
Databases and Despriptive Complexity — Part 1:

Using Logical Formulas to Describe Computations

Nicole Schweikardt

Humboldt-Universität zu Berlin

EPIT 2019 — Spring School on Theoretical Computer Science:
Databases, logic and automata

Luminy, 11 April 2019

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Overview

Descriptive Complexity

Datalog is poorly expressive

Datalog is highly expressive

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 2/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Overview

Descriptive Complexity

Datalog is poorly expressive

Datalog is highly expressive

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 3/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (1/2)
ESO : existential second-order logic : ∃R1 · · · ∃R` ψ(E ,R1, . . . ,R`)︸ ︷︷ ︸

∈ FO

Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E}, upon input of a graph
G = (V G,EG) it can be decided in nondeterministic polynomial time whether
G |= ϕ.

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ϕ of signature {E} such that for all graphs G we have:
G |= ϕ ⇐⇒ G has property p.

Every NP-property of graphs can be described by an ESO-sentence.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (1/2)
ESO : existential second-order logic : ∃R1 · · · ∃R` ψ(E ,R1, . . . ,R`)︸ ︷︷ ︸

∈ FO

Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E}, upon input of a graph
G = (V G,EG) it can be decided in nondeterministic polynomial time whether
G |= ϕ.

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ϕ of signature {E} such that for all graphs G we have:
G |= ϕ ⇐⇒ G has property p.

Every NP-property of graphs can be described by an ESO-sentence.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (1/2)
ESO : existential second-order logic : ∃R1 · · · ∃R` ψ(E ,R1, . . . ,R`)︸ ︷︷ ︸

∈ FO

Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E}, upon input of a graph
G = (V G,EG) it can be decided in nondeterministic polynomial time whether
G |= ϕ.

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ϕ of signature {E} such that for all graphs G we have:
G |= ϕ ⇐⇒ G has property p.

Every NP-property of graphs can be described by an ESO-sentence.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (1/2)
ESO : existential second-order logic : ∃R1 · · · ∃R` ψ(E ,R1, . . . ,R`)︸ ︷︷ ︸

∈ FO

Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E}, upon input of a graph
G = (V G,EG) it can be decided in nondeterministic polynomial time whether
G |= ϕ.

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ϕ of signature {E} such that for all graphs G we have:
G |= ϕ ⇐⇒ G has property p.

Every NP-property of graphs can be described by an ESO-sentence.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (1/2)
ESO : existential second-order logic : ∃R1 · · · ∃R` ψ(E ,R1, . . . ,R`)︸ ︷︷ ︸

∈ FO

Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E}, upon input of a graph
G = (V G,EG) it can be decided in nondeterministic polynomial time whether
G |= ϕ.

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ϕ of signature {E} such that for all graphs G we have:
G |= ϕ ⇐⇒ G has property p.

Every NP-property of graphs can be described by an ESO-sentence.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 5/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (2/2)
LPF : least fixed-point logic : extends FO by the ability to define relations inductively

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E , <}, upon input of an ordered
graph G = (V G,EG, <G) it can be decided in polynomial time whether G |= ϕ.

The data complexity of model-checking for LFP-sentences is in PTIME.

(2) For every property p of ordered graphs that is decidable in PTIME, there exists
an LFP-sentence ϕ of signature {E , <} such that for all ordered graphs G we
have: G |= ϕ ⇐⇒ G has property p.

Every PTIME-property of ordered graphs can be described by an LFP-sentence.

Later on in this talk, we will prove a variant of the Immerman-Vardi Theorem for
Datalog rather than LFP.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (2/2)
LPF : least fixed-point logic : extends FO by the ability to define relations inductively

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E , <}, upon input of an ordered
graph G = (V G,EG, <G) it can be decided in polynomial time whether G |= ϕ.

The data complexity of model-checking for LFP-sentences is in PTIME.

(2) For every property p of ordered graphs that is decidable in PTIME, there exists
an LFP-sentence ϕ of signature {E , <} such that for all ordered graphs G we
have: G |= ϕ ⇐⇒ G has property p.

Every PTIME-property of ordered graphs can be described by an LFP-sentence.

Later on in this talk, we will prove a variant of the Immerman-Vardi Theorem for
Datalog rather than LFP.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (2/2)
LPF : least fixed-point logic : extends FO by the ability to define relations inductively

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E , <}, upon input of an ordered
graph G = (V G,EG, <G) it can be decided in polynomial time whether G |= ϕ.

The data complexity of model-checking for LFP-sentences is in PTIME.

(2) For every property p of ordered graphs that is decidable in PTIME, there exists
an LFP-sentence ϕ of signature {E , <} such that for all ordered graphs G we
have: G |= ϕ ⇐⇒ G has property p.

Every PTIME-property of ordered graphs can be described by an LFP-sentence.

Later on in this talk, we will prove a variant of the Immerman-Vardi Theorem for
Datalog rather than LFP.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (2/2)
LPF : least fixed-point logic : extends FO by the ability to define relations inductively

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E , <}, upon input of an ordered
graph G = (V G,EG, <G) it can be decided in polynomial time whether G |= ϕ.

The data complexity of model-checking for LFP-sentences is in PTIME.

(2) For every property p of ordered graphs that is decidable in PTIME, there exists
an LFP-sentence ϕ of signature {E , <} such that for all ordered graphs G we
have: G |= ϕ ⇐⇒ G has property p.

Every PTIME-property of ordered graphs can be described by an LFP-sentence.

Later on in this talk, we will prove a variant of the Immerman-Vardi Theorem for
Datalog rather than LFP.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 6/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (1/3)

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

Major open research question: [Chandra & Harel 1982; Gurevich 1988]
Is there a logic L (instead of LFP) such that the Immerman-Vardi theorem can be
generalized to arbitrary graphs? I.e.:

Is there a logic L such that PTIME is captured by L on graphs?

Such a logic L would be a great query language: It is guaranteed that

• all queries described by a user can be evaluated in PTIME, and

• all tractable queries can be formulated in the language.

In order to really get this, the notions of “logic” and “capturing PTIME” have to be
defined very carefully:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 7/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (1/3)

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

Major open research question: [Chandra & Harel 1982; Gurevich 1988]
Is there a logic L (instead of LFP) such that the Immerman-Vardi theorem can be
generalized to arbitrary graphs? I.e.:

Is there a logic L such that PTIME is captured by L on graphs?

Such a logic L would be a great query language: It is guaranteed that

• all queries described by a user can be evaluated in PTIME, and

• all tractable queries can be formulated in the language.

In order to really get this, the notions of “logic” and “capturing PTIME” have to be
defined very carefully:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 7/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (1/3)

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

Major open research question: [Chandra & Harel 1982; Gurevich 1988]
Is there a logic L (instead of LFP) such that the Immerman-Vardi theorem can be
generalized to arbitrary graphs? I.e.:

Is there a logic L such that PTIME is captured by L on graphs?

Such a logic L would be a great query language: It is guaranteed that

• all queries described by a user can be evaluated in PTIME, and

• all tractable queries can be formulated in the language.

In order to really get this, the notions of “logic” and “capturing PTIME” have to be
defined very carefully:

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 7/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (2/3)
• An abstract logic L consists of

• a set of L[σ]-sentences for each signature σ, and
• a mapping that associates a property pϕ of σ-structures with each

L[σ]-sentence ϕ.
For every σ-structure G we write G |=L ϕ :⇐⇒ G ∈ pϕ.

• An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature σ = {E}:

1. The set of L[σ]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

2. There is an algorithm B that associates with every sentence ϕ ∈ L[σ] a
PTIME-algorithm Aϕ that decides pϕ — i.e., upon input of a graph G,
Aϕ decides in PTIME whether G |=L ϕ.

B is the query optimizer, which produces the query evaluation plan Aϕ

3. For every PTIME-algorithm A that decides a graph property, there is a
sentence ϕ ∈ L[σ] such that for every graph G we have: G |=L ϕ ⇐⇒
A accepts G. All PTIME graph properties can be expressed in L[σ].

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (2/3)
• An abstract logic L consists of

• a set of L[σ]-sentences for each signature σ, and
• a mapping that associates a property pϕ of σ-structures with each

L[σ]-sentence ϕ.
For every σ-structure G we write G |=L ϕ :⇐⇒ G ∈ pϕ.

• An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature σ = {E}:

1. The set of L[σ]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

2. There is an algorithm B that associates with every sentence ϕ ∈ L[σ] a
PTIME-algorithm Aϕ that decides pϕ — i.e., upon input of a graph G,
Aϕ decides in PTIME whether G |=L ϕ.

B is the query optimizer, which produces the query evaluation plan Aϕ

3. For every PTIME-algorithm A that decides a graph property, there is a
sentence ϕ ∈ L[σ] such that for every graph G we have: G |=L ϕ ⇐⇒
A accepts G. All PTIME graph properties can be expressed in L[σ].

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (2/3)
• An abstract logic L consists of

• a set of L[σ]-sentences for each signature σ, and
• a mapping that associates a property pϕ of σ-structures with each

L[σ]-sentence ϕ.
For every σ-structure G we write G |=L ϕ :⇐⇒ G ∈ pϕ.

• An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature σ = {E}:

1. The set of L[σ]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

2. There is an algorithm B that associates with every sentence ϕ ∈ L[σ] a
PTIME-algorithm Aϕ that decides pϕ — i.e., upon input of a graph G,
Aϕ decides in PTIME whether G |=L ϕ.

B is the query optimizer, which produces the query evaluation plan Aϕ

3. For every PTIME-algorithm A that decides a graph property, there is a
sentence ϕ ∈ L[σ] such that for every graph G we have: G |=L ϕ ⇐⇒
A accepts G. All PTIME graph properties can be expressed in L[σ].

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (2/3)
• An abstract logic L consists of

• a set of L[σ]-sentences for each signature σ, and
• a mapping that associates a property pϕ of σ-structures with each

L[σ]-sentence ϕ.
For every σ-structure G we write G |=L ϕ :⇐⇒ G ∈ pϕ.

• An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature σ = {E}:

1. The set of L[σ]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

2. There is an algorithm B that associates with every sentence ϕ ∈ L[σ] a
PTIME-algorithm Aϕ that decides pϕ — i.e., upon input of a graph G,
Aϕ decides in PTIME whether G |=L ϕ.

B is the query optimizer, which produces the query evaluation plan Aϕ

3. For every PTIME-algorithm A that decides a graph property, there is a
sentence ϕ ∈ L[σ] such that for every graph G we have: G |=L ϕ ⇐⇒
A accepts G. All PTIME graph properties can be expressed in L[σ].

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 8/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) ??? satisfies conditions 1 & 2, but not condition 3

(1) ??? satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) ??? satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) ??? satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines.

Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties;

let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.

Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) LFP satisfies conditions 1 & 2, but not condition 3

(1) order-invariant LFP satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 9/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Overview

Descriptive Complexity

Datalog is poorly expressive

Datalog is highly expressive

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 10/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h(Q(I)) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}
• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!

1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h(Q(I)) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}
• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!

1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h(Q(I)) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}
• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!

1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h(Q(I)) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}

• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!

1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h(Q(I)) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}
• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!

1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h(Q(I)) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}
• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!

1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h(Q(I)) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}
• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!
1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 11/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Overview

Descriptive Complexity

Datalog is poorly expressive

Datalog is highly expressive

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 12/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (1/2)
Represent words w of alphabet Σ by databases Iw of schema SΣ consisting of a
binary relation SUCC and unary relations MIN , MAX and Pα for every α ∈ Σ.

Definition: For a word w = w0 · · ·wn−1 with wi ∈ Σ, let Iw be the database of
schema SΣ with

• Iw (SUCC) = {(i, i+1) : 0 6 i < n−1}, Iw (MIN) = {0}, Iw (MAX) = {n−1},
• Iw (Pα) = {i ∈ {0, . . . , n−1} : wi = α} for each letter α ∈ Σ.

Example: Σ = {a, b, c}, w = aaba, Iw :

SUCC:

0 1
1 2
2 3

MIN:

0

MAX:

3

Pa:

0
1
3

Pb:

2

Pc :

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 13/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (1/2)
Represent words w of alphabet Σ by databases Iw of schema SΣ consisting of a
binary relation SUCC and unary relations MIN , MAX and Pα for every α ∈ Σ.

Definition: For a word w = w0 · · ·wn−1 with wi ∈ Σ, let Iw be the database of
schema SΣ with

• Iw (SUCC) = {(i, i+1) : 0 6 i < n−1}, Iw (MIN) = {0}, Iw (MAX) = {n−1},
• Iw (Pα) = {i ∈ {0, . . . , n−1} : wi = α} for each letter α ∈ Σ.

Example: Σ = {a, b, c}, w = aaba, Iw :

SUCC:

0 1
1 2
2 3

MIN:

0

MAX:

3

Pa:

0
1
3

Pb:

2

Pc :

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 13/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M.

Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME.

There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes”

Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME. There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 15/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M.

Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M.

Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 16/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.

Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).

Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.

Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).

Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).

Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.

Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).

Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.

Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).

Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.

Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).

Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.
Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).

Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.
Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).
Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.
Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).
Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.
Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 17/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :

For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi)

And add the rule
NOTMIN(z) ← SUCC(z′, z)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 18/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”.

We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) .

For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:

ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state q and tape symbol a, and let (q′, a′,m) := δ(q, a), where δ
is the transition function of M.

We add to PM,k the following rules:

STATEq′(x ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)︸ ︷︷ ︸
at time t := nr (x), M is in state q, reads symbol a, and nr (x ′) = t + 1

TAPEa′(x
′, y)︸ ︷︷ ︸ ←

︷ ︸︸ ︷
SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

at time t+1, position nr (y) carries the letter written at step t

And all other tape positions carry the same letter at time t+1 as at time t :
For every tape symbol b add the rule

TAPEb(x ′, y ′) ← TAPEb(x , y ′), SUCCk (x , x ′), STATEq(x), HEAD(x , y), NEQ(y , y ′)

Add similar rules for representing the head movement of M:
m ∈ {0, 1,−1} indicates whether the head stays or moves one position to the right
or the left, respectively.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state q and tape symbol a, and let (q′, a′,m) := δ(q, a), where δ
is the transition function of M. We add to PM,k the following rules:

STATEq′(x ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)︸ ︷︷ ︸
at time t := nr (x), M is in state q, reads symbol a, and nr (x ′) = t + 1

TAPEa′(x
′, y)︸ ︷︷ ︸ ←

︷ ︸︸ ︷
SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

at time t+1, position nr (y) carries the letter written at step t

And all other tape positions carry the same letter at time t+1 as at time t :
For every tape symbol b add the rule

TAPEb(x ′, y ′) ← TAPEb(x , y ′), SUCCk (x , x ′), STATEq(x), HEAD(x , y), NEQ(y , y ′)

Add similar rules for representing the head movement of M:
m ∈ {0, 1,−1} indicates whether the head stays or moves one position to the right
or the left, respectively.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state q and tape symbol a, and let (q′, a′,m) := δ(q, a), where δ
is the transition function of M. We add to PM,k the following rules:

STATEq′(x ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)︸ ︷︷ ︸
at time t := nr (x), M is in state q, reads symbol a, and nr (x ′) = t + 1

TAPEa′(x
′, y)︸ ︷︷ ︸ ←

︷ ︸︸ ︷
SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

at time t+1, position nr (y) carries the letter written at step t

And all other tape positions carry the same letter at time t+1 as at time t :
For every tape symbol b add the rule

TAPEb(x ′, y ′) ← TAPEb(x , y ′), SUCCk (x , x ′), STATEq(x), HEAD(x , y), NEQ(y , y ′)

Add similar rules for representing the head movement of M:
m ∈ {0, 1,−1} indicates whether the head stays or moves one position to the right
or the left, respectively.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state q and tape symbol a, and let (q′, a′,m) := δ(q, a), where δ
is the transition function of M. We add to PM,k the following rules:

STATEq′(x ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)︸ ︷︷ ︸
at time t := nr (x), M is in state q, reads symbol a, and nr (x ′) = t + 1

TAPEa′(x
′, y)︸ ︷︷ ︸ ←

︷ ︸︸ ︷
SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

at time t+1, position nr (y) carries the letter written at step t

And all other tape positions carry the same letter at time t+1 as at time t :
For every tape symbol b add the rule

TAPEb(x ′, y ′) ← TAPEb(x , y ′), SUCCk (x , x ′), STATEq(x), HEAD(x , y), NEQ(y , y ′)

Add similar rules for representing the head movement of M:
m ∈ {0, 1,−1} indicates whether the head stays or moves one position to the right
or the left, respectively.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 20/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (5/5)
Recall that we consider M ’s transition (q′, a′,m) := δ(q, a).

• If m = 0, we add to PM,k the rule

HEAD(x ′, y) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

• If m = 1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y , y ′)

• If m = −1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y ′, y)

To ensure that the Datalog query outputs the correct result, we add the rule

GOAL() ← STATEaccept(x)

This finally completes the construction of the Datalog program PM,k .
It is straightforward to verify that this proves the Simulation Lemma.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (5/5)
Recall that we consider M ’s transition (q′, a′,m) := δ(q, a).

• If m = 0, we add to PM,k the rule

HEAD(x ′, y) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

• If m = 1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y , y ′)

• If m = −1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y ′, y)

To ensure that the Datalog query outputs the correct result, we add the rule

GOAL() ← STATEaccept(x)

This finally completes the construction of the Datalog program PM,k .
It is straightforward to verify that this proves the Simulation Lemma.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (5/5)
Recall that we consider M ’s transition (q′, a′,m) := δ(q, a).

• If m = 0, we add to PM,k the rule

HEAD(x ′, y) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

• If m = 1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y , y ′)

• If m = −1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y ′, y)

To ensure that the Datalog query outputs the correct result, we add the rule

GOAL() ← STATEaccept(x)

This finally completes the construction of the Datalog program PM,k .
It is straightforward to verify that this proves the Simulation Lemma.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (5/5)
Recall that we consider M ’s transition (q′, a′,m) := δ(q, a).

• If m = 0, we add to PM,k the rule

HEAD(x ′, y) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

• If m = 1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y , y ′)

• If m = −1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y ′, y)

To ensure that the Datalog query outputs the correct result, we add the rule

GOAL() ← STATEaccept(x)

This finally completes the construction of the Datalog program PM,k .
It is straightforward to verify that this proves the Simulation Lemma.

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (5/5)
Recall that we consider M ’s transition (q′, a′,m) := δ(q, a).

• If m = 0, we add to PM,k the rule

HEAD(x ′, y) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

• If m = 1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y , y ′)

• If m = −1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y ′, y)

To ensure that the Datalog query outputs the correct result, we add the rule

GOAL() ← STATEaccept(x)

This finally completes the construction of the Datalog program PM,k .
It is straightforward to verify that this proves the Simulation Lemma.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 21/22

DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 22/22

Databases and Despriptive Complexity — Part 2:

A Toolkit for Proving Limitations
of the Expressive Power of Logics

Nicole Schweikardt

Humboldt-Universität zu Berlin

EPIT 2019 — Spring School on Theoretical Computer Science:
Databases, logic and automata

Luminy, 11 April 2019

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

In this talk

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet Σ.

I p is a graph property, if the following is true:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph query, if the following is true:

if π : G ∼= H, then for all a1, . . . ,ak ∈ V G,(
a1, . . . ,ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 2/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

In this talk

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet Σ.

I p is a graph property, if the following is true:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph query, if the following is true:

if π : G ∼= H, then for all a1, . . . ,ak ∈ V G,(
a1, . . . ,ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 2/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

In this talk

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet Σ.

I p is a graph property, if the following is true:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph query, if the following is true:

if π : G ∼= H, then for all a1, . . . ,ak ∈ V G,(
a1, . . . ,ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 2/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

In this talk

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet Σ.

I p is a graph property, if the following is true:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph query, if the following is true:

if π : G ∼= H, then for all a1, . . . ,ak ∈ V G,(
a1, . . . ,ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 2/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Logics expressing graph properties and queries
Classical logics like, e.g.
I FO (first-order logic: Boolean combinations + quantification over nodes)

I EMSO (existential monadic second-order logic: FO + existential quantification
over sets of nodes)

express graph properties and queries in a straightforward way.

Example:

I q(G) := { x ∈ V G : x lies on a triangle } is expressed in FO via

ϕ(x) := ∃y ∃z
(

E(x , y) ∧ E(y , z) ∧ E(z, x)
)

I p = { G : G is 3-colorable } is expressed in EMSO via

∃R ∃B ∃G
(
∀x
(
R(x) ∨ B(x) ∨G(x)

)
∧

∀x ∀y
(

E(x , y)→ ¬
(
(R(x) ∧ R(y)) ∨ (B(x) ∧ B(y)) ∨ (G(x) ∧G(y))

)))

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 3/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Logics expressing graph properties and queries
Classical logics like, e.g.
I FO (first-order logic: Boolean combinations + quantification over nodes)
I EMSO (existential monadic second-order logic: FO + existential quantification

over sets of nodes)

express graph properties and queries in a straightforward way.

Example:

I q(G) := { x ∈ V G : x lies on a triangle } is expressed in FO via

ϕ(x) := ∃y ∃z
(

E(x , y) ∧ E(y , z) ∧ E(z, x)
)

I p = { G : G is 3-colorable } is expressed in EMSO via

∃R ∃B ∃G
(
∀x
(
R(x) ∨ B(x) ∨G(x)

)
∧

∀x ∀y
(

E(x , y)→ ¬
(
(R(x) ∧ R(y)) ∨ (B(x) ∧ B(y)) ∨ (G(x) ∧G(y))

)))
NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 3/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Question

How can we prove that

certain properties or queries

are NOT expressible in a particular logic?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 4/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 5/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 6/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.

I The asymptotic probability of p is µ(p) := lim
n→∞

µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.
I The asymptotic probability of p is µ(p) := lim

n→∞
µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.
I The asymptotic probability of p is µ(p) := lim

n→∞
µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.
I The asymptotic probability of p is µ(p) := lim

n→∞
µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)

I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])
Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.
I The asymptotic probability of p is µ(p) := lim

n→∞
µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.
I The asymptotic probability of p is µ(p) := lim

n→∞
µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.
I The asymptotic probability of p is µ(p) := lim

n→∞
µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 7/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 8/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B,

by 2 players: Spoiler & Duplicator,

in r rounds.

A :

a1

a2

a3

B :

b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator,

in r rounds.

A :

a1

a2

a3

B :

b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :

b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :

b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2

b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2

b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B, by 2 players: Spoiler & Duplicator, in r rounds.

A :

a1

a2

a3

B :
b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 9/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Ehrenfeucht-Fraïssé Theorem
Theorem:
A ≈r B ⇐⇒ A and B satisfy the same FO-sentences of quantifier depth 6 r .

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs Ar and Br such that
I Ar has property p,
I Br doesn’t have property p, and
I Ar ≈r Br .

Examples:
I The property of being a linear order of even cardinality is not FO-expressible.
I Connectivity is not EMSO-expressible (Fagin, 1975);

not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Ehrenfeucht-Fraïssé Theorem
Theorem:
A ≈r B ⇐⇒ A and B satisfy the same FO-sentences of quantifier depth 6 r .

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs Ar and Br such that
I Ar has property p,
I Br doesn’t have property p, and
I Ar ≈r Br .

Examples:
I The property of being a linear order of even cardinality is not FO-expressible.
I Connectivity is not EMSO-expressible (Fagin, 1975);

not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Ehrenfeucht-Fraïssé Theorem
Theorem:
A ≈r B ⇐⇒ A and B satisfy the same FO-sentences of quantifier depth 6 r .

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs Ar and Br such that
I Ar has property p,
I Br doesn’t have property p, and
I Ar ≈r Br .

Examples:
I The property of being a linear order of even cardinality is not FO-expressible.

I Connectivity is not EMSO-expressible (Fagin, 1975);
not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Ehrenfeucht-Fraïssé Theorem
Theorem:
A ≈r B ⇐⇒ A and B satisfy the same FO-sentences of quantifier depth 6 r .

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs Ar and Br such that
I Ar has property p,
I Br doesn’t have property p, and
I Ar ≈r Br .

Examples:
I The property of being a linear order of even cardinality is not FO-expressible.
I Connectivity is not EMSO-expressible (Fagin, 1975)

;
not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Ehrenfeucht-Fraïssé Theorem
Theorem:
A ≈r B ⇐⇒ A and B satisfy the same FO-sentences of quantifier depth 6 r .

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs Ar and Br such that
I Ar has property p,
I Br doesn’t have property p, and
I Ar ≈r Br .

Examples:
I The property of being a linear order of even cardinality is not FO-expressible.
I Connectivity is not EMSO-expressible (Fagin, 1975);

not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Ehrenfeucht-Fraïssé Theorem
Theorem:
A ≈r B ⇐⇒ A and B satisfy the same FO-sentences of quantifier depth 6 r .

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs Ar and Br such that
I Ar has property p,
I Br doesn’t have property p, and
I Ar ≈r Br .

Examples:
I The property of being a linear order of even cardinality is not FO-expressible.
I Connectivity is not EMSO-expressible (Fagin, 1975);

not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 10/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 11/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Logical Reductions (1/2)

Use known non-expressibility results for showing new non-expressibility results!

Example:

I Show that the property of being acyclic is not FO-definable.

I Use that we already know that being a linear order of even cardinality is
not FO-definable.

I Assume, for contradiction, that acyclicity is FO-definable by a formula ϕacyclic.

I Transform ϕacyclic into a formula ψeven which, when evaluated in a linear order A,
simulates the evaluation of ϕacyclic on a graph GA with

GA acyclic ⇐⇒ A has even cardinality.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Logical Reductions (1/2)

Use known non-expressibility results for showing new non-expressibility results!

Example:

I Show that the property of being acyclic is not FO-definable.

I Use that we already know that being a linear order of even cardinality is
not FO-definable.

I Assume, for contradiction, that acyclicity is FO-definable by a formula ϕacyclic.

I Transform ϕacyclic into a formula ψeven which, when evaluated in a linear order A,
simulates the evaluation of ϕacyclic on a graph GA with

GA acyclic ⇐⇒ A has even cardinality.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Logical Reductions (1/2)

Use known non-expressibility results for showing new non-expressibility results!

Example:

I Show that the property of being acyclic is not FO-definable.

I Use that we already know that being a linear order of even cardinality is
not FO-definable.

I Assume, for contradiction, that acyclicity is FO-definable by a formula ϕacyclic.

I Transform ϕacyclic into a formula ψeven which, when evaluated in a linear order A,
simulates the evaluation of ϕacyclic on a graph GA with

GA acyclic ⇐⇒ A has even cardinality.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Logical Reductions (1/2)

Use known non-expressibility results for showing new non-expressibility results!

Example:

I Show that the property of being acyclic is not FO-definable.

I Use that we already know that being a linear order of even cardinality is
not FO-definable.

I Assume, for contradiction, that acyclicity is FO-definable by a formula ϕacyclic.

I Transform ϕacyclic into a formula ψeven which, when evaluated in a linear order A,
simulates the evaluation of ϕacyclic on a graph GA with

GA acyclic ⇐⇒ A has even cardinality.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 12/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Logical Reductions (2/2)

Transform ϕacyclic into a formula ψeven which, when evaluated in a linear order A,
simulates the evaluation of ϕacyclic on a graph GA with

GA acyclic ⇐⇒ A has even cardinality.

|A| = 5 =⇒ GA :

a1 a2 a3 a4 a5

|A| = 6 =⇒ GA :

a1 a2 a3 a4 a5 a6

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 13/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 14/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Neighborhoods
Graph G = (V ,E)

Distance dist(u, v) : length of a shortest path between u, v in G.

Shell Sr (a) of nodes at distance exactly r from a.

Ball Nr (a) of radius r at a in G.

Neighborhood Nr (a) of radius r at a in G.

a

r = 1

r = 2

r = 0

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 15/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Neighborhoods
Graph G = (V ,E)

Distance dist(u, v) : length of a shortest path between u, v in G.

Shell Sr (a) of nodes at distance exactly r from a.

Ball Nr (a) of radius r at a in G.

Neighborhood Nr (a) of radius r at a in G.

a a

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 15/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Gaifman-local queries

I For a list a = a1, . . . , ak of nodes, NG
r (a) = NG

r (a1) ∪ · · · ∪ NG
r (ak).

I The r -neighborhood NG
r (a) is the structure (G|NG

r (a), a) consisting of the induced
subgraph of G on NG

r (a), together with the distinguished nodes a.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-local if there is an n0 such that for every n > n0 and every graph G
with |V G| = n, the following is true for all k -tuples a and b of nodes:

if NG
f (n)(a) ∼= NG

f (n)(b) then a ∈ q(G) ⇐⇒ b ∈ q(G).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 16/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(for short: q is definable in <-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (for short: q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 17/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(for short: q is definable in <-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (for short: q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 17/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(for short: q is definable in <-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (for short: q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 17/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Use locality for proving non-expressibility

Example: The reachability query

REACH(G) := { (a1, a2) : there is a directed path from a1 to a2 in G }

is not n
5 -local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G:
a
1 b

1

a
2 b

2

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 18/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

• Does node x lie on a cycle?

• Does node x belong to a connected component that is acyclic?

• Is node x reachable from a node that belongs to a triangle?

• Do nodes x and y have the same distance to node z?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 19/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain an AC0 circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 20/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain an AC0 circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 20/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain an AC0 circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 20/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain an AC0 circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 20/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC0 circuit family C?

• Represent graph G = (V ,E) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by a circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC0 circuit family C?

• Represent graph G = (V ,E) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by a circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC0 circuit family C?

• Represent graph G = (V ,E) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by a circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC0 circuit family C?

• Represent graph G = (V ,E) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by a circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC0 circuit family C?

• Represent graph G = (V ,E) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by a circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 21/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO.

Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.

I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.

Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that

for m := (log n)c , NG
m (a) ∼= NG

m (b), but a ∈ q(G) and b 6∈ q(G).
For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 22/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.

For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.

For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.

For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

i

i+ 1

u

v

π(u)

π(v)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

i

i+ 1

u

v

π(u)

π(v)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

i

i+ 1

u

v

π(u)

π(v)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

i

i+ 1v π(v)

b a

π(u) u

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

b a

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

b a

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

b a

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

b a

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

b a

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.
0

m

b a

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 23/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.

I For all i < m and all u ∈ Si(a), v ∈ Si+1(a) consider the potential edges
e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.

I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si(a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.

I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si(a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.
I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si(a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.
I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Hanf-local graph properties

I Let G = (V G,EG) and H = (V H ,EH) be two graphs.
I Let r ∈ N.

I G �r H :⇐⇒ there is a bijection β : V G → V H such that for every a ∈ V G

NG
r
(
a
) ∼= NH

r
(
β(a)

)

Definition
A graph property p is Hanf f (n)-local if there is an n0 such that
for all graphs G and H of size n > n0 the following is true:

If G �f (n) H then G has property p iff H has property p.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 25/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Hanf-local graph properties

I Let G = (V G,EG) and H = (V H ,EH) be two graphs.
I Let r ∈ N.

I G �r H :⇐⇒ there is a bijection β : V G → V H such that for every a ∈ V G

NG
r
(
a
) ∼= NH

r
(
β(a)

)

Definition
A graph property p is Hanf f (n)-local if there is an n0 such that
for all graphs G and H of size n > n0 the following is true:

If G �f (n) H then G has property p iff H has property p.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 25/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Hanf-locality of FO

Theorem:

I For every graph property p that is FO-definable,
there is a constant c such that p is Hanf c-local.

(Fagin, Stockmeyer, Vardi ’95; Hanf ’65)

I For every property of strings or trees that is definable in <-invariant FO,
there is a constant c such that p is Hanf c-local.

(Benedikt, Segoufin ’09)

I For every property of strings that is definable in Arb-invariant FO(Succ),
there is a constant c such that p is Hanf (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

Example: The class of all strings of the form c∗a c∗b c∗ is not definable in
Arb-invariant FO(Succ).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Hanf-locality of FO

Theorem:

I For every graph property p that is FO-definable,
there is a constant c such that p is Hanf c-local.

(Fagin, Stockmeyer, Vardi ’95; Hanf ’65)

I For every property of strings or trees that is definable in <-invariant FO,
there is a constant c such that p is Hanf c-local.

(Benedikt, Segoufin ’09)

I For every property of strings that is definable in Arb-invariant FO(Succ),
there is a constant c such that p is Hanf (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

Example: The class of all strings of the form c∗a c∗b c∗ is not definable in
Arb-invariant FO(Succ).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Hanf-locality of FO

Theorem:

I For every graph property p that is FO-definable,
there is a constant c such that p is Hanf c-local.

(Fagin, Stockmeyer, Vardi ’95; Hanf ’65)

I For every property of strings or trees that is definable in <-invariant FO,
there is a constant c such that p is Hanf c-local.

(Benedikt, Segoufin ’09)

I For every property of strings that is definable in Arb-invariant FO(Succ),
there is a constant c such that p is Hanf (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

Example: The class of all strings of the form c∗a c∗b c∗ is not definable in
Arb-invariant FO(Succ).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Hanf-locality of FO

Theorem:

I For every graph property p that is FO-definable,
there is a constant c such that p is Hanf c-local.

(Fagin, Stockmeyer, Vardi ’95; Hanf ’65)

I For every property of strings or trees that is definable in <-invariant FO,
there is a constant c such that p is Hanf c-local.

(Benedikt, Segoufin ’09)

I For every property of strings that is definable in Arb-invariant FO(Succ),
there is a constant c such that p is Hanf (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

Example: The class of all strings of the form c∗a c∗b c∗ is not definable in
Arb-invariant FO(Succ).

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 26/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 27/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:

I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):
I Precise (stronger) statement: The existence of a k -clique cannot be

expressed by an Arb-invariant FO-sentence using only bk/4c variables.
I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):
I Precise (stronger) statement: The existence of a k -clique cannot be

expressed by an Arb-invariant FO-sentence using only bk/4c variables.
I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):

I Precise (stronger) statement: The existence of a k -clique cannot be
expressed by an Arb-invariant FO-sentence using only bk/4c variables.

I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):
I Precise (stronger) statement: The existence of a k -clique cannot be

expressed by an Arb-invariant FO-sentence using only bk/4c variables.

I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):
I Precise (stronger) statement: The existence of a k -clique cannot be

expressed by an Arb-invariant FO-sentence using only bk/4c variables.
I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):
I Precise (stronger) statement: The existence of a k -clique cannot be

expressed by an Arb-invariant FO-sentence using only bk/4c variables.
I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:
I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):
I Precise (stronger) statement: The existence of a k -clique cannot be

expressed by an Arb-invariant FO-sentence using only bk/4c variables.
I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 28/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 29/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O.

I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(Succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(Succ) iff it is aperiodic and closed under swaps.

• A string language L is aperiodic iff there exists a number ` ∈ N such that for
all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(Succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(Succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(Succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 31/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Some further results proved using this method

Theorem:

I A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcard(Succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Some further results proved using this method

Theorem:

I A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcard(Succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Some further results proved using this method

Theorem:

I A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcard(Succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Some further results proved using this method

Theorem:

I A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcard(Succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 32/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 33/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Gaifman-locality
If NG

r (a) ∼= NG
r (b) then

(
a ∈ q(G) ⇐⇒ b ∈ q(G)

)
.

Known:

I Queries definable in order-invariant FO are Gaifman-local with respect to a
constant locality radius. (Grohe, Schwentick ’98)

I Queries definable in Arb-invariant FO are Gaifman-local with respect to a
poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

I How about addition-invariant FO — is it Gaifman-local with respect to a
constant locality radius?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 34/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Hanf-locality
A graph property p is Hanf-local w.r.t. locality radius r , if

any two graphs having the same r -neighbourhood types with the same multiplicities,
are not distinguished by p.

Known:
I Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality

radius. (Fagin, Stockmeyer, Vardi ’95)
I Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t.

a constant locality radius. (Benedikt, Segoufin ’09)

I Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a
poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin ’11)

Open Question:
I Do these results generalise from strings to arbitrary finite graphs?

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 35/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Decidable Characterisations

Open Question:

Are there decidable characterisations of

I order-invariant FO?
I addition-invariant FO?
I (+,×)-invariant FO?

Known:

I On finite strings and trees: order-invariant FO ≡ FO. (Benedikt, Segoufin ’10)
I On finite coloured sets: addition-invariant FO ≡ FO enriched by “cardinality

modulo” quantifiers. (S., Segoufin ’10)

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 36/37

INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Thank You!

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 37/37

	Descriptive Complexity
	Datalog is poorly expressive
	Datalog is highly expressive
	Introduction
	Zero-One Laws
	Ehrenfeucht-Fraïssé games
	Logical Reductions
	Locality Results
	Reductions to known results in circuit complexity
	The ``Algebraic'' Approach
	Final Remarks

