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What this 1s about

» Incomplete information in general
- Its handling in SQL in particular
« Why?

- Because SQL remains the main tool for handling incomplete
information

- Because incomplete information is everywhere

- And because we know surprisingly little about providing
correct answers when all data isn’t there

- Not in practice, and theory is largely lacking



SQL

The query language for relational databases
International Standard since 1987

Implemented in all systems (free and commercial)
$35B/year business

Most common tool used by data scientists
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SE’;
f

(up to 80%)

. analytics
wrangling

and It all works well until.....
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The problematic NULL

Sign in to see your subscriptions, playlists,
recommendations, and more

AUS

Welcome, (null)

null°/72°

ot W cmmesn
Continue as (null)

Select another account




The problematic NULL

Sign in to see your subscriptions, playlists,  Payment Reminder for your null null null  1nbex | x
recommendations, and more
X Ford Credit accountmanageremail@accountmanageremail.com to me

AUS

Welcome, (null) Payment Reminder

null°/72°

Dear s 2%

The Weather Channel
Continue as (null) Your next payment is due on S PAYMENT_DUE_DATE S foolyour null null nulljPlease
note, there is an overdue payment on your account. Please go to Account Mansager to view

detsils and avsilable services or schedule an online payment.

Select another account
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could create lots of trouble for people:

Life:=Connected | Computer

These unlucky people have

names that break computers

A few people have names that can utterly confuse the websites Relc
they visit, and it makes their life online quite the headache. Why

does it happen? m

For Null, a full-time mum who lives in southern Virginia in the
US, frustrations don't end with booking plane tickets. She’s also
had trouble entering her details into a government tax website,
for instance. And when she and her husband tried to get settled
in a new city, there were difficulties getting a utility bill set up,
too.



And when nulls appear, things go bad



And when nulls appear, things go bad

Textbooks

“fundamentally at odds with the way
the world behaves”

“cannot be explained”




And when nulls appear, things go bad

Textbooks

Books for database professionals



And when nulls appear, things go bad

Textbooks

Books for database professionals

News headlines




What we have now

- N 4 A
THEORY: PRACTICE:
correctness, efficiency, but
but at a huge correctness
cost sacrificed
% Y, g J

Just run queries and

Correctness: certain answers hope for the best....

to be defined soon... ,
even more than “just run”:

use a many-valued logic...
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The dominant approach to
bridging the gap

until a few years ago when things started changing —
this is what is surveyed here



Incomplete data and certain answers

\

D1

D,

Incomplete database D represents
many complete databases D1, Do, ...

This is done by interpreting
iIncompleteness

For example, by assigning values
to every null that occurs inD



Incomplete data and certain answers

\

D
D,

Tuple a is certain answer to query Q in D
& ais an answer to Q in every D

D: Certainty is hard computationally:
for relational algebra
(first-order logic) queries



The model

Marked nulls - common in data integration, exchange, OBDA, generalize SQL nulls

I

N
(\®)
— | W | N

Valuations v: Nulls & Constants



Valuations are homomorphisms

- Database elements come from two sets:
(numbers, strings, etc)

, denoted by 11 12 13

+ h(c)=c for constants, h(_L) is a constant or null
- valuations v: in addition, v(_L) is always a constant

- [D] ={v(D) | v is a valuation}



Certain Answers
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Q is true in [D] - that is, true in v(D) for each valuation v
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For queries returning tuples, for tuples of constants:
c is a certain answer & ¢ € Q(v(D)) for each valuation v



Certain Answers

For Boolean queries: Q is certainly truein D &

Q is true in [D] - that is, true in v(D) for each valuation v

For queries returning tuples, for tuples of constants:
c is a certain answer & ¢ € Q(v(D)) for each valuation v

An arbitrary tuple a is a certain answer &

v(a) € Q(v(D)) for each valuation v



A bit on the history of certain answers

»+ The definition for constant tuples is often given as
{Q(v(D)) | v is a valuation}

- |Issues: let Q that return R (a relation). If all tuples in
R have nulls, big intersection is empty. But
intuitively the answer should be R itself.

- The third definition, sometimes called certain
answers with nulls, proposed in Lipski 1984, but
then forgotten for decades in favour of the second

(from Lipski 1979)



More on certain answers

- Adifferent approach from L., KR'14: Let D < D" means that D’
IS at least as informative as D

- One way of defining it: [D’] ¢ [D]
- Then certain answer is A{Q(v(D))} (greatest lower bound)

- Better definition, but representation of such answers can be
(Arenas et al, AMW’17; Amendola/L, IJCAI'18)

- This can be fixed by adding a notion of to certain
answers. Explainable certain answers defined in Amendola/l.,
and shown to coincide with certain answers with nulls.

- This is what we shall use.



Certain answers are coNP-
complete for first-order queries

- Boolean Q. Certainty is in . Guess a valuation
v so that Q is false in v(D).

- Hardness for unions of CQ with negation. Take a
graph G with nodes N and edges E.

- For each node n € N, create a new null L,. For an

edge (n,n’), put (Ln,Ln)In E.
. Query Q: dx E(x,x) v Ax,y,z,u (x,y,z,u are different)

- Q is certainly true iff the graph is



A side remark: open world assumption

- The semantics is defined as

* [Dlowa = {v(D)u D" | v is a valuation, D' has no nulls}

» Alternatively, D" € [D]owa < D’ is complete and there is

)

a homomorphism from D to C

- Then certainty becomes validity, hence undecidable for
first-order queries

- validity over finite structures is not r.e.



Homomorphism preservation

- For simplicity, look at Boolean queries

- Qs preserved under homomorphismsifDEQandh: D — D
imply D’ = Q

- Evaluate Q naively in D (as if nulls were constants). If it is
false, then certain answer to Q is false

- Ifitis true, then it is true in every D’e [D] because we have a
homomorphism D — D’, and certain answer is true.

- For queries preserved under homomorphisms, naive
evaluation gives certain answers.

- For non-Boolean queries, it gives certain answers with nulls.



Queries preserved under
homomorphisms

- Rossman’s Theorem: a first-order (FO) query is

preserved under homomorphism iff it is equivalent to a
union of conjunctive queries

- Hence, for UCQs, naive evaluation gives certain

dNSWeErs.

- Under open world assumption, converse is true: if naive
evaluation gives certain answers for an FO query, then is
equivalent to a UCAQ.



But generally we can do better

» Recall [D] = {v(D) | v is a valuation}

- We have special homomorphisms: D — v(D)

- They are called strong onto homomorphisms

- (Gheerbrant, Sirangelo, L., ‘“13) If Q is preserved

under strong onto homomorphisms, then naive
evaluation produces certain answers with nulls



Preservation under strong onto
homomorphisms

- Inlogic (FO), an extension of the positive fragment

- closure of atoms R(x) and x=y under v A 3 v and
the rule Vx (R(x) — a(x,y))

- In relational algebra (RA)

- selection, projection, cartesian product, union, and
division by a relation (Q + R)

- Division queries: “find students that take all courses”



But what do we do with
more complex queries”?

* First, let's see a bit what happens in everyday
practice...
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Incomplete databases

e

Orders Payments

D. | TR T

\_L/ < ord1 100 pay ord1
— ord2 150 pay?2 NULL
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Incomplete databases

e

Orders Payments

< ord1 100

ord2 150
ord3 135
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Incomplete databases
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Orders Payments
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Incomplete databases

4 ™
Orders Payments
ord1 100 pay ord1
150 pay2 NULL
135
y,
Orders Payments
ord1 100 pay ord1
ord2 150 pay2 value3
ord3 135




Incomplete databases
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Incomplete databases

é )

Orders Payments

i < ord1 100 pay ord1

ord2 150 pay2 NULL

ord3 135

Possible worlds
represented by D



Querying incomplete databases

Certain answers:
Answers that are true in all possible worlds

( )

Orders Payments
ord1 100 pay ord1
ord2 150 pay2 NULL
ord3 135
\ J
Query \/
~ R o

Unpaid orders | === —
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Querying incomplete databases

Certain answers:
Answers that are true in all possible worlds

( )

Orders Payments

ord1 100 pay ord1

ord2 150 pay2 NULL

ord3 135

\. J

Query \/ Certain answers
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Querying incomplete databases

. i SELECT O.num FROM Orders O WHERE NOT EXISTS (
Unpald Orders % SELECT * FROM Payments P WHERE P.ord = O.num )

4 ™
Orders Payments
ord1 100 pay ord1
ord2 150 pay2 NULL
ord3 135
- y,

Query |

-
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Unpaid orders

- _J N -




Querying incomplete databases

: i SELECT O.num FROM Orders O WHERE NOT EXISTS (
Unpald Orders % SELECT * FROM Payments P WHERE P.ord = O.num )

4 ™
Orders Payments
ord1 100 pay1 ord1
ord2 150 pay2 NULL
ord3 135
- y,

Certain answers
Query | +

-

\_

) SQL SQL g A
ord2, ord3

Unpaid orders
_J




Are wrong answers common in SQL?

Experiment on the TPC-H Benchmark:
models a business scenario with associated decision support queries
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(from Guagliardo/L., PODS’16)



A company database: orders, customers, payments

Orders Pay Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST_ID NAME
Ordl| “Big Data” 30
cl Ordl cl John
Ord2 SQL | 35 > Ord2 2 M
Ord3 “Logic” 50 - : - =
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A company database: orders, customers, payments

Orders Pay Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST_ID NAME
Ordl| “Big Data” 30
cl Ordl cl John
Ord2 SQL | 35 > Ord2 2 M
Ord3 “Logic” 50 - : - =

Typical queries, as we teach students to write them:

Unpaid orders:

select O.order _id
from Orders O
where O.order id notin
(select order from Pay P)



Orders Pay Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST_ID NAME
Ordl| “Big Data” 30
cl Ordl cl John
Ord2 SQL | 35 > Ord2 2 M
Ord3 “Logic” 50 - : - =

A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Customers without an order:

select C.cust_id from Customer C

where not exists
(select * from Orders O, Pay P

where C.cust_id=P.cust_id
and P.order=0.order_id)

Unpaid orders:

select O.order _id
from Orders O
where O.order_id not in
(select order from Pay P)



A company database: orders, customers, payments

Orders Pay Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST_ID NAME
Ordl| “Big Data” 30
cl Ordl cl John
Ord2 SQL | 35 > Ord2 2 M
Ord3 “Logic” 50 - : - =

Typical queries, as we teach students to write them:

Customers without an order:

select C.cust_id from Customer C

where not exists
(select * from Orders O, Pay P

where C.cust_id=P.cust_id
and P.order=0.order_id)

Unpaid orders:

select O.order _id
from Orders O
where O.order_id not in
(select order from Pay P)

Answer: Ord3. Answer: none.
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A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Customers without an order:

select C.cust_id from Customer C

where not exists
(select * from Orders O, Pay P

where C.cust_id=P.cust_id
and P.order=0.order_id)

Unpaid orders:

select O.order _id
from Orders O
where O.order_id not in
(select order from Pay P)



A company database: orders, customers, payments

Orders
ORDER_ID TITLE PRICE
Ordl| “Big Data” 30
Ord2 “SQL” 35
Ord3 “Logic” 50

Unpaid orders:

select O.order id
from Orders O
where O.order_id not in
(select order from Pay P)

Pay Customer
CUST_ID ORDER CUST_ID NAME
cl Ord| cl John
c2 Ord2 c2 Mary

Customers without an order:

select C.cust_id from Customer C

where not exists
(select * from Orders O, Pay P

where C.cust_id=P.cust_id
and P.order=0.order_id)



Orders Pay Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST_ID NAME
Ordl| “Big Data” 30
cl Ordl cl John
Ord2 SQL | 35 > Ord2 2 M
Ord3 “Logic” 50 - : - =

A company database: orders, customers, payments

In the real world, information is often missing

Customers without an order:

select C.cust_id from Customer C

where not exists
(select * from Orders O, Pay P

where C.cust_id=P.cust_id
and P.order=0.order_id)

Unpaid orders:

select O.order _id
from Orders O
where O.order_id not in
(select order from Pay P)



A company database: orders, customers, payments

Orders Pay Customer
ORDER_ID TITLE PRICE CUST_ID NAME
Ordl| “Big Data” 30
cl John
Ord2 “sQL” 35 2 M
Ord3 “Logic” 50 - =

In the real world, information is often missing

Customers without an order:

Unpaid orders: |
select O.order id select C.custl_ld from Customer C
from Orders O where not exists

where O.order_id not in (select ™ from Orders O, Pay P
' " where C.cust_id=P.cust_id

(select order from Pay P) and Porder=0.order_id)



Orders Pay Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST_ID NAME
Ordl| “Big Data” 30
cl Ordl| cl John
Ord2 “SQL” 35 2 I 2 M
Ord3 “Logic” 50 - = - =

A company database: orders, customers, payments

In the real world, information is often missing

Customers without an order:

select C.cust_id from Customer C

where not exists
(select * from Orders O, Pay P

where C.cust_id=P.cust_id
and P.order=0.order_id)

Unpaid orders:

select O.order _id
from Orders O
where O.order_id not in
(select order from Pay P)



Orders Pay Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST_ID NAME
Ordl| “Big Data” 30
cl Ordl| cl John
Ord2 “SQL” 35 2 I 2 M
Ord3 “Logic” 50 - = - =

A company database: orders, customers, payments

In the real world, information is often missing

Customers without an order:

select C.cust_id from Customer C

where not exists
(select * from Orders O, Pay P

where C.cust_id=P.cust_id
and P.order=0.order_id)

Unpaid orders:

select O.order _id
from Orders O
where O.order_id not in
(select order from Pay P)

New: NONE! New: c2!



What's the deal with nulls?

- Back in the 1980s, when SQL was standardized, it
chose a 3-valued logic for handling nulls

+ truth values: t, f,u u for
- conditions such as 1 = null evaluate to u

»+ propagated using

A

H
|
S o= K
= e e | &=
=l
S = (&

S . e | e
c = oS

iy
— N I

t
f
u
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But who came up with this?

Aka the SQL Standard Committee



But who came up with this?

ISO/IEC JTC1 SC32 WG3
Aka the SQL Standard Committee

f




Committee work

- Meet a few times a year

- Intense meetings, 9 to 5 usually

- Decisions made, then people vote

IS one of those decisions

- and perhaps the most criticized one



Types of errors

False negatives: miss some of the correct answers
False positives: return answers that are false

False positives are worse: blatant lie vs hiding some of
the truth

Correct answers: those that are certain

® don’t depend on the interpretation of missing data

SQL gives



Avoiding wrong answers

Nothing prevents us from finding an efficient query
evaluation that

Surprisingly not known until very recently
® [ ,“Certain answers and SQL’s 3-valued logic”, ACM TODS 20I6)

|dea: translate query Q into queries QF that returns
and Qf that returns

Underapproximates certainly true/false answers,
overapproximates unknown



The Qt translation

Rt — R (A=B)* = (A=B)
. (A # B)* = (A # B) Anot_null(A) A not_null(B)
(O'Q(Q)) — (Qt) (61 op 62)* = 67 op 63 forope {A, V}
(ﬂ_a(Q))t — Tg (Qt)
(Ql X Qz)t = Q] x Q5
(QiUQ:)" = QIUQS
(@1 N Qz)t = QINQ5
(@1 — QQ)t = QiNQ,

A tuple is certainly in Q1 — Q2 if it is
certainly in Q1 and certainly not in Qo




The problematic Qf translation

Need an extra operation of left unification (anti)semijoin
Rx,S = {7€R|35€S:F unifies with 5 }

Rx,S = R—Rx,$

Inefficient translations:

Rf — adom*™R) % R
(00(Q)) = Q" U g (_g)- (adom™¥ (V)
(@1 x @) = Qf x adom® () adom? (1) 5 Qf

(7a(Q))f = 7a(Q") — ma(adom® ™ — Q)

Has no chance of working in practice



A different perspective

A tuple is certainly in Q1 = Q2 if it is
certainly in Q1 and certainly not in Q2

(@1 —Q2)t = QI NQ,




A different perspective

A tuple is certainly in Q1 = Q2 if it is
certainly in Q1 and certainly not in Q2

(@1 _QQ)t = QI NQ,

Sut this Is not the only possibility



A different perspective

A tuple is certainly in Q1 = Q2 if it is
certainly in Q1 and certainly not in Q2

(@1 —Q2)t = QI NQ,

Sut this Is not the only possibility

A tuple is certainly in Q1 — Qg if
e itis certainly in Q¢ and

e it does not match any tuple that could be in Q2



Improved translation

Translate Q into ( Q*, Q7 ) where

e Q+ approximates certain answers
* Q7 represents possible answers
* Both queries have ACY data complexity

| Guagliardo/L., PODS 2016]



The +/ ? approximation scheme

Q+~(Q* Q7)

Answers to Q+

Certain answers to Q

Answers to Q?




The +/ ? approximation scheme

RT™ = R R’ = R
(00(Q)" = o4-(Q") (06(Q) = 0= (Q7)
(ra(@)" = ma(QF) (Ta(Q) = ma(Q)

(Q1x Q)" = QFf xqf (@1 x Q) = QfxQ}
QU@ = QtuQ; (QiUQ) = QIUQ]
(@iNnQ@)" = QfnQs (@i1NQs) = QF x, Q
(Ql_Q2)+ = Qf X Qs (Q1—Q2)? = Q1 —QF



The +/ ? approximation:
performance

- Normally one would not expect to outperform native SQL that
does not care about correctness.

- We observed 3 types of behaviour:

- most commonly, a small overhead (3-4%), very acceptable

- sometimes it outperforms SQL significantly (when the
original query spends all the time looking for wrong
answers)

- Sometimes it lags behind. Reason: case analysis, what is

null and what is not, and this leads to disjunction in queries.
SQL’s well-kept secret: it does not optimize disjunctions.



SQL and 3VL (3-valued logic)

»+ Constant source of confusion for programmers
- Committee design, just to handle nulls

- Heauvily criticized ever since

- But was the right many-valued logic chosen?

 First one more example of confusion.
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Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S
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Q; <<
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SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A )

Compute R-S

Answer
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SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Q; <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S )

SELECT R.A FROM R
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Compute R-S

Answer
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Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Q; <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S )

SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A )

Compute R-S

Answer

1
1



S 2

Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Q; <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S )

SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A )

Compute R-S

Answer

H H

H



R 1 S NULL

NULL
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SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
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Compute R-S

Answer



R 1 S NULL

NULL

Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Q; <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S )

SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A )

Compute R-S

Answer

1



R 1 S NULL

NULL

Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Q; <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S )

SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A )

Compute R-S

Answer

1



R 1 S NULL

NULL

Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Q; <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S )

SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A )

Compute R-S

Answer

H H

NULL



Questions about SQL’s 3VL

- Did they choose the right many-valued logic?

- Did they really have to use a many-valued logic?

-+ people prefer to think — and write programs — with
just true and false

»+ (answers from Console/Guagliardo/L., KR'18)



Which logic we are talking about?

select C.cust_id from Customer C
where not exists
(select * from Orders O, Pay P
where C.cust_id=P.cust_id and P.order=0.order id
or not( O.date = $today) )
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Which logic we are talking about?

select C.cust id from Customer C
where not exists
(select * from Orders O, Pay P

where |C.cust id=P.cust id and P.order=0.order id

or not( O.date = $today) )
\ Propositional

Predicate Logic Logic

not exists: 73 (or V)  select=3

Core SQL = First-Order Predicate Logic
Conditions in Queries = Propositional Logic



Choosing Propositional Logic:
ldea

- An incomplete database can represent many
completions —

- Let's look at what can be known about an atomic
proposition a in those worlds



W — set of possible worlds
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o IS true
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W — set of possible worlds

T - worlds where F - worlds where

a IS true a IS false
no knowledge

(W, T, F) — describes what we know about «a



This iIdea was used before

- Work on bilattice-based many-valued logics
- Each such description is treated as truth value
- Too many values that convey the same information

- A better idea:
(W, T, F)

- maximally consistent theory



Building Blocks

KNOWLEDGE POSSIBILITY




Truth Values

true

Ka,"Ka,Pa, " P«

false

“Ka Ka,"Pa,P«a

unknown

“Ka,"K2a,"Pa, P «a

sometimes
true

st

“Ka,"Ka,Pa, P«

sometimes
false

sf

“Ka, " Ka,"Pa,Pa

sometimes

“Ka,"Ka,Pa,P«a



Truth tables

- Th(r,a) - the maximally consistent theory for truth value
T and proposition «

» If o = w(z,T), then

Th(t,a) ATh(t',8) ATh(o,w(a,B))

must be consistent for all &« and 3.

+ Such o is not unique

- but we need the most general one



More general truth value: sf A sf
a . sf B :sf

o @

a AP :sf anfP :f

sf A sf Is consistent with both sf and f

but sf is more general than f



Truth tables for 6-valued logic

Al t £ s st sf u vit £ s st sf u =
t | t f s st sf u t ([t ¢t ¢t t t t t | f
il (N . A N A f |t £ s st sf u il I

s ' s [ sf sf sf sf s |t s st st st st s | s

st | st £ sf u sf u st |t st st st st st st | sf
sf | sf f sf sf sf sf sf |t sf st st u u sf | st
u u f sf u sf u u |/t u st st u u u | u




Truth tables for 6-valued logic

s st sf u s st sf

ANl E T vit f u =
t | £t £ s st sf u t |t t t t t t Il X
f |1 £ £ £ £ £ f f |t £ s st sf u f |t
s | s [ sf sf sf sf s |t s st st st st S | S
st | st f sf u sf u st [t st st st st st st | sf
sf | sf f sf sf sf sf sf [t sf st st u u sf | st
u u f sf u sf u u |t u st st u u u | u

Do SQL programmers need to memorize this now?



Truth tables for 6-valued logic

At £ s st sf u Vit f s st sf wu =
t |t £ s st sf u ElE £ & T & 1 Il X
I | F P ¥ £ © T f |t f s st sf u il R
s | s [ sf sf sf sf s [t s st st st st s | s
st | st f sf u sf u st |t st st st st st st | sf
sf | sf f sf sf sf sf sf |t sf st st u u sf | st
u u f sf u sf u u |/t u st st u u u | u

Do SQL programmers need to memorize this now?
Not yet: these truth tables break distributivity and idempotence

And database optimizers need them (for elimination of
redundant subexpressions and operations)

sf =sA(svs) #(sas)v(sas)=u



The propositional answer

The only maximal sublogic of the 6-valued logic that

(a) has truth value t
(b) A and v are idempotent and distributive
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The propositional answer

The only maximal sublogic of the 6-valued logic that

(a) has truth value t
(b) A and v are idempotent and distributive

is SQL’s 3-valued Kleene’s logic

So it appears ISO JTC1 SC32 WG3 was right after all?
Wait a bit...



Reminder

select C.cust id from Customer C
where not exists
(select * from Orders O, Pay P

where |C.cust id=P.cust id and P.order=0.order id

or not( O.date = $today) )
\ Propositional

Predicate Logic Logic

Core SQL = First-Order Predicate Logic



Reminder

select C.cust id from Customer C
where not exists
(select * from Orders O, Pay P

where |C.cust id=P.cust id and P.order=0.order id

or not( O.date = $today) )
\ Propositional

Predicate Logic Logic

Core SQL = First-Order Predicate Logic
over....



What are nulls?
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What are nulls?

» SQL has a single null value — NULL

» |n applications (OBDA, data integration, etc) one uses

11, L2, 13, ...



How to interpret atoms?

t ifaeR
1R(a)={f fag¢R

f ifa,b#NULL and a#b

t ifa,b# NULL and a=b
> (a=b) =
u ifaorbis NULL

t faeR
R(a) = {f if does not unify with any b € R
u if a ¢ R and a unifies with some b € R



Let’s look at SQL first...

- A single null value
- 2-valued semantics for R(a), SQL semantics for (a=b)

- ... and imagine we can rewrite history



A logician’'s approach

» First Order Logic (FO)

- domain has usual values and NULL

equality: NULL = NULL but NULL # 1 efc
- Boolean logic rules for A, v, —

- Quantifiers: V is conjunction, 3 is disjunction

- Why would one even think of anything else??



What did SQL do?

- 3-valued FO (a textbook version)

- domain has usual values and NULL

- comparisons with NULL result in unknown

+ Kleene logic rules for A, v, —
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What did SQL do?

- 3-valued FO (a textbook version)
- domain has usual values and NULL

- comparisons with NULL result in unknown

+ Kleene logic rules for A, v, —

- Quantifiers: Vv is conjunction, 3 is disjunction

- Seemingly more expressive.

- But does it correspond to reality?



SQL logic is 2-valued or 3-valued:
It's a mix

- Conditions in WHERE are evaluated under 3-valued
logic. But then only those evaluated to true matter.

- Studied before for propositional logic:

- In 1939, Russian logician Bochvar wanted to give a
formal treatment of logical paradoxes. To assert that
something is true, he introduced a new connective:
Tp means that p is true.

- Amazingly, 40 years later SQL adopted the same idea.



What did SQL really do?

- 3-valued FO with 1:

- As textbook version but with the extra connective 1

~(t, ifoist
¢ = f, ifoisforu



What /s the logic of SQL?
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What /s the logic of SQL?

- We have:
» logician’s 2-valued FO
- 3-valued FO (Kleene logic)
-+ 3-valued FO + Bochvar’s assertion (SQL logic)

- AND THEY ARE ALL THE SAME!



Collapse to Boolean FO

» There is a much more general result

+ Any set of nulls: SQL, marked...

- Any propositional many-valued logic ¥

- Any semantics — Boolean, SQL, unification, can
mix and use different ones for different atoms

* First-Order predicate logic based on Z collapses
to the usual Boolean FO predicate logic



2-valued SQL

|ldea — 3 simultaneous translations:

- conditions P - Pt and P!

+ Queries Q - Q'

Ptand P are Boolean conditions: Pt/ P! is true
Iff P under 3-valued logic is true / false.

In Q" we simply replace P by Pt



2-valued SQL: translation

f

P®)* = P P(t1,...,tx)" = NOT P(t1,...,1;) AND { IS NOT NULL
(Ex1sTS Q)° = EXISTS Q' (ex1sTs Q)" = NoT EX1STS Q'
(01 A O2)Y = 0% A6 (01 A0 = 0] V65
01V 05)F = 6% v 65 (01 Vv 92)"" = 0] A 04
(t Is NULL)® = t IS NULL ( IS NULL)f = { IS NOT NULL
TINQ) = tINQ ((ts, .. ) IN Q)f — NOT EXISTS ( SELECT » FROM Q' AS N(Au,..., A,) WHERE

(t1 IS NULL OR A; IS NULLOR t; = N.A;) AND - - -
+ AND (¢, IS NULL OR A, IS NULL OR ¢, = N.Ay))




Predicate logic answer

* No, they did not need to use many-valued logic!

- But what now?

+ We can’t change the way SQL is: too much
legacy code, issues with optimization

- But new languages are being designed, and
they do not need to follow the SQL path



Last topic: almost certain
answers

+ Do we really need to insist on certainty?

» Often, “sufficiently close” is good enough. Certainly
better than what SQL can give you.

- Does it make finding answers to queries over
incomplete data easier?



Naive Evaluation

- Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID TITLE PRICE

Ord| “Big Data” 30
Ord2 “SQL” 35
Ord3 “Logic” 50

Unpaid orders:

select O.order _id
from Orders O
where O.order id not in
(select order from Pay P)

Answer: Ord2, Ord3.

Pay Customer
CUST ID ORDER CUST ID  NAME
cl Ord| cl John
c2 L c2 Mary

Customers without an order:

select C.cust _id from Customer C

where not exists
(select * from Orders O, Pay P
where C.cust_id=P.cust_id
and P.order=0.order_id)

Answer: c2.



How bad are bad answers?

What if the real value of L is an order different from Ord1,
Ord2, Ord3?

 Then naive evaluation actually produces correct answers!

e |If we know nothing about L this isn’t an unreasonable
assumption: there could be many orders.

But what if we know L € {Ord1,0rd2,0rd3}?

e Then answer to the first query is Ord2 with 50% chance and
Ord3 with 50% chance. Answer to the second query is
empty.



Questions

* |s naive evaluation always good without constraints on
nulls, or we just got lucky?

e Yes, it always is
e Can we get the second type of answers, with constraints?
e Yes, but with more work

e Now revisit certain answers, and connect them with a well
know subject in logic and probability



Incomplete data and certain answers

\

D, Incomplete database D represents
many complete databases D1, Do, ...
D-
Tuple a is certain answer to query Qin D
& ais an answer to Q in every D;
Di



Zero-One Laws

A formula a over graphs; = true; red = false

a Is almost surely valid: true in almost all graphs

- pick a graph G at random
- calculate the probability p(a) that a is true in G
 u(a) = 1& a is almost surely valid

Examples:
- u(has an isolated node) =0
* u(is a tree)=0
* u(connected) = 1
- u(has diameter at most 2) = 1



Zero-One Laws

Fagin 1976:

if a is first-order, then p(a) is 0 or 1

a is valid (true in all graphs) - undecidable.
a is almost surely valid (u(a) = 1) - easy to decide.

Extended to many other logics: Fixed-point, Infinitary logics,
Fragments of second-order logic; Other distributions too

A very active subject in logic/combinatorics



Certainty and Zero-One Laws

D
For query Q:
D>
o / - pick a complete database D;at random
: - 1(Q,D,a): probability that a € Q(D))
n(Q,D,a) =1 =
\ a = answerto Qin D
Di
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For query Q:
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- n(Q,D,a): probability that a € Q(D))
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D. . 1. When is n(Q,D,a) =1?

2. How easy is it to compute?
3. Can an answer be 50% true?
4. Is one tuple a better answer than another?



Certainty and Zero-One Laws

\

D1
For query Q:
D-
- pick a complete database D;at random
- n(Q,D,a): probability that a € Q(D))
u(Q,D,a) =1 =
a= answertoQinD
D Questions
D. . 1. When is n(Q,D,a) =1?

2. How easy is it to compute?
3. Can an answer be 50% true?
4. Is one tuple a better answer than another?

answers from L., PODS’18



Certain Answers

A tuple of constants c is a certain answer:
c € Q(v(D)) for each valuation v

An arbitrary tuple a iIs a certain answer:
v(a) € Q(v(D)) for each valuation v

Support of a:

Supp(Q,D,a) = {valuations v | v(a) € Q(v(D)) }
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Answer a is & every valuation v is in Supp(Q,D,a)
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Idea: answer a is almost certainly true
& a randomly chosen valuation v is in Supp(Q,D,a)



Certain Answers

Support of a: Supp(Q,D,a) = {valuations v | v(a) € Q(v(D)) }

Answer a is & every valuation v is in Supp(Q,D,a)

Idea: answer a is almost certainly true
& a randomly chosen valuation v is in Supp(Q,D,a)

A small problem: there are infinitely many valuations.
But techniques from zero-one laws help: look at finite
approximations.



Measuring Certainty

Constants (non-nulls) = {cy, ¢, c3,..... }

Valuationk = set of valuations with range € {cy, ...,ck }

Suppk(Q,D,a) = Supp(Q,D,a) N Valuationk



Measuring Certainty

Constants (non-nulls) = {cy, ¢, c3,..... }

Valuationk = set of valuations with range € {cy, ...,ck }

Suppk(Q,D,a) = Supp(Q,D,a) N Valuationk

|Supp«(Q,D,a)
|Valuationy]

(a number in [0,1])

”k(Qy Dla) =

: Probability that a randomly chosen valuation
with range in {c, ...,ck } withesses that a is an answer to Q



Measuring Certainty

W(Q,D,a) = limk-. n{Q,D,a)

: Probability that a randomly chosen valuation
witnesses that a is an answer to Q

: the value nu(Q,D,a) does not depend on a particular
enumeration of {cy, ¢, C3,..... }



Zero-One Law
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e Q: any reasonable query

e definable in a query language such as relational
algebra, datalog, second-order logic etc - formally,



Zero-One Law

e Q: any reasonable query

e definable in a query language such as relational
algebra, datalog, second-order logic etc - formally,

e Theorem: u(Q,D,a) is either 0 or 1

* every answer Is either almost certainly
true or almost certainly false



Zero-One Law and Naive Evaluation

e n(Q,D,a) =1 & ais returned by the
of Q

* thus almost certainly true answers are much
easier to compute than certain answers

* and naive evaluation is justified as being very
close to certainty



Naive evaluation: treat nulls as values

2 — 1
2 1 - —
2 1, 2 1,

2 1,
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! = 1 1 1 1
2 — 1

2 J—l [ —
2 1, 2 1,

2 1,

Certain answer is empty because of valuations 1; 1,—c

If the range of nulls is infinite, such valuations are unlikely.
Returned tuples are almost certainly true answers - but not certain.



Naive evaluation: treat nulls as values

2 m— 1
5 1, - —
5 1, 2 1 2 1,

Certain answer is empty because of valuations 1; 1,—c

If the range of nulls is infinite, such valuations are unlikely.
Returned tuples are almost certainly true answers - but not certain.

In general, naive evaluation # certain answers as we have seen,
except

- unions of conjunctive queries
 their extension with Q = R where R is a relation



Naive evaluation: treat nulls as values
- 1 1 1 1y

2 1,
5 1, 2 1 2 1,

What if:

1. We have a functional dependency A—B, forcing_.,=.1,, or
2. there is a restriction on the range of B?

The reasoning that valuations L, 1,—c are unlikely no
longer works

This is due to the presence of constraints.



Certainty with constraints

e Only interested in databases satisfying integrity
constraints X - for example, keys or foreign keys

e Standard approach: find certain answers to X — Q

 Not very successful: if we have Q from a good class
(certain answers can be computed efficiently) and X from
a common class of constraints, the syntactic shape of
¥ — Q makes existing results on finding certain answers
inapplicable.



Certainty with constraints

- |n addition, this approach is not very informative

- Y= QisXvQ

» ifu(Z,D) =0, then p(Z = Q,D,a) =1

- if |(¥,D) =1, then n(Z — Q,D,a) = n(Q,D,a)



Certainty with constraints

e A better idea: use n(Q |z, D, a)

 probability that a randomly chosen valuation that
satisfies X also witnesses that a is an answer to Q

e Still defined as a limit since there are infinitely many
valuations



Measuring certainty with constraints

Suppk(Q,D,a) = {valuations v < Valuationx [v(a) « Q(v(D)) }

[Supp«(Q A Z, D, a)|
|Supp«(Z,D,a)|

Q| %, D, a) =

: Probability that a randomly chosen valuation
with range in {cy, ...,ck } that withesses constraints X also
witnesses that a is an answer to Q



Measuring certainty with constraints

wQ | ¥, D, a) - limk- 1(Q | X, D, a)

: Probability that a randomly chosen valuation
that withesses constraints X also withesses that a is an
answer to Q

: the value n(Q | £, D, a) does not depend on
a particular enumeration of {cy, ¢, Cc3,..... }



Zero-One Law fails with
constraints

e DatabaseD: R={1}, S={1}, U={1,2}
e Constraint: R c U
e QueryQ:isRcS?

* WQ|Z,D)=05



What if zero-one fails?

The best next thing: convergence
Consider, for example, graphs.

Zero-one law fails: p( edge between the smallest and
the largest element) = 0.5

But p(a) exists for every first-order o

e and is a rational of the form n/2™ (Lynch 1980)



Convergence with constraints
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Convergence with constraints

e Q: any reasonable query, X: any reasonable
constraints (both )

e Theorem: n(Q | £, D, a) always exists
e n(Q|Z,D, a)is a rational number between 0 and 1

 Every rational number in [0,1] can appear as
n(Q | , D, a) for a conjunctive query Q and an inclusion
constraint X



Computing p(Q | £, D, a)
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A rational number - need a function complexity class
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Computing p(Q | £, D, a)

A rational number - need a function complexity class

* It can be computed in FP#*

* functions computable in polynomial time with access
to a #P oracle

e Computing n(Q | £, D, a) could be hard for FP**

* under the appropriate definition of hardness for
function classes



Constraints and zero-one laws

Zero-one law still holds for some constraints, e.g.,
functional dependencies

Y: a set of functional dependencies.

Known: if Q is a conjunctive query, then
certain answers under X = Q(chase(D,X))

If Q is an arbitrary query, then
almost certainly true answers under X = Q(chase(D,))

 (Q|Z, D, a) = n(Q, chase(D, X), a)



Qualitative Measures

 We can also use supports Supp(Q,D,a) to define
qualitative measures:
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Qualitative Measures

 We can also use supports Supp(Q,D,a) to define
qualitative measures:

° ais as b, to query Q if
Supp(Q,D,b) € Supp(Q,D,a)

e aisa than b, to query Q if
Supp(Q,D,b) < Supp(Q,D,a)

e ais abest answer to Q if there is no better answer



Qualitative measure: example
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2 J—l . 1 i)

2 1, 2 1
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2 J—l L 1 J—Z

2 1, 2 1

* No certain answers

- Naive evaluation gives (1, L ;) and (2, L,)

. (2, L,) is a better answer than (1, 1)

- Best answer = (2, 1))



Qualitative measure: example
BTSN e

2 J—l L 1 J—Z

2 1, 2 1

* No certain answers

- Naive evaluation gives (1, L ;) and (2, L,)

. (2, L,) is a better answer than (1, 1)

- Best answer = (2, 1))

Unlike certain answers, best answers always exist



Qualitative measures: complexity

 Fix a query Q of relational algebra/calculus

 Input: database D, tuples aand b

Is a as b? coNP-complete
Is a than b? DP-complete

Identify the set of best answers  PNPlognl.complete

 For unions of conjunctive queries, all in PTIME.

e Does not go via naive evaluation; the algorithm is of very
different nature



Measuring complexity

Question CERTAIN ANSWER BEST ANSWER
given Sl ?’ coNP-complete PNPllog nl.complete
iSiven a Set ’? DP-complete PNPllog nl.complete

Give.n a family of se”;s ’ PNPllog nl_complete PNPllog nl_.complete
is :




Measuring complexity

Question CERTAIN ANSWER BEST ANSWER

Given a tuple ,

< 5 coNP-complete PNPllog nl.complete
Given a set ,
i " DP-complete PNPllog nl_.complete
Given a family of sets |
y PNPIllog nl_complete PNPlleg nl_.complete

IS ?

Abiteboul/Kanellakis/Grahne 1991
L. PODS’18
Gheerbrant/Sirangelo, to appear



BIG open questions

- How to handle aggregation

- How to handle bag semantics

- How to handle more complex constraints

- How to implement these algorithms inside DBMSs

+ How to convince designers of new languages to drop
SQL’s approach

- and lots and lots of small questions...



