Databases and Despriptive Complexity — Part 1:

Using Logical Formulas to Describe Computations

Nicole Schweikardt

Humboldt-Universitat zu Berlin

EPIT 2019 — Spring School on Theoretical Computer Science:
Databases, logic and automata

Luminy, 11 April 2019

Overview

Descriptive Complexity

Datalog is poorly expressive

Datalog is highly expressive

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS

2/22

DESCRIPTIVE COMPLEXITY

Overview

Descriptive Complexity

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 3/22

DESCRIPTIVE COMPLEXITY

Throughout this talk

e all graphs are finite and directed

e undirected graphs are modeled as directed graphs where an undirected edge
u—v is represented by the directed edges u — v and u « v.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY

Throughout this talk

e all graphs are finite and directed

e undirected graphs are modeled as directed graphs where an undirected edge
u—v is represented by the directed edges u — v and u « v.

e graphs G = (V@ E®) are represented by databases I of schema {V, E}
where V and E are interpreted by V¢ and E¢, respectively

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY

Throughout this talk

e all graphs are finite and directed

e undirected graphs are modeled as directed graphs where an undirected edge
u—v is represented by the directed edges u — v and u « v.

e graphs G = (V@ E®) are represented by databases I of schema {V, E}
where V and E are interpreted by V¢ and E€, respectively

e pis a graph property, if for all graphs G, H we have:
if G= H,then G has property p <= H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY

Throughout this talk

e all graphs are finite and directed

e undirected graphs are modeled as directed graphs where an undirected edge
u—v is represented by the directed edges u — v and u « v.

e graphs G = (V@ E®) are represented by databases I of schema {V, E}
where V and E are interpreted by V¢ and E€, respectively

e pis a graph property, if for all graphs G, H we have:
if G= H,then G has property p <= H has property p

e Anordered graph Gis of the form (V¢ E® <%) where (V¢ E®) is a graph and
<% is a strict linear order on V€.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY

Throughout this talk

e all graphs are finite and directed

e undirected graphs are modeled as directed graphs where an undirected edge
u—v is represented by the directed edges u — v and u « v.

e graphs G = (V@ E®) are represented by databases I of schema {V, E}
where V and E are interpreted by V¢ and E€, respectively

e pis a graph property, if for all graphs G, H we have:
if G= H,then G has property p <= H has property p

e Anordered graph Gis of the form (V¢ E® <%) where (V¢ E®) is a graph and
<% is a strict linear order on V€.

e pis a property of ordered graphs, if for all ordered graphs G, H we have:

if G= H,then G has property p <= H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity

ESO : existential second-order logic : 3R --- 3R, Y (E, Ry, ..., R)
N ——
€ FO

(1/2)

Fagin’s Theorem: NP is captured by ESO on graphs.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS

5/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (1/2)

ESO : existential second-order logic : 3R --- 3R, Y (E, Ry, ..., R)

N————
€ FO

’ Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ¢ of signature { E}, upon input of a graph
G = (V€ E®) it can be decided in nondeterministic polynomial time whether
GE o

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (1/2)

ESO : existential second-order logic : 3R --- 3R, Y (E, Ry, ..., R)
N ——
€ FO

’ Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ¢ of signature { E}, upon input of a graph
G = (V€ E®) it can be decided in nondeterministic polynomial time whether

Gl .

The data complexity of model-checking for ESO-sentences is in NP.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (1/2)

ESO : existential second-order logic : 3R --- 3R, Y (E, Ry, ..., R)

N————
€ FO

’ Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ¢ of signature { E}, upon input of a graph
G = (V€ E®) it can be decided in nondeterministic polynomial time whether

GE .

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ¢ of signature { E} such that for all graphs G we have:
G = ¢ < G has property p.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (1/2)

ESO : existential second-order logic : 3R --- 3R, Y (E, Ry, ..., R)
N ——
€ FO

’ Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ¢ of signature { E}, upon input of a graph
G = (V€ E®) it can be decided in nondeterministic polynomial time whether

Gl .

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ¢ of signature { E} such that for all graphs G we have:
G = ¢ < G has property p.

Every NP-property of graphs can be described by an ESO-sentence.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (2/2)

LPF : least fixed-point logic : extends FO by the ability to define relations inductively

‘ Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs. ‘

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (2/2)

LPF : least fixed-point logic : extends FO by the ability to define relations inductively

’ Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs. ‘

This means:

(1) For every fixed ESO-sentence ¢ of signature {E, <}, upon input of an ordered
graph G = (V¢ E¢, <%) it can be decided in polynomial time whether G = .

The data complexity of model-checking for LFP-sentences is in PTIME.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (2/2)

LPF : least fixed-point logic : extends FO by the ability to define relations inductively

’ Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

This means:

(1) For every fixed ESO-sentence ¢ of signature {E, <}, upon input of an ordered
graph G = (V¢ E¢, <%) it can be decided in polynomial time whether G = .

The data complexity of model-checking for LFP-sentences is in PTIME.
(2) For every property p of ordered graphs that is decidable in PTIME, there exists

an LFP-sentence ¢ of signature {E, <} such that for all ordered graphs G we
have: G| ¢ < G has property p.

Every PTIME-property of ordered graphs can be described by an LFP-sentence.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY

Seminal Results in Descriptive Complexity (2/2)

LPF : least fixed-point logic : extends FO by the ability to define relations inductively

’ Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs. ‘

This means:

(1) For every fixed ESO-sentence ¢ of signature {E, <}, upon input of an ordered
graph G = (V¢ E¢, <%) it can be decided in polynomial time whether G = .

The data complexity of model-checking for LFP-sentences is in PTIME.
(2) For every property p of ordered graphs that is decidable in PTIME, there exists

an LFP-sentence ¢ of signature {E, <} such that for all ordered graphs G we
have: G| ¢ < G has property p.

Every PTIME-property of ordered graphs can be described by an LFP-sentence.

Later on in this talk, we will prove a variant of the Immerman-Vardi Theorem for
Datalog rather than LFP.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (1/3)

’ Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs. ‘

Major open research question: [Chandra & Harel 1982; Gurevich 1988]
Is there a logic L (instead of LFP) such that the Immerman-Vardi theorem can be
generalized to arbitrary graphs? l.e.:

Is there a logic L such that PTIME is captured by L on graphs? ‘

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 7/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (1/3)

’ Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs. ‘

Major open research question: [Chandra & Harel 1982; Gurevich 1988]
Is there a logic L (instead of LFP) such that the Immerman-Vardi theorem can be
generalized to arbitrary graphs? l.e.:

Is there a logic L such that PTIME is captured by L on graphs?

Such a logic L would be a great query language: lt is guaranteed that
e all queries described by a user can be evaluated in PTIME, and
e all tractable queries can be formulated in the language.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 7/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (1/3)

’ Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs. ‘

Major open research question: [Chandra & Harel 1982; Gurevich 1988]
Is there a logic L (instead of LFP) such that the Immerman-Vardi theorem can be
generalized to arbitrary graphs? l.e.:

Is there a logic L such that PTIME is captured by L on graphs? ‘

Such a logic L would be a great query language: lt is guaranteed that
e all queries described by a user can be evaluated in PTIME, and
e all tractable queries can be formulated in the language.

In order to really get this, the notions of “logic” and “capturing PTIME” have to be
defined very carefully:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 7/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (2/3)

e An abstract logic L consists of
¢ a set of L[o]-sentences for each signature o, and
e a mapping that associates a property p, of o-structures with each
L[o]-sentence .
For every o-structure Gwe write G L ¢ <= G € p,.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (2/3)

e An abstract logic L consists of
¢ a set of L[o]-sentences for each signature o, and
e a mapping that associates a property p, of o-structures with each
L[o]-sentence .
For every o-structure Gwe write G L ¢ <= G € p,.

e An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature o = {E}:
1. The set of L[o]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (2/3)

e An abstract logic L consists of
¢ a set of L[o]-sentences for each signature o, and
e a mapping that associates a property p, of o-structures with each
L[o]-sentence .
For every o-structure Gwe write G L ¢ <= G € p,.

e An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature o = {E}:
1. The set of L[o]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

2. There is an algorithm B that associates with every sentence ¢ € L[o] a
PTIME-algorithm A, that decides p, — i.e., upon input of a graph G,
A, decides in PTIME whether G =, ¢.
B is the query optimizer, which produces the query evaluation plan A,

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (2/3)

e An abstract logic L consists of
¢ a set of L[o]-sentences for each signature o, and
e a mapping that associates a property p, of o-structures with each
L[o]-sentence .
For every o-structure Gwe write G L ¢ <= G € p,.

e An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature o = {E}:
1. The set of L[o]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

2. There is an algorithm B that associates with every sentence ¢ € L[o] a
PTIME-algorithm A, that decides p, — i.e., upon input of a graph G,
A, decides in PTIME whether G =, ¢.
B is the query optimizer, which produces the query evaluation plan A,

3. For every PTIME-algorithm A that decides a graph property, there is a
sentence ¢ € L[o] such that for every graph G we have: G L ¢ <~
A accepts G. All PTIME graph properties can be expressed in L[o].

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:
(3) ??7 satisfies conditions 1 & 2, but not condition 3

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:
(3) LFP satisfies conditions 1 & 2, but not condition 3

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:
(3) LFP satisfies conditions 1 & 2, but not condition 3
(1) ??? satisfies conditions 2 & 3, but not condition 1

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:
(3) LFP satisfies conditions 1 & 2, but not condition 3
(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

— There are only countably many Turing machines.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

— There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties;

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

— There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let po, p1, p2, . . . be a list
of all these.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:
(3) LFP satisfies conditions 1 & 2, but not condition 3
(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:
— There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let po, p1, p2, . . . be a list

of all these.
Note: We don’t require this list to be recursively enumerable!

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

— There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let po, p1, p2, . . . be a list
of all these.

Note: We don’t require this list to be recursively enumerable!

— Syntax: L[g] :={0,1,2,...} =N. L[o]is decidable. l.e., condition 1 is met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

— There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let po, p1, p2, . . . be a list
of all these.

Note: We don’t require this list to be recursively enumerable!
— Syntax: L[g] :={0,1,2,...} =N. L[o]is decidable. l.e., condition 1 is met.

— Semantics: for each n € L[o] and each graph G let
G L n <= G has property p.
All PTIME properties of graphs are expressible. |.e., condition 3 is met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:
(3) LFP satisfies conditions 1 & 2, but not condition 3
(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

— There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let po, p1, p2, . . . be a list
of all these.

Note: We don’t require this list to be recursively enumerable!
— Syntax: L[g] :={0,1,2,...} =N. L[o]is decidable. l.e., condition 1 is met.

— Semantics: for each n € L[o] and each graph G let
G L n <= G has property p.
All PTIME properties of graphs are expressible. |.e., condition 3 is met.

— But we don't have an algorithm B that associates with every n € N a PTIME
algorithm A, that decides pp. l.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DATALOG IS POORLY EXPRESSIVE

Overview

Datalog is poorly expressive

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 10/22

DATALOG IS POORLY EXPRESSIVE

Datalog queries are closed under homomorphisms

For simplicity, throughout this talk Datalog queries don’t contain any constants.

"Recall: adom(l) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DATALOG IS POORLY EXPRESSIVE

Datalog queries are closed under homomorphisms

For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom — dom, the following is true

it h(1) € J, then h(Q(l)) € QW).

Easy Observation: Every Datalog query Q is closed under homomorphisms.

"Recall: adom(l) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DATALOG IS POORLY EXPRESSIVE

Datalog queries are closed under homomorphisms

For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom — dom, the following is true

it h(1) € J, then h(Q(l)) € QW).

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

e EXACTLY-1-IN-R returning “yes” for DBl < relation R has exactly 1 tuple

"Recall: adom(l) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DATALOG IS POORLY EXPRESSIVE

Datalog queries are closed under homomorphisms

For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom — dom, the following is true

it h(1) € J, then h(Q(l)) € QW).

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

e EXACTLY-1-IN-R returning “yes” for DBl < relation R has exactly 1 tuple
o NEQ with' NEQ(I) = {(a,b) : a,b € adom(l), a # b}

"Recall: adom(l) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DATALOG IS POORLY EXPRESSIVE

Datalog queries are closed under homomorphisms

For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom — dom, the following is true

it h(1) € J, then h(Q(l)) € QW).

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

e EXACTLY-1-IN-R returning “yes” for DBl < relation R has exactly 1 tuple
o NEQ with' NEQ(I) = {(a,b) : a,b € adom(l), a # b}
e DISCONNECTED returning “yes” for DB Iz <= graph G is not connected

"Recall: adom(l) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DATALOG IS POORLY EXPRESSIVE

Datalog queries are closed under homomorphisms

For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom — dom, the following is true

it h(1) € J, then h(Q(l)) € QW).

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

e EXACTLY-1-IN-R returning “yes” for DBl < relation R has exactly 1 tuple
o NEQ with' NEQ(I) = {(a,b) : a,b € adom(l), a # b}

e DISCONNECTED returning “yes” for DB Iz <= graph G is not connected

e AT-LEAST-2 returning “yes” for DBl <= |adom(l)| > 2

"Recall: adom(l) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DATALOG IS POORLY EXPRESSIVE

Datalog queries are closed under homomorphisms

For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom — dom, the following is true

it h(1) € J, then h(Q(l)) € QW).

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

e EXACTLY-1-IN-R returning “yes” for DBl < relation R has exactly 1 tuple
o NEQ with' NEQ(I) = {(a,b) : a,b € adom(l), a # b}
e DISCONNECTED returning “yes” for DB Iz <= graph G is not connected
e AT-LEAST-2 returning “yes” for DB 1 < |adom(l)| > 2
l.e.: Datalog cannot even count to two!

"Recall: adom(l) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DATALOG IS HIGHLY EXPRESSIVE

Overview

Datalog is highly expressive

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 12/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (1/2)

Represent words w of alphabet X by databases I, of schema Sy consisting of a
binary relation succ and unary relations MIN , MAX and P, for every a € ¥.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 13/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (1/2)

Represent words w of alphabet X by databases I, of schema Sy consisting of a
binary relation succ and unary relations MIN , MAX and P, for every a € ¥.

Definition: Foraword w = wy - - - w,_1 with w; € X, let |, be the database of
schema Sy with

e ly(succ) = {(i,i+1): 0 < i< n=1}, lw(MIN) = {0}, ln(MAX) = {n—1},
o ly(Po)={ie€{0,...,n=1}: w; = a} foreach lettera € X.

Example: X ={a,b,c}, w=aaba, ~ lu:

MIN: MAXZ Pai PbZ Pec:
K I O

SUCC:

N = O
wWnN =

0
1
3

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 13/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after

at most |w|¥—1 steps.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after

at most |w|¥—1 steps.

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after
at most |w|¥—1 steps.

Easy consequences:
(1) Datalog captures PTIME on database-respresentations of strings.2
(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after
at most |w|¥—1 steps.

Furthermore, upon input of M and k, the query Qu « can be constructed in time
polynomial in k and the size of M.

Easy consequences:
(1) Datalog captures PTIME on database-respresentations of strings.2
(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

Idea: For input word u choose Q and w as follows:

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

e m:=|u|, k:=m"+1, and choose Q := Qu « with the Simulation Lemma

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

e m:=|u|, k:=m"+1, and choose Q := Qu « with the Simulation Lemma
e w := aa (astring of length 2) and I := I,,.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

e m:=|u|, k:=m"+1, and choose Q := Qu « with the Simulation Lemma
e w := aa (astring of length 2) and I := I,,.

Quk(lw) = “yes”

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |
suchthat ue L < Q(I) = "yes”.

Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

e m:=|u|, k:=m"+1, and choose Q := Qu « with the Simulation Lemma

e w := aa (astring of length 2) and I := I,,.
Qus(ly) = “yes® S™ANLM™ pg accepts win at most |w|¥ — 1 steps

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |

suchthat ue L < Q(I) = "yes”.
Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

e m:=|u|, k:=m"+1, and choose Q := Qu « with the Simulation Lemma
e w := aa (astring of length 2) and I := I,,.

Qus(ly) = “yes® S™ANLM™ pg accepts win at most |w|¥ — 1 steps
— T accepts u in at most 2™ steps

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |

suchthat ue L < Q(I) = "yes”.
Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

e m:=|u|, k:=m"+1, and choose Q := Qu « with the Simulation Lemma
e w := aa (astring of length 2) and I := I,,.

Qus(ly) = “yes® S™ANLM™ pg accepts win at most |w|¥ — 1 steps
— T accepts u in at most 2™ steps
= ueL.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)
Fix an arbitrary problem L € EXPTIME. There is a DTM T and a number ¢ such that,
upon input of a string u of length m, T takes at most 2(m") steps to decide if u € L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
l.e.: For every word u, construct a datalog query Q and a database |

suchthat ue L < Q(I) = "yes”.
Idea: For input word u choose Q and w as follows:

e Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

e m:=|u|, k:=m"+1, and choose Q := Qu « with the Simulation Lemma
e w := aa (astring of length 2) and I := I,,.

Qus(ly) = “yes® S™ANLM™ pg accepts win at most |w|¥ — 1 steps
— T accepts u in at most 2™ steps
= ueL.

Furthermore, Qu « and I, can be constructed in time polynomial in k, i.e.,
polynomial in |ul.

O

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after
at most |w|¥—1 steps.

Furthermore, upon input of M and k, the query Qu « can be constructed in time
polynomial in k and the size of M.

Easy consequences:
(1) Datalog captures PTIME on database-respresentations of strings.2
(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after
at most |w|¥—1 steps.

Furthermore, upon input of M and k, the query Qu « can be constructed in time
polynomial in k and the size of M.

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.
(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after
at most |w|¥—1 steps.

Furthermore, upon input of M and k, the query Qu « can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w, constructs the database l.

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.
(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after
at most |w|¥—1 steps.

Furthermore, upon input of M and k, the query Qu « can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w, constructs the database l.

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.
(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...

For input string w = wp - - - w,,_1, we want to simulate the first n—1 steps of M.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...

For input string w = wp - - - w,,_1, we want to simulate the first n—1 steps of M.
Let [n] :={0,...,n—1} = adom(lw).

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...

For input string w = wp - - - w,,_1, we want to simulate the first n—1 steps of M.

Let [n] :={0,...,n—1} = adom(lw).
Use k-tuples over [n] to represent numbers in {0, ..., n"—1} :

X = (Xk—1,-- ., %) € [n]* represents number nr(x) := > ' x;- n'.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)

DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...
For input string w = wp - - - w,,_1, we want to simulate the first n—1 steps of M.

Let [n] :={0,...,n—1} = adom(lw).
Use k-tuples over [n] to represent numbers in {0,...,n"—1}:

X = (Xk—1,-- ., %) € [n]* represents number nr(x) := > ' x;- n'.

Our Datalog program P « will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1,...,n"—1:

e A 2k-ary predicate HEAD.

e A k-ary predicate STATE,, for each state g (incl. “halt”, “accept”, “reject”).

e A 2k-ary predicate TAPE,, for each tape symbol a.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)

DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...
For input string w = wp - - - w,,_1, we want to simulate the first n—1 steps of M.
Let [n] :={0,...,n—1} = adom(lw).

Use k-tuples over [n] to represent numbers in {0,...,n"—1}:

X = (Xk—1,-- ., %) € [n]* represents number nr(x) := > ' x;- n'.

Our Datalog program P « will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1,...,n"—1:

e A 2k-ary predicate HEAD.
Intended meaning of HEAD(X, y) :attime nr(x), M’s head is at tape cell nr(y)

e A k-ary predicate STATE,, for each state g (incl. “halt”, “accept”, “reject”).

e A 2k-ary predicate TAPE,, for each tape symbol a.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)

DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...
For input string w = wp - - - w,,_1, we want to simulate the first n—1 steps of M.
Let [n] :={0,...,n—1} = adom(lw).

Use k-tuples over [n] to represent numbers in {0, ..., n"—1} :

X = (Xk—1,-- ., %) € [n]* represents number nr(x) := > ' x;- n'.

Our Datalog program P « will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1,...,n"—1:

e A 2k-ary predicate HEAD.
Intended meaning of HEAD(X, y) :attime nr(x), M’s head is at tape cell nr(y)

e A k-ary predicate STATE,, for each state g (incl. “halt”, “accept”, “reject”).
Intended meaning of STATEy(X) : M is in state g at time nr(X)

e A 2k-ary predicate TAPE,, for each tape symbol a.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)

DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, ...
For input string w = wp - - - w,,_1, we want to simulate the first n—1 steps of M.
Let [n] :={0,...,n—1} = adom(lw).

Use k-tuples over [n] to represent numbers in {0, ..., n"—1} :

X = (Xk—1,-- ., %) € [n]* represents number nr(x) := > ' x;- n'.

Our Datalog program P « will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1,...,n"—1:

e A 2k-ary predicate HEAD.
Intended meaning of HEAD(X, y) :attime nr(x), M’s head is at tape cell nr(y)

e A k-ary predicate STATE,, for each state g (incl. “halt”, “accept”, “reject”).
Intended meaning of STATEy(X) : M is in state g at time nr(X)

e A 2k-ary predicate TAPE,, for each tape symbol a.
Intended meaning of TAPE,(X, y) :
at time nr(x) tape cell nr(y) carries the symbol a.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)

Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)

Start with Py« := 0 and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

e Attime 0, head is at tape position 0:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)

Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.

e Attime 0, head is at tape position 0:
HEAD(X,Y) < MIN(Xk—1),...,MIN(Xo), MIN(Yk—1), ..., MIN(¥o)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma

Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.

e Attime 0, head is at tape position 0:

HEAD(X,Y) < MIN(Xk—1),...,MIN(X0), MIN(Yk—1),.

e Attime 0, M is in the starting state qo:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS

(2/5)

.., MIN(yo)

18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma

Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.

e Attime 0, head is at tape position 0:

HEAD(X,Y) < MIN(Xk—1),...,MIN(X0), MIN(Yk—1),.

e Attime 0, M is in the starting state qo:
STATEq,(X) < MIN(Xk—1), ..., MIN(Xo)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS

(2/5)

.., MIN(yo)

18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma

Start with Py« := 0 and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

e Attime 0, head is at tape position 0:

HEAD(X,Y) < MIN(Xk—1),...,MIN(X0), MIN(Yk—1),.

e Attime 0, M is in the starting state qo:

STATEq,(X) < MIN(Xk—1), ..., MIN(Xo)

e Attime 0, tape positions 0, ..., n—1 carry the input string w:

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS

(2/5)

.., MIN(yo)

18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.
e Attime 0, head is at tape position 0:

HEAD(X,Y) < MIN(Xk—1),...,MIN(Xo), MIN(Yk—1), ..., MIN(¥o)
e Attime 0, M is in the starting state qo:

STATEq,(X) < MIN(Xk—1), ..., MIN(Xo)

e Attime 0, tape positions 0, ..., n—1 carry the input string w:
TAPEa(X,Y) < MIN(Xk—1),...,MIN(X0), MIN(Vk—1),...,MIN(¥1),Pa(¥0)
Add this rule for every letter a € ¥.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.
e Attime 0, head is at tape position 0:

HEAD(X,Y) < MIN(Xk—1),...,MIN(Xo), MIN(Yk—1), ..., MIN(¥o)
e Attime 0, M is in the starting state qo:

STATEq,(X) < MIN(Xk—1), ..., MIN(Xo)

e Attime 0, tape positions 0, ..., n—1 carry the input string w:
TAPEa(X,Y) < MIN(Xk—1),...,MIN(X0), MIN(Vk—1),...,MIN(¥1),Pa(¥0)
Add this rule for every letter a € ¥.

o Attime 0, tape positions n, ..., n"“—1 carry the blank symbol O :

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.
e Attime 0, head is at tape position 0:

HEAD(X,Y) < MIN(Xk—1),...,MIN(Xo), MIN(Yk—1), ..., MIN(¥o)
e Attime 0, M is in the starting state qo:

STATEq,(X) < MIN(Xk—1), ..., MIN(Xo)
e Attime 0, tape positions 0, ..., n—1 carry the input string w:
TAPEa(X,Y) < MIN(Xk—1),...,MIN(X0), MIN(Vk—1),...,MIN(¥1),Pa(¥0)
Add this rule for every letter a € ¥.

o Attime 0, tape positions n, ..., n"“—1 carry the blank symbol O :
Foreachie {1,...,k—1} add the rule

TAPEL(X,Y) < MIN(Xk—1), ..., MIN(Xo), NOTMIN(Y;)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)

Start with Py« := 0 and add rules as follows.
Step 1: Add rules to achieve the intended meaning at time 0.
e Attime 0, head is at tape position 0:
HEAD(X,Y) < MIN(Xk—1),...,MIN(Xo), MIN(Yk—1), ..., MIN(¥o)

e Attime 0, M is in the starting state qo:

STATEq,(X) < MIN(Xk—1), ..., MIN(Xo)
e Attime 0, tape positions 0, ..., n—1 carry the input string w:
TAPEa(X,Y) < MIN(Xk—1),...,MIN(X0), MIN(Vk—1),...,MIN(¥1),Pa(¥0)
Add this rule for every letter a € ¥.

o Attime 0, tape positions n, ..., n"“—1 carry the blank symbol O :
Foreachie {1,...,k—1} add the rule

TAPEL(X,Y) < MIN(Xk—1), ..., MIN(Xo), NOTMIN(Y;)

And add the rule
NOTMIN(Z) <+ succ(Z',z)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,...,k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.
e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary

predicate SUCC, to represent the “successor on ¢-tuples”. We add to P, « the rule
succq(z,z') « succ(z, z’) .

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”. We add to P« the rule
succq(z,z') «+- succ(z,z') . Foreach £ € {1,...k—1} we add the rules

SUCCy+1 (le: Xo—15--5 X0, Yo, Yo—1,-- >y0)<; MAX(X£’71)7) MAX(XO)7 SUCC(Xﬁaylf)a
MIN(Ye—1), -, MIN(¥o)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”. We add to P« the rule
succq(z,z') «+- succ(z,z') . Foreach £ € {1,...k—1} we add the rules

SUCCy+1 (leﬁ Xo—15--5 X0, Yo, Yo—1,-- >y0)<; MAX(XZ71)7 LX) MAX(X0)7 SUCC(Xﬁaylf)a
MIN(Ye—1), - -, MIN(¥o)

SUCC[+1 (le Xoe—1,--5 X0, Xe, Ye—1,-- :YO) <;SUCC[(XK—‘] se 0 X0y Yo—1, - ¢y0)7 ADOM(Xf)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”. We add to P« the rule
succq(z,z') «+- succ(z,z') . Foreach £ € {1,...k—1} we add the rules

SUCCy+1 (le: Xo—15--5 X0, Yo, Yo—1,-- >y0)<; MAX(X£’71)7) MAX(XO)7 SUCC(Xﬁaylf)a
MIN(Ye—1), -, MIN(¥o)

SUCC[+1 (va Xoe—1,--5 X0, Xe, Ye—1,-- ,YO) <;SUCCZ(XK—‘] se 0 X0y Yo—1, - ¢y0)7 ADOM(Xf)

And we add rules for describing the active domain:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”. We add to P« the rule
succq(z,z') «+- succ(z,z') . Foreach £ € {1,...k—1} we add the rules

SUCCy+1 (le: Xo—15- -5 X0, Yo Ye—1,-- >y0)<; MAX(X£’71)7 ce MAX(XO)7 SUCC(Xﬁaylf)a
MIN(Ye—1), - -, MIN(¥o)
SUCC[+1 (va Xoe—1,--5 X0, Xe, Ye—1,-- ,YO) <;SUCCZ(XK—‘] se 0 X0y Yo—1, - ¢y0)7 ADOM(Xf)
And we add rules for describing the active domain:
ADOM(Z) + succ(z,z’) and Apbom(z’) « succ(z,z’)
and the rule Apowm(z) «+- x(z) for each unary edb-predicate X.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”. We add to P« the rule
succq(z,z') «+- succ(z,z') . Foreach £ € {1,...k—1} we add the rules

SUCCy+1 (le: Xo—15--5 X0, Yo, Yo—1,-- >y0)<; MAX(X£’71)7) MAX(XO)7 SUCC(Xﬁaylf)a
MIN(Ye—1), -, MIN(¥o)

SUCC[+1 (va Xoe—1,--5 X0, Xe, Ye—1,-- ,YO) <;SUCCZ(XK—‘] se 0 X0y Yo—1, - ¢y0)7 ADOM(Xf)

And we add rules for describing the active domain:
ADOM(Z) + succ(z,z’) and Apbom(z’) « succ(z,z’)
and the rule Apowm(z) «+- x(z) for each unary edb-predicate X.

e Auxiliary rules for strict linear order and inequality on k-tuples:

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”. We add to P« the rule
succq(z,z') «+- succ(z,z') . Foreach £ € {1,...k—1} we add the rules

SUCCy+1 (leﬁ Xo—15- -5 X0, Yo Ye—1,-- >y0)<; MAX(XZ71)7 LX) MAX(X0)7 SUCC(Xﬁaylf)a
MIN(Ye—1), -, MIN(¥o)
SUCCy41 (le Xo—15--5X05 Xes Yo—15-- :YO) <;SUCC[(XE—1 ye o X0s Ye—15-- ¢y0)7 ADOM(Xﬁ)

And we add rules for describing the active domain:
ADOM(Z) + succ(z,z’) and Apbom(z’) « succ(z,z’)
and the rule Apowm(z) «+- x(z) for each unary edb-predicate X.
e Auxiliary rules for strict linear order and inequality on k-tuples:
LESSk(X,Y) <« succk(X,y)

LESSK(X,Y) « succk(X,Z), LESSk(Z,Y)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)

Step 2: Add rules so that if intended meaning is achieved at time ¢, then also at {+1.

e Auxiliary rules for reasoning about “+1”: For each ¢ € {1,..., k}, use a 2¢-ary
predicate SUCC, to represent the “successor on ¢-tuples”. We add to P« the rule
succq(z,z') «+- succ(z,z') . Foreach £ € {1,...k—1} we add the rules

SUCCy+1 (leﬁ Xo—15--5 X0, Yo, Yo—1,-- >y0)<; MAX(XZ71)7 LX) MAX(X0)7 SUCC(Xﬁaylf)a
MIN(Ye—1), - -, MIN(¥o)

SUCC[+1 (le Xoe—1,--5 X0, Xe, Ye—1,-- :YO) <;SUCC[(XK—‘] se 0 X0y Yo—1, - ¢y0)7 ADOM(Xf)
And we add rules for describing the active domain:
ADOM(Z) + succ(z,z’) and Apbom(z’) « succ(z,z’)
and the rule Apom(z) < x(z) for each unary edb-predicate X.
e Auxiliary rules for strict linear order and inequality on k-tuples:
LESSk(X,Y) « SUCCk(X,Y)

LESSK(X,Y) « succk(X,Z), LESSk(Z,Y)

NEQk(X,y) < LESS(X,Y)
y X

NEQK(X,7) + LESS(7.%)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state g and tape symbol a, and let (¢, &', m) := §(q, a), where &
is the transition function of M.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state g and tape symbol a, and let (¢, &', m) := §(q, a), where &
is the transition function of M. We add to Py x the following rules:

STATEq/(X') < SUCCk(X,X'), STATEq(X), HEAD(X,Y), TAPEa(X,Y)

attime t := nr(X), M is in state g, reads symbol a, and nr(x’) = t + 1

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state g and tape symbol a, and let (¢, &', m) := §(q, a), where &
is the transition function of M. We add to Py« the following rules:

STATEq/(X') < SUCCk(X,X'), STATEq(X), HEAD(X,Y), TAPEa(X,Y)

attime t := nr(X), M is in state g, reads symbol a, and nr(x’) = t + 1

TAPEy (X', ¥) + SUCCk(X,X'), STATEq(X), HEAD(X,Y), TAPEa(X,¥)
N———
at time t+1, position nr(y) carries the letter written at step ¢

And all other tape positions carry the same letter at time {41 as at time t:
For every tape symbol b add the rule

TAPEL(X',¥') + TAPEL(X,¥'), succk(X,x'), STATEq(X), HEAD(X,Y), NEQ(Y,¥')

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state g and tape symbol a, and let (¢, &', m) := §(q, a), where &
is the transition function of M. We add to Py x the following rules:

STATEq/(X') < SUCCk(X,X'), STATEq(X), HEAD(X,Y), TAPEa(X,Y)

attime t := nr(X), M is in state g, reads symbol a, and nr(x’) = t + 1

TAPEy (X', ¥) + SUCCk(X,X'), STATEq(X), HEAD(X,Y), TAPEa(X,¥)
N———
at time t+1, position nr(y) carries the letter written at step t

And all other tape positions carry the same letter at time {41 as at time t:
For every tape symbol b add the rule

TAPEL(X',¥') + TAPEL(X,¥'), succk(X,x'), STATEq(X), HEAD(X,Y), NEQ(Y,¥')

Add similar rules for representing the head movement of M:
m € {0, 1, —1} indicates whether the head stays or moves one position to the right
or the left, respectively.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

Proof of the Simulation Lemma (5/5)
Recall that we consider M’s transition (¢', &, m) := 6(q, a).

e If m=0, we add to Pu the rule

HEAD(X',y) « succk(X,X"), STATEq(X), HEAD(X,), TAPEa(X,Y)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

Proof of the Simulation Lemma (5/5)
Recall that we consider M’s transition (¢', &, m) := 6(q, a).

e If m=0, we add to Pu the rule

HEAD(X',y) « succk(X,X"), STATEq(X), HEAD(X,), TAPEa(X,Y)

e If m=1,we add to Pu the rule

HEAD(X',y") + succk(X,X'), STATEq(X), HEAD(X,), TAPEa(X,Y), succk(¥,¥’)

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

Proof of the Simulation Lemma (5/5)
Recall that we consider M’s transition (¢', &, m) := 6(q, a).
e If m=0, we add to Pu the rule

HEAD(X',y) « succk(X,X"), STATEq(X), HEAD(X,), TAPEa(X,Y)

e If m=1,we add to Pu the rule

HEAD(X',y") + succk(X,X'), STATEq(X), HEAD(X,), TAPEa(X,Y), succk(¥,¥’)

e If m= —1, we add to Py, the rule

HEAD(X',y") ¢ succk(X,X'), STATEq(X), HEAD(X,Y), TAPEa(X,Y), succk(y',¥)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

Proof of the Simulation Lemma (5/5)
Recall that we consider M’s transition (¢', &, m) := 6(q, a).
e If m=0, we add to Pu the rule

HEAD(X',y) « succk(X,X"), STATEq(X), HEAD(X,), TAPEa(X,Y)

e If m=1,we add to Pu the rule

HEAD(X',¥") + succk(X,X"), STATEq(X), HEAD(X,), TAPEa(X,), succk(¥, V')

e If m= —1, we add to Py, the rule

HEAD(X',y") ¢ succk(X,X'), STATEq(X), HEAD(X,Y), TAPEa(X,Y), succk(y',¥)

To ensure that the Datalog query outputs the correct result, we add the rule

GOAL() < STATEaccept(X)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (5/5)
Recall that we consider M’s transition (¢', &, m) := 6(q, a).

e If m=0, we add to Pu the rule

HEAD(X',y) « succk(X,X"), STATEq(X), HEAD(X,), TAPEa(X,Y)

e If m=1,we add to Pu the rule

HEAD(X',¥") + succk(X,X"), STATEq(X), HEAD(X,Y), TAPEa(X,Y), succk(Y,¥’)

e If m= —1, we add to Py, the rule

HEAD(X',y") ¢ succk(X,X’), STATEq(X), HEAD(X,), TAPEa(X,Y), succk(y',¥)

To ensure that the Datalog query outputs the correct result, we add the rule
GOAL() < STATEaccept(X)

This finally completes the construction of the Datalog program Py .
It is straightforward to verify that this proves the Simulation Lemma. O

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)

Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet > and every integer k > 1, there is a Datalog program Py x with edb-predicates
Sy and a O-ary idb-predicate GOAL, such that the following is true for the Datalog
query Qu x := (Pu,x, GOAL) and for every non-empty word w € X*:

Qu(lw) = “yes” <= upon input w, M stops in an accepting state after
at most |w|¥—1 steps.

Furthermore, upon input of M and k, the query Qu « can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w, constructs the database l.

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.
(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Inmerman-Vardi Theorem promised at the beginning of the talk.

NICOLE SCHWEIKARDT USING LoGICAL FORMULAS TO DESCRIBE COMPUTATIONS 22/22

Databases and Despriptive Complexity — Part 2:

A Toolkit for Proving Limitations
of the Expressive Power of Logics

Nicole Schweikardt

Humboldt-Universitat zu Berlin

EPIT 2019 — Spring School on Theoretical Computer Science:
Databases, logic and automata

Luminy, 11 April 2019

INTRO

In this talk

» Consider finite directed graphs G = (V¢, E®).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet ¥.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 2/37

INTRO

In this talk

» Consider finite directed graphs G = (V¢, E®).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet ¥.

> pis a graph property, if the following is true:
if G= H,then G has property p <= H has property p

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 2/37

INTRO

In this talk

» Consider finite directed graphs G = (V¢, E®).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet ¥.

> pis a graph property, if the following is true:
if G= H,then G has property p <= H has property p

» qis a k-ary graph query, if the following is true:
if 7: G=H, thenforall ai,...,ax € VO,
(a1,....a) € q(G) <= (n(ar),...,m(a)) € q(H)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

2/37

INTRO

In this talk

v

Consider finite directed graphs G = (V¢, E%).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet ¥.

> pis a graph property, if the following is true:

if G= H,then G has property p <= H has property p

» qis a k-ary graph query, if the following is true:
if 7: G=H, thenforall ai,...,ax € VO,

(ar,...,ak) € q(G) < (n(a),...,m(ak)) € q(H)

v

l.e., graph properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 2/37

INTRO

Logics expressing graph properties and queries

Classical logics like, e.g.
» FO (first-order logic: Boolean combinations + quantification over nodes)

express graph properties and queries in a straightforward way.

Example:
» q(G):={xe V% : xliesonatriangle } is expressed in FO via

o(x) == 3dy3z (E(x,y) A E(y,z) A E(z,x))

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 3/37

INTRO

Logics expressing graph properties and queries

Classical logics like, e.g.
» FO (first-order logic: Boolean combinations + quantification over nodes)

» EMSO (existential monadic second-order logic: FO + existential quantification
over sets of nodes)

express graph properties and queries in a straightforward way.

Example:
» q(G):={xe V% : xliesonatriangle } is expressed in FO via

o(x) == 3dy3z (E(x,y) A E(y,z) A E(z,x))

» p = {G : Gis3-colorable } is expressedin EMSO via

3R3B3G (Vx (R(x) V B(x)V G(x)) A
vxVy (E(x,y) = = ((R(X)AR()) v (B(x)AB(y)) v (G(x) A G(y)))))

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 3/37

INTRO

Question

How can we prove that
certain properties or queries

are NOT expressible in a particular logic?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

4/37

INTRO

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraissé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity
The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

5/37

0-1 LAws

Overview

Zero-One Laws

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 6/37

0-1 LAws

Zero-One Laws
> Let p be a graph property.

> Let un(p) be the probability that a graph chosen uniformly at random from the set
of all graphs on n vertices has property p.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7137

0-1 LAws

Zero-One Laws

> Let p be a graph property.
> Let un(p) be the probability that a graph chosen uniformly at random from the set
of all graphs on n vertices has property p.

» The asymptotic probability of p is u(p) == nlim un(p) (if the limit exists).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

0-1 LAws

Zero-One Laws

v

Let p be a graph property.

Let un(p) be the probability that a graph chosen uniformly at random from the set
of all graphs on n vertices has property p.

» The asymptotic probability of p is u(p) == nlim un(p) (if the limit exists).

v

v

A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability 1(p) exists and is either 0 or 1.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

0-1 LAws

Zero-One Laws

v

Let p be a graph property.

Let un(p) be the probability that a graph chosen uniformly at random from the set
of all graphs on n vertices has property p.

» The asymptotic probability of p is u(p) == nlim un(p) (if the limit exists).

v

v

A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability 1(p) exists and is either 0 or 1.

Theorem:
» FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

0-1 LAws

Zero-One Laws

v

Let p be a graph property.

Let un(p) be the probability that a graph chosen uniformly at random from the set
of all graphs on n vertices has property p.

» The asymptotic probability of p is u(p) == nlim un(p) (if the limit exists).

v

v

A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability 1(p) exists and is either 0 or 1.

Theorem:
» FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
> L3, . has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7137

0-1 LAws

Zero-One Laws

v

Let p be a graph property.

Let un(p) be the probability that a graph chosen uniformly at random from the set
of all graphs on n vertices has property p.

v

» The asymptotic probability of p is u(p) == nlim un(p) (if the limit exists).

v

A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability 1(p) exists and is either 0 or 1.

Theorem:
» FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
> L3, . has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since p(p) doesn’t exist, resp., is equal to 0.5).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7137

0-1 LAws

Zero-One Laws

v

Let p be a graph property.

Let un(p) be the probability that a graph chosen uniformly at random from the set
of all graphs on n vertices has property p.

v

» The asymptotic probability of p is u(p) == nlim un(p) (if the limit exists).

v

A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability 1(p) exists and is either 0 or 1.

Theorem:
» FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
> L3, . has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since p(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with 1(p) € {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7137

EF-GAMES

Overview

Ehrenfeucht-Fraissé games

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 8/37

EF-GAMES

The Ehrenfeucht-Fraissé game
is played on 2 graphs: A& B,

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

EF-GAMES

The Ehrenfeucht-Fraissé game
is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator,

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

EF-GAMES

The Ehrenfeucht-Fraissé game
is played on 2 graphs: A& B, by 2 players: Spoiler & Duplicator, in r rounds.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

EF-GAMES

The Ehrenfeucht-Fraissé game
is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

A B:

Eachround i€ {1,...,r} is played as follows:

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

° by
A B:
® ® L]
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

[] b1
A B:
a
® ® L]
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

e do b1
A B:
a
® ® L]
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

e do b1
A B:
a
® ® ° bo
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

e do b1
A B:
aq as
® ® ° bo
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

e do b1
A B:
aq as
3 ° ° bo bs
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

e do b1
A B:
aq as
3 ° ° bo bs
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices aj, ..., a- have been chosen in A, and
vertices by, ..., b- have been chosen in 5.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

[X7 o]
A B:
aq as
3 ° ° bo bs
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.
After r rounds, vertices aj, ..., a- have been chosen in A, and
vertices by, ..., b- have been chosen in 5.

Duplicator wins, iff the mapping (a; — b;) is an isomorphism on the induced
subgraphs A|(a,,....a,} and Bigp, ... b.}-

.....

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

e do b1
A B:
aq as
3 ° ° bo bs
[J
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices aj, ..., a- have been chosen in A, and
vertices by, ..., b- have been chosen in 5.

Duplicator wins, iff the mapping (a; — b;) is an isomorphism on the induced
subgraphs A|(a,,....a,} and Bigp, ... b.}-

.....

Write A ~, B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

The Ehrenfeucht-Fraissé game

is played on 2 graphs: A& BB, by 2 players: Spoiler & Duplicator, in r rounds.

®a by
A B:
aq as
3 ° ° bo bs
° Here: A = B, but A %3 B.
Eachround i€ {1,...,r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,
2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices aj, ..., a- have been chosen in A, and
vertices by, ..., b- have been chosen in 5.

Duplicator wins, iff the mapping (a; — b;) is an isomorphism on the induced
subgraphs A|(a,,....a,} and Bigp, ... b.}-

.....

Write A ~, B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

9/37

EF-GAMES

Ehrenfeucht-Fraissé Theorem

Theorem:
A=~ B < Aand B satisfy the same FO-sentences of quantifier depth < r.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

EF-GAMES

Ehrenfeucht-Fraissé Theorem

Theorem:
A=, B <= Aand B satisfy the same FO-sentences of quantifier depth < r.

Corollary

A graph property p is not FO-expressible, if the following is true:
For every r there are graphs A, and B, such that

> A, has property p,
> B, doesn't have property p, and
> A =~ Br.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

EF-GAMES

Ehrenfeucht-Fraissé Theorem

Theorem:
A=, B <= Aand B satisfy the same FO-sentences of quantifier depth < r.

Corollary

A graph property p is not FO-expressible, if the following is true:
For every r there are graphs A, and B, such that

> A, has property p,
> B, doesn't have property p, and
> A =~ Br.

Examples:
» The property of being a linear order of even cardinality is not FO-expressible.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

EF-GAMES

Ehrenfeucht-Fraissé Theorem

Theorem:
A=, B <= Aand B satisfy the same FO-sentences of quantifier depth < r.

Corollary

A graph property p is not FO-expressible, if the following is true:
For every r there are graphs A, and B, such that

> A, has property p,
> B, doesn't have property p, and
> A =~ Br.

Examples:
» The property of being a linear order of even cardinality is not FO-expressible.
» Connectivity is not EMSO-expressible (Fagin, 1975)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

EF-GAMES

Ehrenfeucht-Fraissé Theorem

Theorem:
A=, B <= Aand B satisfy the same FO-sentences of quantifier depth < r.

Corollary

A graph property p is not FO-expressible, if the following is true:
For every r there are graphs A, and B, such that

> A, has property p,
> B, doesn't have property p, and
> A =~ Br.

Examples:
» The property of being a linear order of even cardinality is not FO-expressible.

» Connectivity is not EMSO-expressible (Fagin, 1975);
not even on linearly ordered graphs (Schwentick, 1996).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

EF-GAMES

Ehrenfeucht-Fraissé Theorem

Theorem:
A=, B <= Aand B satisfy the same FO-sentences of quantifier depth < r.

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs A, and B, such that

> A, has property p,
> B, doesn't have property p, and
> A =~ Br.

Examples:
» The property of being a linear order of even cardinality is not FO-expressible.

» Connectivity is not EMSO-expressible (Fagin, 1975);
not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

REDUCTIONS

Overview

Logical Reductions

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 11/37

REDUCTIONS

Logical Reductions (1/2)

Use known non-expressibility results for showing new non-expressibility results!

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

REDUCTIONS

Logical Reductions (1/2)
Use known non-expressibility results for showing new non-expressibility results!

Example:
» Show that the property of being acyclic is not FO-definable.

» Use that we already know that being a linear order of even cardinality is
not FO-definable.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

REDUCTIONS

Logical Reductions (1/2)
Use known non-expressibility results for showing new non-expressibility results!

Example:
» Show that the property of being acyclic is not FO-definable.

» Use that we already know that being a linear order of even cardinality is
not FO-definable.

» Assume, for contradiction, that acyclicity is FO-definable by a formula pacycic-

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

REDUCTIONS

Logical Reductions (1/2)
Use known non-expressibility results for showing new non-expressibility results!

Example:
» Show that the property of being acyclic is not FO-definable.

» Use that we already know that being a linear order of even cardinality is
not FO-definable.

» Assume, for contradiction, that acyclicity is FO-definable by a formula pacycic-

» Transform gacyeic into a formula teven Which, when evaluated in a linear order A,
simulates the evaluation of gacycic 0N a graph G4 with

G4 acyclic < A has even cardinality.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

REDUCTIONS

Logical Reductions (2/2)

Transform @acyeiic into a formula yeven Which, when evaluated in a linear order A,
simulates the evaluation of @acycic 0N @ graph G.a with

G4 acyclic <= A has even cardinality.

Al=5 = Gua:

Al=6 = Gua:

@ @ @ @ ® @

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 13/37

LocALITY

Overview

Locality Results

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 14/37

LocALITY

Neighborhoods
Graph G = (V,E)
Distance dist(u, v) : length of a shortest path between u, v in G.
Shell S;(a) of nodes at distance exactly r from a.
Ball N;(a) of radius r at ain G.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 15/37

LocALITY

Neighborhoods
Graph G = (V,E)
Distance dist(u, v) : length of a shortest path between u, v in G.
Shell S;(a) of nodes at distance exactly r from a.
Ball N;(a) of radius r at ain G.
Neighborhood N (a) of radius r at ain G.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 15/37

LocALITY

Gaifman-local queries

» Foralista=a,...,ax of nodes, N°(a) = N%(a;) U--- U NS(a).

» The r-neighborhood N.6(a) is the structure (G‘Nre(a), a) consisting of the induced
subgraph of G on NZ(a), together with the distinguished nodes a.

Definition: Let q be a k-ary graph query. Let f: N — N.

g is called f(n)-local if there is an ny such that for every n > no and every graph G
with | V€| = n, the following is true for all k-tuples a and b of nodes:

it Ni(@) = Niy(b) then ac q(G) < be q(G).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 16/37

LocALITY

Gaifman-locality of FO

Theorem:
» For every graph query g that is FO-definable,

there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 17/37

LocALITY

Gaifman-locality of FO

Theorem:

» For every graph query g that is FO-definable,
there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

» For every graph query g that is FO-definable on ordered graphs
(for short: g is definable in <-invariant FO),
there is a constant ¢ such that q is c-local.
(Grohe, Schwentick '98)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 17/37

LocALITY

Gaifman-locality of FO

Theorem:

» For every graph query g that is FO-definable,
there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

» For every graph query q that is FO-definable on ordered graphs
(for short: g is definable in <-invariant FO),
there is a constant ¢ such that q is c-local.
(Grohe, Schwentick '98)

» For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (for short: q is definable in Arb-invariant FO),
there is a constant ¢ such that g is (log n)°-local.
(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 17/37

LocALITY

Use locality for proving non-expressibility

Example: The reachability query
REACH(G) := {(a1,a2) : there is a directed path from a; to a in G }

is not £-local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G: a, b
1

aj b2

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 18/37

LocALITY

Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

Does node x lie on a cycle?

e Does node x belong to a connected component that is acyclic?

Is node x reachable from a node that belongs to a triangle?

Do nodes x and y have the same distance to node z?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 19/37

LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 20/37

LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

‘ Idea: Use known lower bounds in circuit complexity!

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

20/37

LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

‘ Idea: Use known lower bounds in circuit complexity!

> Let g be expressible by an Arb-invariant FO formula.

» Then, g can be computed by an AC? circuit family C (Immerman '87).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

20/37

LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

’ Idea: Use known lower bounds in circuit complexity!

v

Let g be expressible by an Arb-invariant FO formula.

» Then, g can be computed by an AC? circuit family ¢ (Immerman '87).

\4

Assume that g is not (log n)°-local (for any ¢ € N), and
modify C to obtain an AC? circuit family computing

PARITY := {w € {0,1}" : |w|; is even}.

v

This contradicts known lower bounds in circuit complexity theory (Hastad’86).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 20/37

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC® circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

21/37

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC® circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V by the bitstring

B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

LocALITY

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC® circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V by the bitstring
B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

LocALITY

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC® circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V by the bitstring
B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

e A unary graph query gq(x) is computed by a circuit family C = (Cn)nen iff the

following is true:
forall G=(V,E),ac V,y < Rep(G,a): ac q(G) < C, accepts ~.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

LocALITY

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC® circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V by the bitstring
B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

e A unary graph query gq(x) is computed by a circuit family C = (Cn)nen iff the
following is true:
forall G=(V,E),ac V,y < Rep(G,a): ac q(G) < C, accepts ~.

e Known: A unary graph query g(x) is definable in Arb-invariant FO <
it is computed by a circuit family of constant depth and polynomial size.
(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cy)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.
le.,forall G=(V,E),ac V,v <€ Rep(G,a): ac q(G) < C, accepts ~.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.
le.,forall G=(V,E),ac V,v <€ Rep(G,a): ac q(G) < C, accepts ~.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.
le.,forall G=(V,E),ac V,v <€ Rep(G,a): ac q(G) < C, accepts ~.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, ng there exist n > ny, G = (V, E) with n nodes, a, b € V such that

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.
le.,forall G=(V,E),ac V,v <€ Rep(G,a): ac q(G) < C, accepts ~.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, ng there exist n > ny, G = (V, E) with n nodes, a, b € V such that
for m:= (logn)°, Ng(a) = NE(b),butac q(G)and b ¢ q(G).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.
le.,forall G=(V,E),ac V,v <€ Rep(G,a): ac q(G) < C, accepts ~.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, ng there exist n > ny, G = (V, E) with n nodes, a, b € V such that
for m:= (logn)°, Ng(a) = NE(b),butac q(G)and b ¢ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.
le.,forall G=(V,E),ac V,v <€ Rep(G,a): ac q(G) < C, accepts ~.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.

Thus: For all ¢, ng there exist n > ny, G = (V, E) with n nodes, a, b € V such that
for m:= (logn)°, Ng(a) = NE(b),butac q(G)and b ¢ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

LetmeN, G=(V,E), a,bec V suchthat N$(a) = NS(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
a circuit family of constant depth d and polynomial size p(n) computing q.
le.,forall G=(V,E),ac V,v <€ Rep(G,a): ac q(G) < C, accepts ~.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, ng there exist n > ny, G = (V, E) with n nodes, a, b € V such that
for m:= (logn)°, Ng(a) = NE(b),butac q(G)and b ¢ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

LetmeN, G=(V,E), a,bec V suchthat N$(a) = NS(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Theorem: (Hastad '86)
There exist £, my > 0 such that for all m > my, no circuit of depth d and size
ot:m!/(@=D computes parity on m bits.

Contradiction for ¢ = 2d, since 2¢™/™" > 2t:00am? — ptioan - p(py, O

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

Swap the endpoints of the edges
leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph Gw = G.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

Swap the endpoints of the edges
leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph Gw = G.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph Gw = G.
G,a), if|w|s;even
(Gu 8) = (G,a) .| l1
(G, b), if|w|; odd

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph G, = G.
(G,a), if|w|seven
Gu,a) =
(G, 2) {(G,b), if [w|; odd
Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN, G=(V,E), a,b € V such that N'5(a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).
» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:
LetmeN, G= (V,E), a,be V suchthat N5(a) = NE(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges

e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN, G= (V,E), a,be V suchthat N5(a) = NE(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges
e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}
» Replace input gates of C as follows:
e by (en-w) e by (' A—-w)
é by (eAw) & by (¢ Aw)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN, G= (V,E), a,be V suchthat N5(a) = NE(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges
e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}
» Replace input gates of C as follows:
e by (en-w) e by (' A—-w)
é by (eAw) & by (¢ Aw)

» This yields a circuit C of the same size and depth as C which, on input
w € {0,1}™ does the same as C on input (Gw, a).
Thus, C accepts iff |w|y is even. O

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

LocALITY

Hanf-local graph properties

» Let G= (V¢ E®) and H = (V", E") be two graphs.
> LetreN.

» G—, H < thereis abijection 8 : V& — V" such that for every a € V¢

NE(a) = N/(B(a))

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 25/37

LocALITY

Hanf-local graph properties

» Let G= (V¢ E®) and H = (V", E") be two graphs.
> LetreN.

» G—, H < thereis abijection 8 : V& — V" such that for every a € V¢

NE(a) = N/(B(a))

Definition
A graph property p is Hanf f(n)-local if there is an ny such that
for all graphs G and H of size n > ng the following is true:

If G=, H then G has property p iff H has property p.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 25/37

LocALITY

Hanf-locality of FO

Theorem:
» For every graph property p that is FO-definable,

there is a constant ¢ such that p is Hanf c-local.
(Fagin, Stockmeyer, Vardi '95; Hanf ’65)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

Hanf-locality of FO

Theorem:

» For every graph property p that is FO-definable,
there is a constant ¢ such that p is Hanf c-local.
(Fagin, Stockmeyer, Vardi '95; Hanf '65)

» For every property of strings or trees that is definable in <-invariant FO,
there is a constant ¢ such that p is Hanf c-local.
(Benedikt, Segoufin '09)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

Hanf-locality of FO

Theorem:

» For every graph property p that is FO-definable,
there is a constant ¢ such that p is Hanf c-local.
(Fagin, Stockmeyer, Vardi '95; Hanf '65)

» For every property of strings or trees that is definable in <-invariant FO,
there is a constant ¢ such that p is Hanf c-local.
(Benedikt, Segoufin '09)

» For every property of strings that is definable in Arb-invariant FO(Succ),
there is a constant ¢ such that p is Hanf (log n)°-local.
(Anderson, van Melkebeek, S., Segoufin '11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

Hanf-locality of FO

Theorem:

» For every graph property p that is FO-definable,
there is a constant ¢ such that p is Hanf c-local.
(Fagin, Stockmeyer, Vardi '95; Hanf '65)

» For every property of strings or trees that is definable in <-invariant FO,
there is a constant ¢ such that p is Hanf c-local.
(Benedikt, Segoufin '09)

» For every property of strings that is definable in Arb-invariant FO(Succ),
there is a constant ¢ such that p is Hanf (log n)°-local.
(Anderson, van Melkebeek, S., Segoufin '11)

Example: The class of all strings of the form c*ac*bc* is not definable in
Arb-invariant FO(Succ).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

CIRCUITS

Overview

Reductions to known results in circuit complexity

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 27/37

CIRCUITS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

CIRCUITS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
» Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

CIRCUITS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
» Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

» Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

CIRCUITS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
» Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

» Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):

» Precise (stronger) statement: The existence of a k-clique cannot be
expressed by an Arb-invariant FO-sentence using only | k/4] variables.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

CIRCUITS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
» Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

» Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):

» Precise (stronger) statement: The existence of a k-clique cannot be
expressed by an Arb-invariant FO-sentence using only | k/4] variables.

» Main ingredients of the proof:

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

CIRCUITS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
» Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

» Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):

» Precise (stronger) statement: The existence of a k-clique cannot be
expressed by an Arb-invariant FO-sentence using only | k/4] variables.

» Main ingredients of the proof:

(1) Note that for every k-variable Arb-invariant FO-sentence ¢ there exists a constant
depth circuit family (Cn)n of size n* such that C,, evaluates on graphs of size n.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

CIRCUITS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
» Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

» Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):

» Precise (stronger) statement: The existence of a k-clique cannot be
expressed by an Arb-invariant FO-sentence using only | k/4] variables.
» Main ingredients of the proof:
(1) Note that for every k-variable Arb-invariant FO-sentence ¢ there exists a constant
depth circuit family (Cn)n of size n* such that C,, evaluates on graphs of size n.

(2) Prove a new lower bound of w(n*/4) on the size of constant-depth circuits solving
the k-clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

“ALGEBRAIC”

Overview

The “Algebraic” Approach

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 29/37

“ALGEBRAIC"

The “Algebraic” Approach

Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

“ALGEBRAIC"

The “Algebraic” Approach

Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER

30/37

“ALGEBRAIC"

The “Algebraic” Approach
Let Ly and L, be logics, and let C be a class of structures.
Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L iff it is closed under
every operation op € O.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

“ALGEBRAIC"

The “Algebraic” Approach

Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L iff it is closed under
every operation op € O. l.e., forevery A € C:

A has property p < op(.A) has property p.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

“ALGEBRAIC"

The “Algebraic” Approach

Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L iff it is closed under
every operation op € O. l.e., forevery A € C:

A has property p < op(.A) has property p.

(2) Show that a property p of C-structures is closed under every operation op € O
iff it is definable in L.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

“ALGEBRAIC"

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

“ALGEBRAIC"

An example
Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(Succ) iff it is aperiodic and closed under swaps.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

“ALGEBRAIC"

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(Succ) iff it is aperiodic and closed under swaps.
o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

041

ux‘vel «— ux'vel

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

“ALGEBRAIC"

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(Succ) iff it is aperiodic and closed under swaps.

o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

041

ux‘vel «— ux'vel

o [is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are
idempotents (i.e., for all u, v we have uev € L iff ue®v € L), we have

uexfyezfvel <« uezfyexfv e L

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

“ALGEBRAIC"

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(Succ) iff it is aperiodic and closed under swaps.

o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

041

ux‘vel «— ux'vel

o [is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are
idempotents (i.e., for all u, v we have uev € L iff ue®v € L), we have

uexfyezfvel <« uezfyexfv e L

» Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.

(For this, you can use Ehrenfeucht-Fraissé games.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

“ALGEBRAIC”

Some further results proved using this method

Theorem:
» A tree-language is definable in <-invariant FO(Succ) iff

it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

“ALGEBRAIC"

Some further results proved using this method

Theorem:

» A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

“ALGEBRAIC"

Some further results proved using this method

Theorem:

» A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

» A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcarq(succ). (S., Segoufin’10 and Harwath, S.’12)
(They use closure under transfers and closure under guarded swaps.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

“ALGEBRAIC"

Some further results proved using this method

Theorem:

» A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

» A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcarq(succ). (S., Segoufin’10 and Harwath, S.’12)
(They use closure under transfers and closure under guarded swaps.)

» A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcara(Succ). (Anderson, van Melkebeek, S., Segoufin '11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

FINAL REMARKS

Overview

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 33/37

FINAL REMARKS

Gaifman-locality
If VF(a) = NF(b) then (a€ q(G) < b e q(q)).

Known:

> Queries definable in order-invariant FO are Gaifman-local with respect to a
constant locality radius. (Grohe, Schwentick '98)

» Queries definable in Arb-invariant FO are Gaifman-local with respect to a
poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

» How about addition-invariant FO — is it Gaifman-local with respect to a
constant locality radius?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 34/37

FINAL REMARKS

Hanf-locality

A graph property p is Hanf-local w.r.t. locality radius r, if
any two graphs having the same r-neighbourhood types with the same multiplicities,
are not distinguished by p.

Known:

> Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality
radius. (Fagin, Stockmeyer, Vardi '95)

» Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t.
a constant locality radius. (Benedikt, Segoufin '09)

> Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a
poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin ’11)

Open Question:
» Do these results generalise from strings to arbitrary finite graphs?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 35/37

FINAL REMARKS

Decidable Characterisations

Open Question:
Are there decidable characterisations of

» order-invariant FO?
» addition-invariant FO?
> (4, x)-invariant FO?

Known:

» On finite strings and trees: order-invariant FO = FO. (Benedikt, Segoufin '10)

» On finite coloured sets: addition-invariant FO = FO enriched by “cardinality
modulo” quantifiers. (S., Segoufin '10)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 36/37

FINAL REMARKS

Thank You!

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 37/37

	Descriptive Complexity
	Datalog is poorly expressive
	Datalog is highly expressive
	Introduction
	Zero-One Laws
	Ehrenfeucht-Fraïssé games
	Logical Reductions
	Locality Results
	Reductions to known results in circuit complexity
	The ``Algebraic'' Approach
	Final Remarks

