I, F)  
where 
- S is the finite set of states 
- A is the finite alphabet 
- 𝛿 ⊆ S ⨉ A ⨉ S is the transition relation 
- I ⊆ S is the set of initial states 
- F ⊆ S is the set of accepting states 

The language of N is denoted L(N)



Notation and Basic Principles

Regular Expressions
Operators: 
(1) Kleene star                                                (denoted *) 
(2) concatenation                       (omitted in notation)  
(3) disjunction                                              (denoted +) 

Priorities of operators:  first (1), then (2), then (3) 

Example:  ab+cd* 

The language of regular expression r is denoted L(r)

We use rn to abbreviate n-fold concatenation of r



Motivation



- Graph databases are becoming more and more standard in industry 
[Neo4j, Tigergraph, Oracle, ...] 

- They bring "reasoning about connectedness" to the masses (*)

Why Graph Databases?

...and they are a nice source of theory problems

(*)  I heard this pitch from Hassan Chafi, Oracle







https://www.mediawiki.org/wiki/Wikibase/Indexing/SPARQL_Query_Examples#Politicians_who_died_of_cancer_.28of_any_type.29
(*): Original Wikidata query: politicians who died of cancer

Wikidata: "US artists who died of poisoning"

SELECT ?x 
WHERE 
{

?x wdt:occupation/wdt:subclassof* wd:artist .
      ?x wdt:citizenship wd:United_States .
      ?x wdt:cause_of_death ?y . 
      ?y wdt:subclass_of* wd:poisoning
}

https://www.mediawiki.org/wiki/Wikibase/Indexing/SPARQL_Query_Examples#Politicians_who_died_of_cancer_.28of_any_type.29


Wikidata: "US artists who died of poisoning"

River Phoenix

actor

Marilyn Monroe

musician

barbiturate overdose

drug overdose

poisoning

artist

guitarist

instrumentalist

singer

cause of death

cause of death

cause of death

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

United States

citizenship

citizenship

...
citizenship

Jimi Hendrix

occupation

occupation

occupation

occupation

occupation

?x

• United
States

artist poisoning

oc
cu

pa
tio

n
cause of death

subclassof* subclassof*

•

Graph Queries By Example



River Phoenix

actor

Marilyn Monroe

musician

barbiturate overdose

drug overdose

poisoning

artist

guitarist

instrumentalist

singer

cause of death

cause of death

cause of death

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

United States

citizenship

citizenship

...
citizenship

Jimi Hendrix

occupation

occupation

occupation

occupation

occupation

?x

• United
States

artist poisoning

oc
cu

pa
tio

n
cause of death

subclassof* subclassof*

•

Wikidata: "US artists who died of poisoning"
Graph Queries By Example



Data Model



What are Graph Databases?

Currently, two main data models:
- Property Graph-like Databases  
- RDF-like Databases



Property Graph Data Model

name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is 
- a set of node identifiers N 
- a set of edge identifiers E 
- a function that maps E to N ⨉ N 
- a function from N ∪ E to (subsets of ) labels L 
- a function from (N ∪ E) ⨉ P to (subsets of ) values V

Values V: Liz, Taylor, 10.10.1975
Properties P: first name, last name

Labels L: person, profession, spouse

The G-Core model also 
directly incorporates a third 
set, containing paths  
[Angles et al., SIGMOD'18] 



RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first 
name

spouse

last name

instance of

More formally, this is a set of triples from 
I ⨉ I ⨉ (I ∪ L) 

where  
- I is the set of  Internationalized Resource Identifiers (IRIs) 
- L is the set of literals (constants)

(There are also blank nodes)

These triples (s,p,o) are referred to as subject / predicate / object triples



RDF Data Model

Profession

Liz Taylor stage actor

Liz Taylor film actor

Subclass of

film actor actor

stage actor actor

actor artist

"RDF-like" graph database

subclass of
Liz Taylor

stage actor

actor

film actor

pro
fes

sio
n subclass of

profession

artist

sub
cla

ss 
of



RDF Data Model

"RDF-like" graph database

property for items 
about people

http://d-nb.info/standards/elementset/gnd#fieldOfActivity

instance of

equivalent property

subclass of
Liz Taylor

stage actor

actor

film actor

pro
fes

sio
n

subclass of

profession

artist

su
bc

las
s o

f



What We Consider Today

Edge-labeled, directed graphs

profession

spouse

Q34851

Liz

Taylor

person

stage actor

Q151973

Richard

Burton

first 
name

last n
ame

spouse

first name

last name

instance of



Graph Database

Definition
A graph database (over Σ) is a pair G = (V, E) where 
- V is a finite set of nodes 
- E ⊆ V ⨉ Σ ⨉ V is a finite set of edges

We assume that Σ is a countably infinite set of labels



Queries



Plan

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Conjunctive Regular Path Queries (CRPQs)



Conjunctive Queries (CQs)
Intuition
Not much different  

from CQs in relational DBs

Example (CQ on binary relations)

R(x, y) ⋀ S(x, a) ⋀ S(y, a)
(uses variables x, y and constant a)

Q3 Q15

a

R

S S

Example (CQ in graph databases)
More visual notation 

x R y ∧ x S a ∧ y S a

or even
x y

a

R

S S



Conjunctive Queries

Definition (Conjunctive Query over Graphs)
A conjunctive query over graphs (CQ) is an expression 
of the form 

where  
-     is a tuple of variables from {x1,..., xn, y1,..., yn} and 
- {a1, ... , an} ⊆  Σ

∃z((x1
a1 y1) ∧ ⋯ ∧ (xn

an yn))

Main technical difference with CQs over relations:  
we only use binary relations here

z



By                  

 we denote that 

is a conjunctive query and that     ⊆ {x1,..., xn, y1,..., yn} is the 
tuple of free variables (or output variables)

Conjunctive Queries

Q(o) = ∃z((x1
a1 y1) ∧ ⋯ ∧ (xn

an yn))

Q = ∃z((x1
a1 y1) ∧ ⋯ ∧ (xn

an yn))
o



Conjunctive Queries: Example

P

S

Q3

Liz

Taylor

stage actor

Q15

Richard

Burton

F

L
S

F

L

Example (CQ on binary relations)

P

Q(x) = (x S y) ∧ (x P z) ∧ (y P z)

{x ↦ Q3, y ↦ Q15, z ↦ stage actor}
{x ↦ Q15, y ↦ Q3, z ↦ stage actor}

x y

z

S

P PReturns: {Q3, Q15} 

Homomorphism h1:  

Homomorphism h2: 



Regular Path Queries

Why regular path queries?
Conjunctive queries (and even first-order queries) on graphs are limited: 

they can only express "local" properties 
[Gaifman 1982, Hanf 1965] 

Regular path queries overcome this, using regular expressions to query paths

Definition

A path in graph G is a sequence 
p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn)

of edges of G



Regular Path Queries
Definition
A regular path query (RPQ) is an expression of the form 

where x and y are variables and r is a regular expression over Σ

x r y

Semantics
There are different semantics of RPQs in the literature! 

The differences between these are important

simple path

every path trail

shortest path

(Notice that r can only mention a finite subset of Σ)



Semantics of RPQs

Consensus seems to be: "All should be supported"

Why will we consider these different semantics?
Each of these semantics is important: 

- Every path semantics has been studied most in the literature 
- (A variant of ) simple path semantics was standard in SPARQL for a while 
- Trail semantics is the default in Neo4j Cypher  
- Simple path semantics was the first that was studied [Cruz, Mendelzon, Wood 1987]

Members of the OpenCypher project were discussing recently 
which of the semantics to use for Cypher (www.opencypher.org)

http://www.opencypher.org


Matching Paths

Let r be a regular expression and G be a graph 

A path p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) in G matches r, if  
a1a2 ... an ∈ L(r)

Semantics of RPQs

Semantics of RPQs                                                                          (every path semantics)

Let                        be a regular path expression and G be a graph 

The semantics               of Q on G = (V, E) is 

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

Q = (x r y)

[[Q]]G

[[Q]]G



Semantics of RPQs

RPQ

G

u

v

Q = (x r y)

(u,v) is returned iff 
there is a path  

from u to v 
that matches r

matches r    ✔



Matching Paths

Let r be a regular expression and G be a graph 

A path p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) in G matches r, if  
a1a2 ... an ∈ L(r)

Notice that we do not have any constraint on the path p
Hence, "every path" is eligible for the query

Notation

If                           , we sometimes denote              byQ = (x r y) [[Q]]G [[r]]G

Semantics of RPQs

Semantics of RPQs                                                                          (every path semantics)

Let                        be a regular path expression and G be a graph 

The semantics               of Q on G = (V, E) is 

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

Q = (x r y)

[[Q]]G

[[Q]]G



Definition (Simple path, trail)                                                                                                           

Let p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) be a path 

Path p is a simple path if 
- v0, vn appear at most once and 
- every node in {v1 ,..., vn-1} appears at most twice in p 

Path p is a trail if 
- every edge (vi-1, ai, vi) appears at most once in p

1

2

3

4
a

a

b

a

b
a

G:

Simple Paths and Trails

Examples:



Semantics of RPQs                                                                       (simple path semantics)

Let                            be an RPQ and G be a graph

The simple path semantics               of Q on G = (V, E) is

            = {(u, v) ∈ V ⨉ V | there exists a simple path p  
from u to v in G that matches r}

Q = (x r y)

[[Q]]s
G

[[Q]]s
G

Semantics of RPQs



Semantics of RPQs                                                                                     (trail semantics)

Let                            be an RPQ and G be a graph

The trail semantics               of Q on G = (V, E) is

            = {(u, v) ∈ V ⨉ V | there exists a trail p from u to v in G that matches r}

Q = (x r y)

[[Q]]t
G

[[Q]]t
G

Semantics of RPQs



RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a

then (1,4) ∈ [[r]]G, [[r]]t
G,  and [[r]]s

G

then (1,4) ∈ [[r]]G
but (1,4) ∉ [[r]]t

G or [[r]]s
G

then (1,4) ∈ [[r]]G and [[r]]t
G

but (1,4) ∉ [[r]]s
G

1

2

3

4a
a

b
a

b
a

G:



Conjunctive Regular Path Queries
Definition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form 

where  
-      is a tuple of variables from {x1,..., xn, y1,..., yn} and  
- ri is an RPQ over Σ for i ∈ [n]

∃z((x1
r1 y1) ∧ ⋯ ∧ (xn

rn yn))

Observation

Since every symbol a in Σ is a regular expression, 
every CQ over graphs is also a CRPQ

z



Semantics of CRPQs                                                                      (every path semantics)

Let                                                                         be a CRPQ and G = (V, E) be a graph 

Let vars(Q) = {x1,..., xn, y1,..., yn} be the set of variables of Q 

Then                = { h(  ) | h is a homomorphism from vars(Q) to V  
such that (h(xi), h(yi)) ∈                        for every i ∈ [n]}

Q = ∃z((x1
r1 y1) ∧ ⋯ ∧ (xn

rn yn))

[[Q]]G

[[xi
ri yi]]G

z

Simple path (            ) and trail (            ) semantics for CRPQs are defined analogously: 
we require that 
                   (h(xi), h(yi)) ∈                       and 
                   (h(xi), h(yi)) ∈                      , respectively

[[Q]]s
G

[[xi
ri yi]]s

G

[[Q]]t
G

[[xi
ri yi]]t

G

Conjunctive Regular Path Queries



CRPQs: Examples

Qaba(x, y, z) = ((x a* y) ∧ (y b* z) ∧ (z a* x))
1

2

3

4a
a

b
a

b
a

G:

x

y

z

a*

a*

b*
Qaba(x,y,z) =

(1,2,3) ∈                  ?[[Qaba]]G

(1,2,2) ∈                  ?[[Qaba]]G

(1,1,1) ∈                  ?[[Qaba]]G

(1,3,1) ∈                  ?[[Qaba]]G



Query Evaluation



Evaluation Problems
RPQ Evaluation                                   (every path semantics)

Input:   Graph database G, pair (u, v) of nodes 
               regular path query Q 

Question: Is (u, v)                 ? ∈ [[Q]]G

CRPQ Evaluation                               (every path semantics)
Input:   Graph database G, tuple ū of nodes 
               conjunctive regular path query Q  

Question: Is ū                   ? ∈ [[Q]]G

The decision problems for simple path and trail semantics are defined analogously



Query Evaluation
RPQs



RPQs, Every Path Semantics
Theorem
RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q =                   be the RPQ, let G be the graph, and (u,v) the pair of nodes 

Let N = (S, A, 𝛿, I, F) be an NFA for r

Construct a product G ⨉ N, treating u as "initial state" in G  
                                                 (This is similar to a product between automata) 

Accept iff there is a path from (i,u) to (f,v) in G ⨉ N, for some i ∈ I and f ∈ F

(x r y)



RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)* 

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in            ?[[r]]G

q1,1 q2,2

q1,3 q2,1

q1,2 q2,3



RPQs, Simple Path Semantics
Theorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Upper bound: 
      Guess a path from u to v in G and check if it is simple and matches r 

Lower bound:  
                                       Reduction from Hamiltonian Path 

Let G be a directed graph with n nodes and (u,v) a pair of nodes of G 
Let Ga be obtained from G by labeling each edge with a 

Then G has a Hamiltonian Path from u to v         iff      (u,v) in 

OK, it's hard

[[an−1]]s
Ga



Theorem
RPQ Evaluation under simple path semantics is NP-hard,  
                                                                                       even for the RPQ Q = (x (aa)* y)

Proof (sketch)

Reduction from

Even Length Simple Path is NP-complete                 [Lapaugh, Papadimitriou, Networks 1984]

Even Length Simple Path

Given a directed graph G and node pairs (u,v), 
is there a simple path of even length from u to v?

Let Ga be the graph constructed before 
Then G has a simple path of even length from u to v iff   (u, v) ∈

RPQs, Simple Path Semantics

[[(aa)*]]s
Ga



Theorem
RPQ Evaluation under simple path semantics is NP-hard,  
                                                                                       even for the RPQ

RPQs, Simple Path Semantics

Q = (x a*ba* y)

Reduction from
Two Disjoint Paths

Given a directed graph G and node pairs (u1,v1) and (u2,v2)      
are there node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Two Disjoint Paths is NP-complete                              [Fortune, Hopcroft, Wyllie TCS 1980]

Proof (sketch)

Let Gb be obtained from Ga by adding the edge (v1, b, u2) 
Then G has node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2  iff 

 (u1, v2) ∈ [[a*ba*]]s
Gb



RPQs, Simple Path Semantics
G

u1

v2

v1
bu2



RPQs, Trail Semantics
Theorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete

Reduction from
Two Edge Disjoint Paths

Given a directed graph G and node pairs (u1,v1) and (u2,v2)      
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Split graph
[LaPaugh, Rivest JCSS 1980]
[Perl, Shiloach JACM 1978]

⇝



RPQs, Trail Semantics
Theorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete                 [Fortune, Hopcroft, Wyllie TCS 1980]

Proof (sketch - same reduction as before)

Let Gb be obtained from Ga by adding the edge (v1, b, u2) 
Then G has edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2  iff 

 (u1, v2) ∈

[LaPaugh, Rivest JCSS 1980]
[Perl, Shiloach JACM 1978]

[[a*ba*]]t
Gb

Reduction from
Two Edge Disjoint Paths

Given a directed graph G and node pairs (u1,v1) and (u2,v2)      
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?



Theorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x (aa)* y)

Why?

RPQs, Trail Semantics



Query Evaluation
CRPQs



CRPQs, Every Path Semantics
Theorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries 

Upper bound: 
Let                                                                          be the query 

For each regular expression ri, we can compute in polynomial time 
                                         a relation Ri containing the tuples 

Then, evaluation for Q is the same as evaluation of the conjunctive query  

over the relations  Ri   

Q = ∃z((x1
r1 y1) ∧ ⋯ ∧ (xn

rn yn))

[[ri]]G

QR = ∃z(R1(x1, y1) ∧ ⋯ ∧ Rn(xn, yn))



Corollary
Let C be a class of CRPQs 
Then Evaluation for C under every path semantics is tractable iff  

Evaluation for CRel is tractable in the relational model

Let C be a class of CRPQs
Let CRel be the class of (relational) CQs, defined as CRel = {QR | Q ∈ C}

CRPQs, Every Path Semantics



CRPQs, Simple Path / Trail Semantics

Theorem
CRPQ Evaluation is NP-complete under simple path and under trail semantics

Proof (sketch)
Lower bound: already holds for RPQs 
Upper bound: simple guess-and-check algorithm

So, here we don't have a similar corollary  
that links to the complexity of CQs over relations



Overview

RPQs CRPQs

every path PTIME NP-complete

simple path NP-complete NP-complete

trail NP-complete NP-complete



Query Containment



Basic Containment Problems
RPQ Containment

Input:   RPQs Q1 and Q2 
Question: Is                                   for every graph G? 

CRPQ Containment

The problems for simple path and trail semantics are analogous

[[Q1]]G ⊆ [[Q2]]G

Input:   CRPQs Q1 and Q2 
Question: Is                                   for every graph G? [[Q1]]G ⊆ [[Q2]]G



Query Containment
RPQs



RPQ Containment
Theorem
RPQ Containment is PSPACE-complete

Proof (sketch)

Let                                 and                                 be RPQs 
It is easy to see that Q1 ⊆ Q2 iff  L(r1) ⊆ L(r2) 

Testing L(r1) ⊆ L(r2) for two given regular expressions r1 and r2  
                                                                                                             is PSPACE-complete

Q1 = (x1
r1 y1) Q2 = (x2

r2 y2)

The same proof works for simple path and trail semantics



Query Containment
CRPQs



CRPQ Containment
Theorem                                            [Calvanese et al. KR 2000   "The Four Italians"]
CRPQ Containment is EXPSPACE-complete

Proof (Plan)                                                                                   

Let Q1 and Q2 be the CRPQs 

Upper bound: we reduce the problem to containment of NFAs 

We first argue that there exist exponential-size NFAs A1 and A2 such that  
                                           Q1 ⊆ Q2     iff     L(A1) ⊆ L(A2)

Testing L(A1) ⊆ L(A2) can then be done on the fly 

Lower bound: we reduce from Exponential Corridor Tiling



CRPQ Containment: Upper Bound
Let                                                                           be a CRPQ 

A conjunctive query Qe is an expansion of Q if it can be obtained from Q by  
                        "replacing each ri by a path, labeled with a word in L(ri)"

Q = ∃z((x1
r1 y1) ∧ ⋯ ∧ (xn

rn yn))

x1 x2

x3

a*

b*
c*

x1 x2

x3

a

bc

a#

x1 x2 = x3

a

c

a#



Let                                                                           be a CRPQ

CRPQ Containment: Upper Bound

Q = ∃z((x1
r1 y1) ∧ ⋯ ∧ (xn

rn yn))

Definition (Expansion of Q)

A conjunctive query Qe is an expansion of Q if there exist words wi ∈L(ri)  
such that Qe can be obtained from Q as follows: 

Replace each atom        
- by (xi = yi) if wi = ε 
- by a conjunction                                                                              such that 

We assume that all variables       are new and pairwise distinct

(xi
ri yi)

(xi
a1 #1

i ) ∧ (#1
i

a2 #2
i ) ∧ ⋯ ∧ (#ki

i

aki yi) wi = a1⋯aki

# j
i

Observation

There is always a homomorphism from Q to Qe, namely the identity



Lemma [Calvanese et al. 2000]
Q1 ⊈ Q2 iff there exists an expansion      of Q1,   
                                           for which there is no homomorphism 
                                                                              from Q2 to        that is the identity on 

CRPQ Containment: Upper Bound
Let Q1 and Q2 be CRPQs 

We assume w.l.o.g. that Q1 and Q2 have the same free variables  
                                                                                       and all other variables are disjoint

Qe
1

Qe
1

This is what we will try to test with automata A1 and A2

z

z

Q1       ⊈       Q2 

Qe
1

⇝

∄ homomorphism that preserves z



CRPQ Containment: Upper Bound

We can encode expansions of Q1 as words 
$ x1w1y1 $ x2w2y2 $ ... $ xnwnyn $

over the alphabet Σ ∪ Vars(Q) ∪ {$,#}

Let                                                                         Q1 = ∃z((x1
r1 y1) ∧ ⋯ ∧ (xn

rn yn))

Intuition: 
- each                corresponds to xiwiyi

- each word wi is of the form a1 # a2 # ... # aki where a1... aki in L(ri)
- each xi, yi and # can be seen as a variable in the expansion

xi
ri yi

Exercise

Given Q1, show that there is a polynomial size NFA that checks  
if a given word w encodes an expansion of Q1



CRPQ Containment: Upper Bound

Here the Xi and Yi are sets of variables
The idea is that 
(1) word wi is in L#(ri) for all i ∈ [n]
(2) xi ∈Xi and yi ∈Yi for all i ∈ [n] 
(3) the sets Xi, Yi form a partition of Vars(Q)                     (but sets are allowed to repeat!) 

(4) whenever wi = ε, then Xi = Yi

Such words are called Q1-words

We can also encode expansions of Q1 as words 
$ X1w1Y1 $ X2w2Y2 $ ... $ XnwnYn $

over the alphabet Σ ∪ 2Vars(Q) ∪ {$,#}

a1 # a2 # ... # ak for a1... ak in L(ri)



x1 x2

x3

a

bc

a#

$ {x1} a#a {x2} $ {x2} b {x3} $ {x3} c {x1} $

x1 x2 = x3

a

c

a#

$ {x1} a#a {x2, x3} $ {x2, x3} {x2, x3} $ {x2, x3} c {x1} $

Intermezzo: Examples
x1 x2

x3

a*

b*
c*



CRPQ Containment: Upper Bound

Here the Xi and Yi are sets of variables
The idea is that 
(1) word wi is in L#(ri) for all i ∈ [n]
(2) xi ∈Xi and yi ∈Yi for all i ∈ [n] 
(3) the sets Xi, Yi form a partition of Vars(Q)                     (but sets are allowed to repeat!) 

(4) whenever wi = ε, then Xi = Yi

Such words are called Q1-words

We can also encode expansions of Q1 as words 
$ X1w1Y1 $ X2w2Y2 $ ... $ XnwnYn $

over the alphabet Σ ∪ 2Vars(Q) ∪ {$,#}

Can we recognize Q1-words with an automaton A1?

(1) Polynomial size NFA A1,1 
(2) Polynomial size NFA A1,2 
(3) Exponential size NFA A1,3 
(4) Exponential size NFA A1,4

} Use A1,1 ⨉ A1,2 ⨉ A1,3 ⨉ A1,4 ⨉ Awf

where Awf  tests well-formedness 

a1 # a2 # ... # ak for a1... ak in L(ri)



CRPQ Containment: Upper Bound
We now want to define A2 
We first think about "annotated Q1-words", i.e., words of the form 

$ (l1,γ1) ... (lm,γm) $
where $l1 ... lm $ is a Q1-word and γi ⊆ Vars(Q2) for all i

Intuition

The variables in γi  are mapped to the node li if li ⊆ Vars(Q1) ∪ {#}

We now want to see:  
Can an automaton A'2 test if an annotated Q1-word Wa encodes  

a Q1-expansion Qe 
such that Q2 returns the same answer as Q1 on Qe?



CRPQ Containment: Upper Bound
We have annotated Q1-word $ (l1,γ1) ... (lm,γm) $ with Q1-word W = $ l1 ... lm $

Automaton A'2 tests

(1) for every li  ⊆ Vars(Q1) containing an output variable z, every occurrence lj of li 
is annotated with a set γj  that contains z 

(2) if a variable y ∈Vars(Q2) appears in (li,γi), then either:  
- li = # and y only appears in γi, or 
- li ⊆ Vars(Q1) and y appears in every γj for which li = lj

(3) for every conjunct                    of Q2, whether  
                                              the path from x'i to y'i matches r'i

(x′�i
r′�i y′�i)

How can this be done? 
(1) Exponential size NFA 
(2) Exponential size NFA 
(3) Polynomial size two-way NFA                      exponential size NFA

Automaton A2 reads a Q1-word W, guesses the annotations, and simulates (1)-(3)

⇝



CRPQ Containment: Lower Bound
We reduce from exponential corridor tiling

Definition (Exponential Corridor Tiling)

A tiling system is a tuple T = (T, H, V, ts, tf, n) where 
- T is a finite set of tile types 
- H ⊆ T ⨉ T is the set of horizontal constraints 
- V ⊆ T ⨉ T is the set of vertical constraints 
- ts ∈ T is the start tile 
- tf ∈ T is the finish tile 
- n ∈ ℕ



CRPQ Containment: Lower Bound
Definition (Exponential Corridor Tiling)

Let T = (T, H, V, ts, tf, n) be a tiling system 
It has an exponential corridor solution if there exists an m ∈ ℕ and mapping  
                                                      bathroom : [2n] ⨉[m]      T 
such that 
- the start tile type is correct:                          bathroom(1,1) = ts 
- the finishing tile type is correct:                  bathroom(2n,m) = tf

- the horizontal constraints are correct:     (bathroom(x,y), bathroom(x+1,y)) in H 
- the vertical constraints are correct:           (bathroom(x,y), bathroom(x,y+1)) in V

Theorem
Deciding if a tiling system has an exponential corridor solution  

is EXPSPACE-complete

→



CRPQ Containment: Lower Bound
Let T = (T, H, V, ts, tf, n) be an instance of exponential tiling 

Plan: define queries Q1 and Q2 such that Q1 ⊈ Q2 iff T does not have a valid tiling,  
                                                                                                        i.e. every tiling has some error 

Q1(x1, x2) =                           with r = 0n ts ((0+1)n T)* 1n tf(x1
r x2)

Q2(x1, x2) = (x1
rpre y1) ∧ (

n

⋀
i=0

y1
ri y2) ∧ (y2

rsuff x2)

with rpre = ((0+1)n T)*    and      rsuff = ((0+1)n T)*

x1 y1 y2 x2⋮



CRPQ Containment: Lower Bound

Q2(x1, x2) = (x1
rpre y1) ∧ (

n

⋀
i=0

y1
ri y2) ∧ (y2

rsuff x2)

ri = rH + rVi + rc

vertical error
horizontal error

counter error

rH = ∑
(t1,t2)∉H

((0 + 1)n T )* (0 + 1)n t1 (0 + 1)n t2 ((0 + 1)n T )*



CRPQ Containment: Lower Bound
Q2(x1, x2) = (x1

rpre y1) ∧ (
n

⋀
i=0

y1
ri y2) ∧ (y2

rsuff x2)

rV0 = ∑
(t1,t2)∉V

(0 + 1)n t1 ((0 + 1)n T )* (0 + 1) t2

rVi = r0
Vi + r1

Vi for i > 0, with rb
Vi = (0 + 1)i−1 b (0 + 1)n−i T

((0 + 1)* b (0 + 1)* T )*
bn T
((0 + 1)* b (0 + 1)* T )*
(0 + 1)i−1 b (0 + 1)n−i T

Exercise

Define rc, which should match consecutive (0+1)n-blocks  
that don't encode consecutive binary numbers

ri = rH + rVi + rc

vertical error
horizontal error

counter error

b = 1 − b



CRPQ Containment

Theorem                                            [Calvanese et al. KR 2000   "The Four Italians"]
CRPQ Containment is EXPSPACE-complete

This concludes the proof !

Actually, the original proof also shows the result for  
conjunctive two-way regular path queries



Trees versus Graphs

"Those who don't learn from history ..."
... risk having their papers rejected by the old folks



But What About Acyclic CRPQs?
Let's call a CRPQ acyclic(*) if its associated graph is a tree

Example

x a* y ∧ x b* z ∧ y c* z x y

z

a*

b* c*

x1
a* y ∧ x2

b* y ∧ y c* z

x1

y

x2

a*

b*

c* z ✔

X

(ignoring edge directions)

(*) for the sake of simplicity -- "real" acyclicity should also include forests



Denote by              the set of graphs on which Q is satisfied 

But What About Acyclic CRPQs?

Important observation

If Q1 and Q2 are acyclic, then                                   iff  

Let's call a CRPQ acyclic(*) if its associated graph is a tree

[[Q]]G

[[Q]]T

(*) for the sake of simplicity -- "real" acyclicity should also include forests

For the sake of simplicity, let's only consider Boolean CRPQs

Denote by              the set of trees on which Q is satisfied 

[[Q1]]G ⊆ [[Q2]]G [[Q1]]T ⊆ [[Q2]]T

Intuition: A counterexample graph can be unfolded to a tree



But What About Acyclic CRPQs?
Papers where this argument has been made (almost certainly incomplete):

[Miklau, Suciu, JACM 2004] 
[Reutter, CoRR 2013] 
[Barcelo, Perez, Reutter, AMW 2013] 
[Czerwiński, M., Niewerth, Parys, JACM 2018]



What Does This Mean?
If you have queries that behave like

?x

• United
States

artist poisoning

oc
cu

pa
tio

n
cause of death

subclassof* subclassof*

• - node labels 
- edge labels 
- transitive closures 
- (wildcards)

...then you can use results from tree patterns on XML data:

Theorem [Miklau, Suciu JACM 2004]
Containment of tree patterns is coNP-complete

Theorem [Czerwinski et al. JACM 2018]
Minimization of tree patterns is Σ2P-complete  

(and minimization ≠ deleting edges) 

...and much, much more!



Data Values



Queries With Data Value Comparisons
Until now, we never compared labels with each other 

Example: 
- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts 
 x ~ y         or           x ≁ y 

satisfied if nodes x and y have the same, resp., different value

Such queries are usually considered on a different data model 
(data words, data trees, data graphs) 

but since we chose Σ infinite, the main argument also works here



Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let            be its complement,  
                                       matching all paths containing pairwise different values

Leq

Theorem
Evaluation of           on graph databases is NP-completeLeq

Proof (sketch)
Reduction from Edge-Disjoint Paths 
Let (G, u1, v1, u2, v2)  be an instance of edge-disjoint paths 
Let G' be obtained from G by giving each edge a unique label,   
copying the entire graph, obtaining G1 and G2, and adding the edge (v1, u2) 
Then G has edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2  iff G' 
has a path from u1 to v2 matching Leq

The          problem can be circumvented by going to XPath-like languages on graphsLeq
[Libkin et al. JACM 16]



Real Queries



How Do Real RPQs Look Like?

Expression Type Relative
A* 29.10 %
a* 19.66 %

a*b 7.73 %
a+ 1.54 %
A+

(ab*)+c
a*b?
abc*
a*+b
a+b+

a+ + b+

(ab)*

Expression Type Relative
A 32.10 %

a1 ... ak 8.66 %
a1? ... ak? 1.15 %

aA? 0.01 %
a1 a2? ... ak? 0.01 %

A1 ... Ak

A?

Empty cells are < 0.01%

Infinite languages

A, Ai: Set of symbols
a,b,c,ai : Symbols

Finite languages

~250K RPQs  
in 56 M unique queries



How Do Real RPQs Look Like?

Expression Type Relative
a* 50.48 %

a*b 17.07 %
ab*c* 1.49 %

A* 0.60 %
ab*c 0.22 %
a*b* 0.11 %
abc* 0.05 %
a?b* 0.03 %
A+ 0.01 %

Ab*
other

Expression Type Relative
a1 ... ak 24.26 %

A 5.52 %
A? 0.06 %

a1 a2? ... ak? 0.05 %
^a 0.04 %

abc? 0.01 %
other

Infinite languages Finite languages

A, Ai: Set of symbols
a,b,c,ai : Symbols

~55M RPQs  
in 207 M robotic queriesEmpty cells are < 0.01%



Almost All Expressions are Simple

Definition (Simple Transitive Expression)

An atomic expression is a disjunction (a1 + ... + an) of symbols 
We denote atomic expressions by A 

A local expression is a concatenation of the form 
A1 ... Ak                      or                          A1? ... Ak? 

"follow a path of length k"                              "follow a path of length at most k" 

A simple transitive expression (STE) is of the form 
L1 A* L2 

where L1 and L2 are local expressions

Here we allow A = ∅ to express some finite languages



Simple Transitive Expressions

!∗!# ⋯!%
or

!#?⋯!%? 

!#' ⋯!('
or

!#' ?⋯!('?

)

*

Simple Transitive Expression
L1 A* L2                   where L1 and L2 are local expressions



How Do Real RPQs Look Like?

Expression Type Relative
A* 29.10 %
a* 19.66 %

a*b 7.73 %
a+ 1.54 %
A+

(ab*)+c
a*b?
abc*
a*+b
a+b+

a+ + b+

(ab)*

Expression Type Relative
A 32.10 %

a1 ... ak 8.66 %
a1? ... ak? 1.15 %

aA? 0.01 %
a1 a2? ... ak? 0.01 %

A1 ... Ak

A?

Infinite languages Finite languages

99.99% are STEs



How Do Real RPQs Look Like?

Expression Type Relative
a* 50.48 %

a*b 17.07 %
ab*c* 1.49 %

A* 0.60 %
ab*c 0.22 %
a*b* 0.11 %
abc* 0.05 %
a?b* 0.03 %
A+ 0.01 %

Ab*
other

Expression Type Relative
a1 ... ak 24.26 %

A 5.52 %
A? 0.06 %

a1 a2? ... ak? 0.05 %
^a 0.04 %

abc? 0.01 %
other

Infinite languages Finite languages

98.40% are STEs



Why Am I Saying This?

RPQ Evaluation                                (simple path semantics)

Input:   Graph database G, pair (u, v) of nodes 
               regular path query Q 

Question: Is (u, v)                 ? ∈ [[Q]]s
G

Is this still NP-complete for STEs?

Yes, take the reduction from Hamilton Path from before

But what if we take a closer look?

You can use this to prove theorems!



Why Am I Saying This?
You can use this to prove theorems!

RPQ Evaluation for R                                                                 (simple path semantics)

Input:   Graph database G, pair (u, v) of nodes, regular path query Q from R 

Question: Is (u, v)                 ? ∈ [[Q]]s
G

Example classes R: aa ... a               for k in ℕ}

k
aa ... aa*          for k in ℕ}

denote this by ak

denote this by aka*

Theorem [Alon, Yuster, Zwick, JACM 1995]

Evaluation for ak under simple path semantics is in FPT

Color coding technique

Theorem [Fomin et al., JACM 2016]

Evaluation for aka* under simple path semantics is in FPT

Representative sets technique



Why Am I Saying This?
You can use this to prove theorems!

RPQ Evaluation for R                                                                 (simple path semantics)

Input:   Graph database G, pair (u, v) of nodes, regular path query Q from R 

Question: Is (u, v)                 ? ∈ [[Q]]s
G

Theorem [M., Trautner, ICDT'18]
Let R be a class(*) of STEs 
            if R is cuttable, then Evaluation for R under simple path semantics is FPT 
            otherwise, Evaluation for R under simple path semantics is W[1]-hard

(*) satisfying a mild condition, needed for the hardness proof



Cuttability

Does the simple path still match r ? 
- "easy" to check for aaaaa*                      (check length) 
- "hard" to check for bbbba*                   (check length + label)

path that matches r

s
t

Simple                                       ?

cut border for bbbba*

≥ 4



Why Am I Saying This?
You can use this to prove theorems!

RPQ Evaluation for R                                                                 (simple path semantics)

Input:   Graph database G, pair (u, v) of nodes, regular path query Q from R 

Question: Is (u, v)                 ? ∈ [[Q]]s
G

Theorem [M., Trautner, ICDT'18]
Let R be a class(*) of STEs 
            if R is cuttable, then Evaluation for R under simple path semantics is FPT 
            otherwise, Evaluation for R under simple path semantics is W[1]-hard

(*) satisfying a mild condition, needed for the hardness proof



Concluding Remarks



Concluding Remarks
What Have We Done?

- Looked at the most studied query formalisms for graph databases: 
                                                                                                              RPQs and CRPQs 
- There is more: C2RPQs, UCRPQs, UC2RPQs, ... 

- We studied their most important decision problems:  
                                                                                           Evaluation and Containment 

- We did brief excursions to tree-structures and data values 
- Both lead to an entire world of exciting research problems 

- We showed that investigating actual queries can open exciting new perspectives 
on research problems

Graph Data Management is an exciting research direction, 
with plenty of theory questions 

and plenty of interest from industry about our results



Thank You!


