
View-based query processing

Nadime Francis

Université Paris-Est Marne-la-Vallée
nadime.francis@u-pem.fr

EPIT 2019
Thursday, April, 11th

1 / 36



Introduction

2 / 36



View-based query processing
General setting

3 / 36



View-based query processing
General setting

3 / 36



View-based query processing
General setting

3 / 36



View-based query processing
General setting

3 / 36



View-based query processing
General setting

3 / 36



View-based query processing
General setting

3 / 36



View-based query processing
General setting

3 / 36



View-based query processing
Scenario : query optimization and caching

Distant
database

Costly queries

Cached
answers

4 / 36



View-based query processing
Scenario : data leak prevention

Public queries

Secure database

Private queries

Integrated
answers

5 / 36



View-based query procesing
Scenario : virtual data integration

Virtual database

Source databases

Q
User query

6 / 36



Views

7 / 36



View definition, view image, view instance

Let σ and τ be two database schemas.
View definition (or simply view): A view definition V from σ to τ is
a set of queries over σ indexed by τ :

V = {Qb | b ∈ τ}
such that:

∀b ∈ τ, arity(b) = arity(Qb)

View instance: A view instance E is a database over τ .

View image: Given a database D over σ and a view V from σ to τ ,
the view image of D, V(D), is a view instance such that:

∀b ∈ τ, x̄ ∈ D, x̄ ∈ b(V(D)) ⇔ x̄ ∈ Qb(D)

8 / 36



Example: view definition, view image, view instance

σ = {b, f ,w}

V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w}

V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}

τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

w

f f
b f

f f

w

b

Database D over σ

s

g

s s

g

s

View image V(D) over τ
9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

Is E the image of some database D through V?

g

s

View instance E over τ

?

?
f

?
f f

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

Is E the image of some database D through V?

g

s

View instance E over τ

?

?
f

?
f f

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

Is E the image of some database D through V?

g

s

View instance E over τ

?

?
f

w

f

?
f f

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

Is E the image of some database D through V?

g

s

View instance E over τ

?

?
f

w

f

f

?
f f

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

Is E the image of some database D through V?

g g

s

View instance E over τ

?

?
f

w

f

f

?
f f

9 / 36



Example: view definition, view image, view instance

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qs(x , y) = x f← z f→ y ∧ x 6= y

}
τ = {g , s}

Is E the image of some database D through V?

g

s

View instance E over τ

?

?
f

w

f

?
f f

9 / 36



What happened there?

Myth 1:

s

(
because Aphrodite is the daughter of Uranus

And so is Cronus

)

Myth 2:

g

(
because Aphrodite is the daughter of Zeus

And Zeus is the son of Rhea

)

We failed virtual data integration → the two myths are incompatible

10 / 36



What happened there?

Myth 1:

s

(
because Aphrodite is the daughter of Uranus

And so is Cronus

)

Myth 2:

g

(
because Aphrodite is the daughter of Zeus

And Zeus is the son of Rhea

)

We failed virtual data integration → the two myths are incompatible

10 / 36



What happened there?

Myth 1:

s

(
because Aphrodite is the daughter of Uranus

And so is Cronus

)

Myth 2:

g

(
because Aphrodite is the daughter of Zeus

And Zeus is the son of Rhea

)

We failed virtual data integration → the two myths are incompatible

10 / 36



What happened there?

Myth 1:

s

(
because Aphrodite is the daughter of Uranus

And so is Cronus

)

Myth 2:

g

(
because Aphrodite is the daughter of Zeus

And Zeus is the son of Rhea

)

We failed virtual data integration → the two myths are incompatible

10 / 36



Testing view consistency

Combined complexity:

Problem : View consistency
Input : A view V from σ to τ, a view instance E
Question : Is there some D over σ such that V(D) = E?

Data complexity:
Let V be a fixed view from σ to τ in some language L:

Problem : View consistency(V)
Input : A view instance E
Question : Is there some D over σ such that V(D) = E?

11 / 36



Testing view consistency

Combined complexity:

Problem : View consistency for language L
Input : An L-view V from σ to τ, a view instance E
Question : Is there some D over σ such that V(D) = E?

Data complexity:
Let V be a fixed view from σ to τ in some language L:

Problem : View consistency(V)
Input : A view instance E
Question : Is there some D over σ such that V(D) = E?

11 / 36



Testing view consistency

Combined complexity:

Problem : View consistency for language L
Input : An L-view V from σ to τ, a view instance E
Question : Is there some D over σ such that V(D) = E?

Data complexity:
Let V be a fixed view from σ to τ in some language L:

Problem : View consistency(V)
Input : A view instance E
Question : Is there some D over σ such that V(D) = E?

11 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =



Qedge(x , y) = e(x , y)
Qpalette(x) = p(x)

Qcolor(x) = ∃z · p(z) ∧ c(x , z)
Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)

Qcolor(x) = ∃z · p(z) ∧ c(x , z)
Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!

12 / 36



Example: how hard is testing consistency?

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?
? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Qerror should show if there is a coloring error... but it is empty.

The view instance is consistent iff the graph is 3-colorable!
12 / 36



How hard is testing consistency?

Short answer: it’s hard, even for simple languages and in data complexity.

Theorem [Abiteboul, Duschka]

There exists a fixed view V defined using conjunctive queries such that
View Consistency(V) is NP-complete.

Our proof sketch easily extends to UCQ, RPQ, CRPQ...

The problem quickly becomes undecidable for more expressive languages.

Theorem [Abiteboul, Duschka]

There exists a fixed view V defined using Datalog queries such that
View Consistency(V) is undecidable.

This also holds for context-free path queries, first-order queries...

13 / 36



How hard is testing consistency?

Short answer: it’s hard, even for simple languages and in data complexity.

Theorem [Abiteboul, Duschka]

There exists a fixed view V defined using conjunctive queries such that
View Consistency(V) is NP-complete.

Our proof sketch easily extends to UCQ, RPQ, CRPQ...

The problem quickly becomes undecidable for more expressive languages.

Theorem [Abiteboul, Duschka]

There exists a fixed view V defined using Datalog queries such that
View Consistency(V) is undecidable.

This also holds for context-free path queries, first-order queries...

13 / 36



How hard is testing consistency?

Short answer: it’s hard, even for simple languages and in data complexity.

Theorem [Abiteboul, Duschka]

There exists a fixed view V defined using conjunctive queries such that
View Consistency(V) is NP-complete.

Our proof sketch easily extends to UCQ, RPQ, CRPQ...

The problem quickly becomes undecidable for more expressive languages.

Theorem [Abiteboul, Duschka]

There exists a fixed view V defined using Datalog queries such that
View Consistency(V) is undecidable.

This also holds for context-free path queries, first-order queries...

13 / 36



Certain answers

14 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)?

→ no clue Hera even exists...

w(Athena,Ares)?

→ possible, but no guarantee...

w(Rhea,Cronus)?

→ she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)?

→ no clue Hera even exists...

w(Athena,Ares)?

→ possible, but no guarantee...

w(Rhea,Cronus)?

→ she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)?

→ no clue Hera even exists...

w(Athena,Ares)?

→ possible, but no guarantee...

w(Rhea,Cronus)?

→ she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)? → no clue Hera even exists...

w(Athena,Ares)?

→ possible, but no guarantee...

w(Rhea,Cronus)?

→ she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)? → no clue Hera even exists...

w(Athena,Ares)?

→ possible, but no guarantee...

w(Rhea,Cronus)?

→ she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)? → no clue Hera even exists...

w(Athena,Ares)? → possible, but no guarantee...

w(Rhea,Cronus)?

→ she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)? → no clue Hera even exists...

w(Athena,Ares)? → possible, but no guarantee...

w(Rhea,Cronus)?

→ she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)? → no clue Hera even exists...

w(Athena,Ares)? → possible, but no guarantee...

w(Rhea,Cronus)? → she has to be the wife of some grandfather

→ Cronus is a candidate; could there be another?

15 / 36



Example: answering queries using views

σ = {b, f ,w} V =
{

Qg (x , y) = x w→ z f→ z ′ f→ y
Qf (x , y) = x f→ y

}
τ = {f , g}

f

f

f

g

g

Can we answer Q(x , y) = w(x , y) based on the view instance?

w(Hera,Zeus)? → no clue Hera even exists...

w(Athena,Ares)? → possible, but no guarantee...

w(Rhea,Cronus)? → she has to be the wife of some grandfather
→ Cronus is a candidate; could there be another?

15 / 36



Answering queries using views

Given:

 V : view from σ to τ
E : view instance over τ
Q : query over σ

Certain answers:

certQ,V (E ) =
⋂

D | V(D)=E

Q(D)

Certain answers under the sound view assumption:

certsound
Q,V (E ) =

⋂
D | V(D)⊇E

Q(D)

16 / 36



Answering queries using views

Given:

 V : view from σ to τ
E : view instance over τ
Q : query over σ

Certain answers under the exact view assumption:

certexact
Q,V (E ) =

⋂
D | V(D)=E

Q(D)

Certain answers under the sound view assumption:

certsound
Q,V (E ) =

⋂
D | V(D)⊇E

Q(D)

16 / 36



The problem(s) of computing certain answers

Combined complexity:

Problem : Certain answers

for L and L′

A view V from σ to τ,
Input : A query Q over σ,

A view instance E and ū ∈ E
Question : ū ∈ cert

exact

Q,V (E )?

ū ∈ certsound
Q,V (E )?

Data complexity:
Let V be a fixed view from σ to τ and Q be a fixed query over σ:

Problem : Certain answers(Q,V)
Input : A view instance E and ū ∈ E
Question : ū ∈ certexact

Q,V (E )? ū ∈ certsound
Q,V (E )?

17 / 36



The problem(s) of computing certain answers

Combined complexity:

Problem : Certain answers for L and L′

An L-view V from σ to τ,
Input : An L′-query Q over σ,

A view instance E and ū ∈ E
Question : ū ∈ cert

exact

Q,V (E )?

ū ∈ certsound
Q,V (E )?

Data complexity:
Let V be a fixed view from σ to τ and Q be a fixed query over σ:

Problem : Certain answers(Q,V)
Input : A view instance E and ū ∈ E
Question : ū ∈ certexact

Q,V (E )? ū ∈ certsound
Q,V (E )?

17 / 36



The problem(s) of computing certain answers

Combined complexity:

Problem : Certain answers for L and L′

An L-view V from σ to τ,
Input : An L′-query Q over σ,

A view instance E and ū ∈ E
Question : ū ∈ certexact

Q,V (E )? ū ∈ certsound
Q,V (E )?

Data complexity:
Let V be a fixed view from σ to τ and Q be a fixed query over σ:

Problem : Certain answers(Q,V)
Input : A view instance E and ū ∈ E
Question : ū ∈ certexact

Q,V (E )? ū ∈ certsound
Q,V (E )?

17 / 36



The problem(s) of computing certain answers

Combined complexity:

Problem : Certain answers for L and L′

An L-view V from σ to τ,
Input : An L′-query Q over σ,

A view instance E and ū ∈ E
Question : ū ∈ certexact

Q,V (E )? ū ∈ certsound
Q,V (E )?

Data complexity:
Let V be a fixed view from σ to τ and Q be a fixed query over σ:

Problem : Certain answers(Q,V)
Input : A view instance E and ū ∈ E
Question : ū ∈ certexact

Q,V (E )? ū ∈ certsound
Q,V (E )?

17 / 36



Example: how hard is computing certain answers?

σ = {c, e, p} V =
{

Qedge(x , y) = e(x , y)
Qpalette(x) = p(x)

Qcolor(x) = ∃z · p(z) ∧ c(x , z)

}

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Can we answer Qerror() = ∃x , y , z · c(x , z) ∧ c(y , z) ∧ e(x , y)?

Exact view: Qerror is certain iff the graph is not 3-colorable!

Sound view: we can always invent more colors!

18 / 36



Example: how hard is computing certain answers?

σ = {c, e, p} V =
{

Qedge(x , y) = e(x , y)
Qpalette(x) = p(x)

Qcolor(x) = ∃z · p(z) ∧ c(x , z)

}

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Can we answer Qerror() = ∃x , y , z · c(x , z) ∧ c(y , z) ∧ e(x , y)?

Exact view: Qerror is certain iff the graph is not 3-colorable!

Sound view: we can always invent more colors!

18 / 36



Example: how hard is computing certain answers?

σ = {c, e, p} V =
{

Qedge(x , y) = e(x , y)
Qpalette(x) = p(x)

Qcolor(x) = ∃z · p(z) ∧ c(x , z)

}

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Can we answer Qerror() = ∃x , y , z · c(x , z) ∧ c(y , z) ∧ e(x , y)?

Exact view: Qerror is certain iff the graph is not 3-colorable!

Sound view: we can always invent more colors!

18 / 36



Example: how hard is computing certain answers?

σ = {c, e, p} V =
{

Qedge(x , y) = e(x , y)
Qpalette(x) = p(x)

Qcolor(x) = ∃z · p(z) ∧ c(x , z)

}

?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Can we answer Qerror() = ∃x , y , z · c(x , z) ∧ c(y , z) ∧ e(x , y)?

Exact view: Qerror is certain iff the graph is not 3-colorable!

Sound view: we can always invent more colors!
18 / 36



How hard is computing certain answers?

Short answer: it’s hard, even for simple languages and in data complexity,

certexact is closely related to testing consistency.
(it’s usually equivalent to testing inconsistency)

certsound is usually easier (but not strictly) than certexact

Some results from [Abiteboul, Duschka’98]:

view
query CQ CQ 6= Datalog FO

CQ PTime/coNP coNP PTime/coNP Undec.
CQ6= PTime/coNP coNP PTime/coNP Undec.

Datalog coNP/Undec. Undec. Undec. Undec.
FO Undec. Undec. Undec. Undec.

Complexity of answering queries using sound or exact views.

19 / 36



How hard is computing certain answers?

Short answer: it’s hard, even for simple languages and in data complexity,
certexact is closely related to testing consistency.

(it’s usually equivalent to testing inconsistency)

certsound is usually easier (but not strictly) than certexact

Some results from [Abiteboul, Duschka’98]:

view
query CQ CQ 6= Datalog FO

CQ PTime/coNP coNP PTime/coNP Undec.
CQ6= PTime/coNP coNP PTime/coNP Undec.

Datalog coNP/Undec. Undec. Undec. Undec.
FO Undec. Undec. Undec. Undec.

Complexity of answering queries using sound or exact views.

19 / 36



How hard is computing certain answers?

Short answer: it’s hard, even for simple languages and in data complexity,
certexact is closely related to testing consistency.
(it’s usually equivalent to testing inconsistency)

certsound is usually easier (but not strictly) than certexact

Some results from [Abiteboul, Duschka’98]:

view
query CQ CQ 6= Datalog FO

CQ PTime/coNP coNP PTime/coNP Undec.
CQ6= PTime/coNP coNP PTime/coNP Undec.

Datalog coNP/Undec. Undec. Undec. Undec.
FO Undec. Undec. Undec. Undec.

Complexity of answering queries using sound or exact views.

19 / 36



How hard is computing certain answers?

Short answer: it’s hard, even for simple languages and in data complexity,
certexact is closely related to testing consistency.
(it’s usually equivalent to testing inconsistency)

certsound is usually easier (but not strictly) than certexact

Some results from [Abiteboul, Duschka’98]:

view
query CQ CQ 6= Datalog FO

CQ PTime/coNP coNP PTime/coNP Undec.
CQ6= PTime/coNP coNP PTime/coNP Undec.

Datalog coNP/Undec. Undec. Undec. Undec.
FO Undec. Undec. Undec. Undec.

Complexity of answering queries using sound or exact views.

19 / 36



How hard is computing certain answers?

Short answer: it’s hard, even for simple languages and in data complexity,
certexact is closely related to testing consistency.
(it’s usually equivalent to testing inconsistency)

certsound is usually easier (but not strictly) than certexact

Some results from [Abiteboul, Duschka’98]:

view
query CQ CQ 6= Datalog FO

CQ PTime/coNP coNP PTime/coNP Undec.
CQ6= PTime/coNP coNP PTime/coNP Undec.

Datalog coNP/Undec. Undec. Undec. Undec.
FO Undec. Undec. Undec. Undec.

Complexity of answering queries using sound or exact views.

19 / 36



Determinacy and rewriting

20 / 36



Example: determinacy and rewriting

σ = {b, f ,w} V =


Qs1(x) = ∃z · x w→ z
Qs2(x) = ∃z · z w→ x

Qgf (x , y) = x f→ z f→ y

 τ = {gf , s1, s2}

gf

X X

gf gf

X

X

X

X

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

21 / 36



Example: determinacy and rewriting

σ = {b, f ,w} V =


Qs1(x) = ∃z · x w→ z
Qs2(x) = ∃z · z w→ x

Qgf (x , y) = x f→ z f→ y

 τ = {gf , s1, s2}

gf

X X

gf gf

X

X

X

X

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

21 / 36



Example: determinacy and rewriting

σ = {b, f ,w} V =


Qs1(x) = ∃z · x w→ z
Qs2(x) = ∃z · z w→ x

Qgf (x , y) = x f→ z f→ y

 τ = {gf , s1, s2}

gf

X X

gf gf

X

X

X

X

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

Yes! Rhea is the grandmother of Athena.
And nothing else: possible and certain answers coincide.

21 / 36



Example: determinacy and rewriting

σ = {b, f ,w} V =


Qs1(x) = ∃z · x w→ z
Qs2(x) = ∃z · z w→ x

Qgf (x , y) = x f→ z f→ y

 τ = {gf , s1, s2}

gf

X X

gf gf

X

X

X

X

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

21 / 36



Example: determinacy and rewriting

σ = {b, f ,w} V =


Qs1(x) = ∃z · x w→ z
Qs2(x) = ∃z · z w→ x

Qgf (x , y) = x f→ z f→ y

 τ = {gf , s1, s2}

gf

X X

gf gf

X

X

X

X

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

There is no way to match husbands and wives...
Nothing is certain and every match is possible.

21 / 36



Example: determinacy and rewriting (2)

σ = {b, f ,w} V =
{

Qw (x , y) = x w→ y
Qgf (x , y) = x f→ z f→ y

}
τ = {gf ,w}

w

gf gf

w

gf

w

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos.
And nothing else: possible and certain answers coincide.

Better yet: this is a static property of V and Q.

Q can be rewritten as R(x , y) = x w→ z gf→ y over τ .

22 / 36



Example: determinacy and rewriting (2)

σ = {b, f ,w} V =
{

Qw (x , y) = x w→ y
Qgf (x , y) = x f→ z f→ y

}
τ = {gf ,w}

w

gf gf

w

gf

w

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos.
And nothing else: possible and certain answers coincide.

Better yet: this is a static property of V and Q.

Q can be rewritten as R(x , y) = x w→ z gf→ y over τ .

22 / 36



Example: determinacy and rewriting (2)

σ = {b, f ,w} V =
{

Qw (x , y) = x w→ y
Qgf (x , y) = x f→ z f→ y

}
τ = {gf ,w}

w

gf gf

w

gf

w

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos.
And nothing else: possible and certain answers coincide.

Better yet: this is a static property of V and Q.

Q can be rewritten as R(x , y) = x w→ z gf→ y over τ .

22 / 36



Example: determinacy and rewriting (2)

σ = {b, f ,w} V =
{

Qw (x , y) = x w→ y
Qgf (x , y) = x f→ z f→ y

}
τ = {gf ,w}

w

gf gf

w

gf

w

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos.
And nothing else: possible and certain answers coincide.

Better yet: this is a static property of V and Q.

Q can be rewritten as R(x , y) = x w→ z gf→ y over τ .

22 / 36



Example: determinacy and rewriting (2)

σ = {b, f ,w} V =
{

Qw (x , y) = x w→ y
Qgf (x , y) = x f→ z f→ y

}
τ = {gf ,w}

w

gf gf

w

gf

w

Can we answer Q(x , y) = x w→ z f→ z ′ f→ y based on the view instance?

Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos.
And nothing else: possible and certain answers coincide.

Better yet: this is a static property of V and Q.

Q can be rewritten as R(x , y) = x w→ z gf→ y over τ .
22 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇒ ⋂
D0

V(D) = V(D0)

Q(D0) ⊆ Q(D) ⊆
⋃
D0

V(D) = V(D0)

Q(D0)

Assume possible and certain answers coincide, then:
Q(D) = certQ,V(V(D)) = certQ,V(V(D′)) = Q(D′)

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇒ ⋂
D0

V(D) = V(D0)

Q(D0) ⊆ Q(D) ⊆
⋃
D0

V(D) = V(D0)

Q(D0)

Assume possible and certain answers coincide, then:

Q(D) = certQ,V(V(D)) = certQ,V(V(D′)) = Q(D′)

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇒ ⋂
D0

V(D) = V(D0)

Q(D0) ⊆ Q(D) ⊆
⋃
D0

V(D) = V(D0)

Q(D0)

Assume possible and certain answers coincide, then:
Q(D) = certQ,V(V(D))

= certQ,V(V(D′)) = Q(D′)

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇒ ⋂
D0

V(D) = V(D0)

Q(D0) ⊆ Q(D) ⊆
⋃
D0

V(D) = V(D0)

Q(D0)

Assume possible and certain answers coincide, then:
Q(D) = certQ,V(V(D)) = certQ,V(V(D′))

= Q(D′)

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇒ ⋂
D0

V(D) = V(D0)

Q(D0) ⊆ Q(D) ⊆
⋃
D0

V(D) = V(D0)

Q(D0)

Assume possible and certain answers coincide, then:
Q(D) = certQ,V(V(D)) = certQ,V(V(D′)) = Q(D′)

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇐ Assume V� Q. Let D be any database, then:

⋂
D0

V(D) = V(D0)

Q(D0) = Q(D) and
⋃
D0

V(D) = V(D0)

Q(D0) = Q(D)

Thus possible and certain answers coincide both with Q(D).

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇐ Assume V� Q. Let D be any database, then:⋂
D0

V(D) = V(D0)

Q(D0) = Q(D)

and
⋃
D0

V(D) = V(D0)

Q(D0) = Q(D)

Thus possible and certain answers coincide both with Q(D).

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇐ Assume V� Q. Let D be any database, then:⋂
D0

V(D) = V(D0)

Q(D0) = Q(D) and
⋃
D0

V(D) = V(D0)

Q(D0) = Q(D)

Thus possible and certain answers coincide both with Q(D).

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

⇐ Assume V� Q. Let D be any database, then:⋂
D0

V(D) = V(D0)

Q(D0) = Q(D) and
⋃
D0

V(D) = V(D0)

Q(D0) = Q(D)

Thus possible and certain answers coincide both with Q(D).
23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

Rewriting: A rewriting of Q using V is a query R over τ such that:

∀D, Q(D) = R(V(D))

Remark: Assume V(D) = V(D′), then R(V(D)) = R(V(D′)).
Thus Q(D) = Q(D′).

The existence of a rewriting immediately implies that V� Q.

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

Rewriting: A rewriting of Q using V is a query R over τ such that:

∀D, Q(D) = R(V(D))

Remark: Assume V(D) = V(D′), then R(V(D)) = R(V(D′)).
Thus Q(D) = Q(D′).

The existence of a rewriting immediately implies that V� Q.

23 / 36



Determinacy and rewriting

Let V be a view from σ to τ and Q be a query over σ.
Determinacy: we say that V determines Q iff for any database D,
the certain answers and the possible answers to Q on V (D) coincide.
This is a static analysis property.

Equivalent definition: V determines Q (denoted V� Q) iff:

∀D,D′ V(D) = V(D′) =⇒ Q(D) = Q(D′)

Rewriting: A rewriting of Q using V is a query R over τ such that:

∀D, Q(D) = R(V(D))

Remark: Assume V(D) = V(D′), then R(V(D)) = R(V(D′)).
Thus Q(D) = Q(D′).

The existence of a rewriting immediately implies that V� Q.

23 / 36



Example: proving non-determinacy
σ = {a} V =

{
Qa3 (x , y) = x a→ z a→ z ′ a→ y

}
τ = {a3}

How to prove that V does not determine Q(x , y) = x a4

−→ y?

V

V
a3

a3

V(D) = V(D′) but Q(D) = {(•, •)} and Q(D′) = ∅

24 / 36



Example: proving non-determinacy
σ = {a} V =

{
Qa3 (x , y) = x a3

−→ y
}

τ = {a3}

How to prove that V does not determine Q(x , y) = x a4

−→ y?

V

V
a3

a3

V(D) = V(D′) but Q(D) = {(•, •)} and Q(D′) = ∅

24 / 36



Example: proving non-determinacy
σ = {a} V =

{
Qa3 (x , y) = x a3

−→ y
}

τ = {a3}

How to prove that V does not determine Q(x , y) = x a4

−→ y?

V

V
a3

a3

V(D) = V(D′) but Q(D) = {(•, •)} and Q(D′) = ∅

24 / 36



Example: proving non-determinacy
σ = {a} V =

{
Qa3 (x , y) = x a3

−→ y
}

τ = {a3}

How to prove that V does not determine Q(x , y) = x a4

−→ y?

V

V
a3

a3

V(D) = V(D′) but Q(D) = {(•, •)} and Q(D′) = ∅

24 / 36



Example: proving non-determinacy
σ = {a} V =

{
Qa3 (x , y) = x a3

−→ y
}

τ = {a3}

How to prove that V does not determine Q(x , y) = x a4

−→ y?

V

V
a3

a3

V(D) = V(D′) but Q(D) = {(•, •)} and Q(D′) = ∅

24 / 36



Example: proving non-determinacy
σ = {a} V =

{
Qa3 (x , y) = x a3

−→ y
}

τ = {a3}

How to prove that V does not determine Q(x , y) = x a4

−→ y?

V

V
a3

a3

V(D) = V(D′) but Q(D) = {(•, •)} and Q(D′) = ∅

24 / 36



Example: proving non-determinacy
σ = {a} V =

{
Qa3 (x , y) = x a3

−→ y
}

τ = {a3}

How to prove that V does not determine Q(x , y) = x a4

−→ y?

V

V
a3

a3

V(D) = V(D′) but Q(D) = {(•, •)} and Q(D′) = ∅

24 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?

�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D))

X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D)) X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D)) X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

z

x y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D)) X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

zx y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D)) X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D)

X

a2 a2

zx y
a2

25 / 36



Example: proving determinacy

σ = {a} V =
{

Qa2 (x , y) = x a2

−→ y
}

τ = {a2}

How to prove that V determines Q(x , y) = x a4

−→ y?�

By providing a rewriting of Q using V

R(x , y) = ∃z · a2(x , z) ∧ a2(z , y)

Q(D) ⊆ R(V(D)) X

x y

a2 a2

a2

z

R(V(D)) ⊆ Q(D) X

a2 a2

zx y
a2

25 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)

Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D))

X

R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D)) X R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D)) X R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D)) X R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D)) X R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D)) X R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D)) X R(V(D)) ⊆ Q(D)

X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



Example: it’s not always that simple... [Afrati’11]

σ = {a} V =
{

Qa3 (x , y) = x a3
−→ y

Qa4 (x , y) = x a4
−→ y

}
τ = {a3, a4}

Does V determine Q(x , y) = x a5

−→ y?

R(x , y) = ∃z · a4(x , z) ∧
(
∀z ′ · a3(z ′, z)⇒ a4(z ′, y)

)
Q(D) ⊆ R(V(D)) X R(V(D)) ⊆ Q(D) X

x y

a4

z

z ′

a3

a4

x

y

z
a4

a3

a4

26 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)
→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?
Yes! certQ,V is always a rewriting.
But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)

→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?
Yes! certQ,V is always a rewriting.
But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)
→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?
Yes! certQ,V is always a rewriting.
But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)
→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?
Yes! certQ,V is always a rewriting.
But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)
→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?

Yes! certQ,V is always a rewriting.
But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)
→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?
Yes! certQ,V is always a rewriting.

But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)
→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?
Yes! certQ,V is always a rewriting.
But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



On the relationship between determinacy and rewriting(s)

Let V be a view from σ to τ and Q be a query over σ.

Reminder: if there exists R such that Q(D) = R(V(D)), then V� Q.
What about the converse?

Assume ∀D,D′ · V(D) = V(D′) =⇒ Q(D) = Q(D′)
→ functional dependency between V(D) and Q(D)

Q,V f : function induced by Q using V

f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

Does there always exist one?
Yes! certQ,V is always a rewriting.
But there can be more, as we have seen in previous examples.

Rewritings can differ in behavior and complexity outside of view images.

27 / 36



Example: different rewritings of varying complexity

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Q(x) = p(x) ∧ Qerror

R1(x) = x ∈ certQ,V(E )

(check if the graph is 3-colorable)

R2(x) = palette(x) ∧ error()

(trust the view instance)

28 / 36



Example: different rewritings of varying complexity

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Q(x) = p(x) ∧ Qerror

R1(x) = x ∈ certQ,V(E )

(check if the graph is 3-colorable)

R2(x) = palette(x) ∧ error()

(trust the view instance)

28 / 36



Example: different rewritings of varying complexity

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Q(x) = p(x) ∧ Qerror

R1(x) = x ∈ certQ,V(E )

(check if the graph is 3-colorable)

R2(x) = palette(x) ∧ error()

(trust the view instance)

28 / 36



Example: different rewritings of varying complexity

σ = {c, e, p} V =


Qedge(x , y) = e(x , y)

Qpalette(x) = p(x)
Qcolor(x) = ∃z · p(z) ∧ c(x , z)

Qerror(x , y) = ∃z · c(x , z) ∧ c(y , z) ∧ e(x , y)



?

?

? ?

?

?

?

?

? ?

?

?

?

?

? ?

?

?

Q(x) = p(x) ∧ Qerror

R1(x) = x ∈ certQ,V(E )
(check if the graph is 3-colorable)

R2(x) = palette(x) ∧ error()
(trust the view instance)

28 / 36



Some problems around determinacy and rewritings

Problem : Determinacy for languages L and L′
Input : An L-view V and an L′-query Q
Question : Does V� Q?

Problem : P-Rewriting for languages L and L′
Input : An L-view V and an L′-query Q st V� Q
Question : Is there a rewriting of Q using V satisfying P?

Example:
Is there a rewriting that can be expressed in first-order logic?
Is there a rewriting with PTime evaluation complexity?
Is there a rewriting that is monotone?

29 / 36



Some problems around determinacy and rewritings

Problem : Determinacy for languages L and L′
Input : An L-view V and an L′-query Q
Question : Does V� Q?

Problem : P-Rewriting for languages L and L′
Input : An L-view V and an L′-query Q st V� Q
Question : Is there a rewriting of Q using V satisfying P?

Example:
Is there a rewriting that can be expressed in first-order logic?
Is there a rewriting with PTime evaluation complexity?
Is there a rewriting that is monotone?

29 / 36



Some problems around determinacy and rewritings

Problem : Determinacy for languages L and L′
Input : An L-view V and an L′-query Q
Question : Does V� Q?

Problem : P-Rewriting for languages L and L′
Input : An L-view V and an L′-query Q st V� Q
Question : Is there a rewriting of Q using V satisfying P?

Example:
Is there a rewriting that can be expressed in first-order logic?
Is there a rewriting with PTime evaluation complexity?
Is there a rewriting that is monotone?

29 / 36



How hard is the determinacy problem?

Short answer: it’s hard, even for simple query and view languages.

[Gogacz, Marcinkowski’16]: Determinacy is undecidable for
conjunctive queries and views.

[Nash, Segoufin, Vianu’07]: Monotone rewritings of conjunctive
queries using conjunctive views can be expressed in CQ.
(Existence is NP-complete, using [Levy et al’95])

[Afrati’11]: Determinacy is decidable for chain queries and chain
views. Rewritings can be expressed in FO.

Some results over graphs:
[Gluch et al’19]: Determinacy is undecidable for finite RPQs.

[F., Segoufin, Sirangelo’15]: Monotone rewritings of RPQ queries
using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al’02])

30 / 36



How hard is the determinacy problem?

Short answer: it’s hard, even for simple query and view languages.
[Gogacz, Marcinkowski’16]: Determinacy is undecidable for
conjunctive queries and views.

[Nash, Segoufin, Vianu’07]: Monotone rewritings of conjunctive
queries using conjunctive views can be expressed in CQ.
(Existence is NP-complete, using [Levy et al’95])

[Afrati’11]: Determinacy is decidable for chain queries and chain
views. Rewritings can be expressed in FO.

Some results over graphs:
[Gluch et al’19]: Determinacy is undecidable for finite RPQs.

[F., Segoufin, Sirangelo’15]: Monotone rewritings of RPQ queries
using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al’02])

30 / 36



How hard is the determinacy problem?

Short answer: it’s hard, even for simple query and view languages.
[Gogacz, Marcinkowski’16]: Determinacy is undecidable for
conjunctive queries and views.

[Nash, Segoufin, Vianu’07]: Monotone rewritings of conjunctive
queries using conjunctive views can be expressed in CQ.
(Existence is NP-complete, using [Levy et al’95])

[Afrati’11]: Determinacy is decidable for chain queries and chain
views. Rewritings can be expressed in FO.

Some results over graphs:
[Gluch et al’19]: Determinacy is undecidable for finite RPQs.

[F., Segoufin, Sirangelo’15]: Monotone rewritings of RPQ queries
using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al’02])

30 / 36



How hard is the determinacy problem?

Short answer: it’s hard, even for simple query and view languages.
[Gogacz, Marcinkowski’16]: Determinacy is undecidable for
conjunctive queries and views.

[Nash, Segoufin, Vianu’07]: Monotone rewritings of conjunctive
queries using conjunctive views can be expressed in CQ.
(Existence is NP-complete, using [Levy et al’95])

[Afrati’11]: Determinacy is decidable for chain queries and chain
views. Rewritings can be expressed in FO.

Some results over graphs:
[Gluch et al’19]: Determinacy is undecidable for finite RPQs.

[F., Segoufin, Sirangelo’15]: Monotone rewritings of RPQ queries
using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al’02])

30 / 36



How hard is the determinacy problem?

Short answer: it’s hard, even for simple query and view languages.
[Gogacz, Marcinkowski’16]: Determinacy is undecidable for
conjunctive queries and views.

[Nash, Segoufin, Vianu’07]: Monotone rewritings of conjunctive
queries using conjunctive views can be expressed in CQ.
(Existence is NP-complete, using [Levy et al’95])

[Afrati’11]: Determinacy is decidable for chain queries and chain
views. Rewritings can be expressed in FO.

Some results over graphs:

[Gluch et al’19]: Determinacy is undecidable for finite RPQs.

[F., Segoufin, Sirangelo’15]: Monotone rewritings of RPQ queries
using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al’02])

30 / 36



How hard is the determinacy problem?

Short answer: it’s hard, even for simple query and view languages.
[Gogacz, Marcinkowski’16]: Determinacy is undecidable for
conjunctive queries and views.

[Nash, Segoufin, Vianu’07]: Monotone rewritings of conjunctive
queries using conjunctive views can be expressed in CQ.
(Existence is NP-complete, using [Levy et al’95])

[Afrati’11]: Determinacy is decidable for chain queries and chain
views. Rewritings can be expressed in FO.

Some results over graphs:
[Gluch et al’19]: Determinacy is undecidable for finite RPQs.

[F., Segoufin, Sirangelo’15]: Monotone rewritings of RPQ queries
using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al’02])

30 / 36



How hard is the determinacy problem?

Short answer: it’s hard, even for simple query and view languages.
[Gogacz, Marcinkowski’16]: Determinacy is undecidable for
conjunctive queries and views.

[Nash, Segoufin, Vianu’07]: Monotone rewritings of conjunctive
queries using conjunctive views can be expressed in CQ.
(Existence is NP-complete, using [Levy et al’95])

[Afrati’11]: Determinacy is decidable for chain queries and chain
views. Rewritings can be expressed in FO.

Some results over graphs:
[Gluch et al’19]: Determinacy is undecidable for finite RPQs.

[F., Segoufin, Sirangelo’15]: Monotone rewritings of RPQ queries
using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al’02])

30 / 36



Some open problems

Question 1
In which language can we rewrite CQ queries using CQ views?

Question 2
In which language can we rewrite RPQ queries using RPQ views?

Question 3
Is determinacy decidable for chain queries and disjunctive chain views?

31 / 36



Some open problems

Question 1
In which language can we rewrite CQ queries using CQ views?

Question 2
In which language can we rewrite RPQ queries using RPQ views?

Question 3
Is determinacy decidable for chain queries and disjunctive chain views?

31 / 36



Some open problems

Question 1
In which language can we rewrite CQ queries using CQ views?

Question 2
In which language can we rewrite RPQ queries using RPQ views?

Question 3
Is determinacy decidable for chain queries and disjunctive chain views?

31 / 36



One last example

32 / 36



Example: disjunctive chain queries – the Chase
σ = {a}

τ =
{

(2), (1, 2)
} V =

{
Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)

}

Does V determine Q(x , y) = x a−→ y?

1, 2 1, 2

2

1, 2

V

V

33 / 36



Example: disjunctive chain queries – the Chase
σ = {a}

τ =
{

(2), (1, 2)
} V =

{
Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)

}

Does V determine Q(x , y) = x a−→ y?

1, 2 1, 2

2

1, 2

V

V

33 / 36



Example: disjunctive chain queries – the Chase
σ = {a}

τ =
{

(2), (1, 2)
} V =

{
Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)

}

Does V determine Q(x , y) = x a−→ y?

1, 2 1, 2

2

1, 2

V

V

33 / 36



Example: disjunctive chain queries – the Chase
σ = {a}

τ =
{

(2), (1, 2)
} V =

{
Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)

}

Does V determine Q(x , y) = x a−→ y?

1, 2 1, 2

2

1, 2

V

V

33 / 36



Example: disjunctive chain queries – the Chase
σ = {a}

τ =
{

(2), (1, 2)
} V =

{
Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)

}

Does V determine Q(x , y) = x a−→ y?

1, 2 1, 2

2

1, 2

V

V

33 / 36



Example: disjunctive chain queries – the Chase
σ = {a}

τ =
{

(2), (1, 2)
} V =

{
Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)

}

Does V determine Q(x , y) = x a−→ y?

1, 2 1, 2

2

1, 2

V

V

33 / 36



Example: disjunctive chain queries – the Chase
σ = {a}

τ =
{

(2), (1, 2)
} V =

{
Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)

}

Does V determine Q(x , y) = x a−→ y?

1, 2 1, 2

2

1, 2

V

V

33 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)



Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 32, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 32, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 32, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – a rewriting

σ = {a}
τ =

{
a2, a1,2, a2,3

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,3(x , y) = (x a2

−→ y) ∨ (x a3
−→ y)


Does V determine Q(x , y) = x a5

−→ y?

R(x0, x5) = ∃x2, x3 · a2(x0, x2) ∧ a2(x3, x5)
· a2,3(x2, x5)
· ∀z · a1,2(z , x2)⇒

(
a2(z , x2) ∨ a2(z , x3)

)

x0 x2 x3 x5
2 2

2, 3

2, 3

1, 2

34 / 36



Example: disjunctive chain queries – homework

σ = {a}
τ =

{
a2, a1,2, a2,5

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,5(x , y) = (x a2

−→ y) ∨ (x a5
−→ y)


Can you prove that V does not determine Q(x , y) = x a9

−→ y?

I know a proof...

...and it’s ugly...

If you think you have an elegant proof, come talk to me!

35 / 36



Example: disjunctive chain queries – homework

σ = {a}
τ =

{
a2, a1,2, a2,5

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,5(x , y) = (x a2

−→ y) ∨ (x a5
−→ y)


Can you prove that V does not determine Q(x , y) = x a9

−→ y?

I know a proof...

...and it’s ugly...

If you think you have an elegant proof, come talk to me!

35 / 36



Example: disjunctive chain queries – homework

σ = {a}
τ =

{
a2, a1,2, a2,5

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,5(x , y) = (x a2

−→ y) ∨ (x a5
−→ y)


Can you prove that V does not determine Q(x , y) = x a9

−→ y?

I know a proof...

...and it’s ugly...

If you think you have an elegant proof, come talk to me!

35 / 36



Example: disjunctive chain queries – homework

σ = {a}
τ =

{
a2, a1,2, a2,5

} V =


Q2(x , y) = x a2

−→ y
Q1,2(x , y) = (x a−→ y) ∨ (x a2

−→ y)
Q2,5(x , y) = (x a2

−→ y) ∨ (x a5
−→ y)


Can you prove that V does not determine Q(x , y) = x a9

−→ y?

I know a proof...

...and it’s ugly...

If you think you have an elegant proof, come talk to me!

35 / 36



Announcement
If you want to know more...

come work with us!
1-year postdoc funding at Marne-la-Vallée

Thank you!

36 / 36



Announcement
If you want to know more... come work with us!

1-year postdoc funding at Marne-la-Vallée

Thank you!

36 / 36



Announcement
If you want to know more... come work with us!

1-year postdoc funding at Marne-la-Vallée

Thank you!

36 / 36



Announcement
If you want to know more... come work with us!

1-year postdoc funding at Marne-la-Vallée

Thank you!

36 / 36


	Introduction
	Views
	Certain answers
	Determinacy and rewriting
	One last example

