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Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Throughout this talk
• all graphs are finite and directed

• undirected graphs are modeled as directed graphs where an undirected edge
u — v is represented by the directed edges u → v and u ← v .

• graphs G = (V G,EG) are represented by databases IG of schema {V ,E}
where V and E are interpreted by V G and EG, respectively

• p is a graph property, if for all graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

• An ordered graph G is of the form (V G,EG, <G) where (V G,EG) is a graph and
<G is a strict linear order on V G.

• p is a property of ordered graphs, if for all ordered graphs G, H we have:

if G ∼= H, then G has property p ⇐⇒ H has property p

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 4/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Seminal Results in Descriptive Complexity (1/2)
ESO : existential second-order logic : ∃R1 · · · ∃R` ψ(E ,R1, . . . ,R`)︸ ︷︷ ︸

∈ FO

Fagin’s Theorem: NP is captured by ESO on graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E}, upon input of a graph
G = (V G,EG) it can be decided in nondeterministic polynomial time whether
G |= ϕ.

The data complexity of model-checking for ESO-sentences is in NP.

(2) For every property p of graphs that is decidable in NP, there exists an
ESO-sentence ϕ of signature {E} such that for all graphs G we have:
G |= ϕ ⇐⇒ G has property p.

Every NP-property of graphs can be described by an ESO-sentence.
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Seminal Results in Descriptive Complexity (2/2)
LPF : least fixed-point logic : extends FO by the ability to define relations inductively

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

This means:

(1) For every fixed ESO-sentence ϕ of signature {E , <}, upon input of an ordered
graph G = (V G,EG, <G) it can be decided in polynomial time whether G |= ϕ.

The data complexity of model-checking for LFP-sentences is in PTIME.

(2) For every property p of ordered graphs that is decidable in PTIME, there exists
an LFP-sentence ϕ of signature {E , <} such that for all ordered graphs G we
have: G |= ϕ ⇐⇒ G has property p.

Every PTIME-property of ordered graphs can be described by an LFP-sentence.

Later on in this talk, we will prove a variant of the Immerman-Vardi Theorem for
Datalog rather than LFP.
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The Quest for a Logic Capturing PTIME (1/3)

Immerman-Vardi Theorem: PTIME is captured by LFP on ordered graphs.

Major open research question: [Chandra & Harel 1982; Gurevich 1988]
Is there a logic L (instead of LFP) such that the Immerman-Vardi theorem can be
generalized to arbitrary graphs? I.e.:

Is there a logic L such that PTIME is captured by L on graphs?

Such a logic L would be a great query language: It is guaranteed that

• all queries described by a user can be evaluated in PTIME, and

• all tractable queries can be formulated in the language.

In order to really get this, the notions of “logic” and “capturing PTIME” have to be
defined very carefully:
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The Quest for a Logic Capturing PTIME (2/3)
• An abstract logic L consists of

• a set of L[σ]-sentences for each signature σ, and
• a mapping that associates a property pϕ of σ-structures with each

L[σ]-sentence ϕ.
For every σ-structure G we write G |=L ϕ :⇐⇒ G ∈ pϕ.

• An abstract logic L captures PTIME on graphs if the following 3 conditions are
satisfied for the signature σ = {E}:

1. The set of L[σ]-sentences is decidable.
It can be decided if the user’s input is an admissible query.

2. There is an algorithm B that associates with every sentence ϕ ∈ L[σ] a
PTIME-algorithm Aϕ that decides pϕ — i.e., upon input of a graph G,
Aϕ decides in PTIME whether G |=L ϕ.

B is the query optimizer, which produces the query evaluation plan Aϕ

3. For every PTIME-algorithm A that decides a graph property, there is a
sentence ϕ ∈ L[σ] such that for every graph G we have: G |=L ϕ ⇐⇒
A accepts G. All PTIME graph properties can be expressed in L[σ].
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The Quest for a Logic Capturing PTIME (3/3)

Each of the 3 requirements is crucial:

(3) ??? satisfies conditions 1 & 2, but not condition 3

(1) ??? satisfies conditions 2 & 3, but not condition 1

(2) The following abstract logic L satisfies conditions 1 & 3, but not condition 2:

– There are only countably many Turing machines. Thus there are only
countably many PTIME computable graph properties; let p0, p1, p2, . . . be a list
of all these.
Note: We don’t require this list to be recursively enumerable!

– Syntax: L[σ] := {0, 1, 2, . . .} = N. L[σ] is decidable. I.e., condition 1 is met.

– Semantics: for each n ∈ L[σ] and each graph G let
G |=L n :⇐⇒ G has property pn.

All PTIME properties of graphs are expressible. I.e., condition 3 is met.

– But we don’t have an algorithm B that associates with every n ∈ N a PTIME
algorithm An that decides pn. I.e., condition 2 is not met.
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Overview

Descriptive Complexity

Datalog is poorly expressive

Datalog is highly expressive
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Datalog queries are closed under homomorphisms
For simplicity, throughout this talk Datalog queries don’t contain any constants.

Definition: A query Q of schema S is closed under homomorphisms if for all DBs
I and J and all mappings h : dom→ dom, the following is true

if h(I) ⊆ J , then h( Q(I) ) ⊆ Q(J) .

Easy Observation: Every Datalog query Q is closed under homomorphisms.

Examples: The following queries are not closed under homomorphisms — hence,
not definable in Datalog.

• EXACTLY-1-IN-R returning “yes” for DB I ⇐⇒ relation R has exactly 1 tuple

• NEQ with1 NEQ(I) = {(a, b) : a, b ∈ adom(I), a 6= b}
• DISCONNECTED returning “yes” for DB IG ⇐⇒ graph G is not connected

• AT-LEAST-2 returning “yes” for DB I ⇐⇒ |adom(I)| > 2

I.e.: Datalog cannot even count to two!

1Recall: adom(I) is the active domain, i.e., the set of all elements of dom occurring in I.
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Datalog can simulate runs of Turing machines (1/2)
Represent words w of alphabet Σ by databases Iw of schema SΣ consisting of a
binary relation SUCC and unary relations MIN , MAX and Pα for every α ∈ Σ.

Definition: For a word w = w0 · · ·wn−1 with wi ∈ Σ, let Iw be the database of
schema SΣ with

• Iw (SUCC) = {(i, i+1) : 0 6 i < n−1}, Iw (MIN) = {0}, Iw (MAX) = {n−1},
• Iw (Pα) = {i ∈ {0, . . . , n−1} : wi = α} for each letter α ∈ Σ.

Example: Σ = {a, b, c}, w = aaba,  Iw :

SUCC:

0 1
1 2
2 3

MIN:

0

MAX:

3

Pa:

0
1
3

Pb:

2

Pc :
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Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw ) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw ) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw ) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw ) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M.

Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 14/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

EXPTIME-hardness of Datalog query evaluation (combined complexity)

Fix an arbitrary problem L ∈ EXPTIME.

There is a DTM T and a number ` such that,
upon input of a string u of length m, T takes at most 2(m`) steps to decide if u ∈ L.

Goal: Find a PTIME-computable reduction from L to Datalog query evaluation.
I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw ) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.
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I.e.: For every word u, construct a datalog query Q and a database I
such that u ∈ L ⇐⇒ Q(I) = “yes”.

Idea: For input word u choose Q and w as follows:

• Modify T into a deterministic Turing machine M which deletes its input, writes u
onto its tape and then simulates T upon input u.

• m := |u|, k := m` + 1 , and choose Q := QM,k with the Simulation Lemma

• w := aa (a string of length 2) and I := Iw .

QM,k (Iw ) = “yes” Simulation Lemma⇐⇒ M accepts w in at most |w |k − 1 steps

⇐⇒ T accepts u in at most 2(m`) steps

⇐⇒ u ∈ L.

Furthermore, QM,k and Iw can be constructed in time polynomial in k , i.e.,
polynomial in |u|.
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Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw ) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M.

Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
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Proof of the Simulation Lemma (1/5)
DTM M : only 1 tape; this is single-sided infinite with tape cells 0, 1, 2, 3, . . .

For input string w = w0 · · ·wn−1, we want to simulate the first nk−1 steps of M.

Let [n] := {0, . . . , n−1} = adom(Iw ).
Use k -tuples over [n] to represent numbers in {0, . . . , nk−1} :

x = (xk−1, . . . , x0) ∈ [n]k represents number nr (x) :=
∑k−1

i=0 xi · ni .

Our Datalog program PM,k will use the following idb-predicates to represent
configurations of M on input w at time steps 0, 1, . . . , nk−1:

• A 2k -ary predicate HEAD.

Intended meaning of HEAD(x , y) : at time nr (x), M ’s head is at tape cell nr (y)

• A k -ary predicate STATEq , for each state q (incl. “halt”, “accept”, “reject”).

Intended meaning of STATEq(x) : M is in state q at time nr (x)

• A 2k -ary predicate TAPEa, for each tape symbol a.

Intended meaning of TAPEa(x , y) :
at time nr (x) tape cell nr (y) carries the symbol a .
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Proof of the Simulation Lemma (2/5)
Start with PM,k := ∅ and add rules as follows.

Step 1: Add rules to achieve the intended meaning at time 0.

• At time 0, head is at tape position 0:

HEAD(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y0)

• At time 0, M is in the starting state q0:

STATEq0 (x) ← MIN(xk−1), . . . ,MIN(x0)

• At time 0, tape positions 0, . . . , n−1 carry the input string w :

TAPEa(x , y) ← MIN(xk−1), . . . ,MIN(x0), MIN(yk−1), . . . ,MIN(y1), Pa(y0)

Add this rule for every letter a ∈ Σ.

• At time 0, tape positions n, . . . , nk−1 carry the blank symbol � :
For each i ∈ {1, . . . , k−1} add the rule

TAPE�(x , y) ← MIN(xk−1), . . . ,MIN(x0), NOTMIN(yi )

And add the rule
NOTMIN(z) ← SUCC(z′, z)
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Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)
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NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (3/5)
Step 2: Add rules so that if intended meaning is achieved at time t , then also at t+1.

• Auxiliary rules for reasoning about “+1”: For each ` ∈ {1, . . . , k}, use a 2`-ary
predicate SUCC` to represent the “successor on `-tuples”. We add to PM,k the rule
SUCC1(z, z′)← SUCC(z, z′) . For each ` ∈ {1, . . . k−1} we add the rules

SUCC`+1(x`, x`−1, . . , x0, y`, y`−1, . . , y0)←MAX(x`−1), . . , MAX(x0), SUCC(x`, y`),
MIN(y`−1), . . , MIN(y0)

SUCC`+1(x`, x`−1, . . , x0, x`, y`−1, . . , y0)← SUCC`(x`−1, . . , x0, y`−1, . . , y0), ADOM(x`)

And we add rules for describing the active domain:
ADOM(z)← SUCC(z, z′) and ADOM(z′)← SUCC(z, z′)
and the rule ADOM(z)← X(z) for each unary edb-predicate X.

• Auxiliary rules for strict linear order and inequality on k -tuples:

LESSk (x , y) ← SUCCk (x , y)

LESSk (x , y) ← SUCCk (x , z), LESSk (z, y)

NEQk (x , y) ← LESSk (x , y)

NEQk (x , y) ← LESSk (y , x)

NICOLE SCHWEIKARDT USING LOGICAL FORMULAS TO DESCRIBE COMPUTATIONS 19/22



DESCRIPTIVE COMPLEXITY DATALOG IS POORLY EXPRESSIVE DATALOG IS HIGHLY EXPRESSIVE

Proof of the Simulation Lemma (4/5)

Now consider each state q and tape symbol a, and let (q′, a′,m) := δ(q, a), where δ
is the transition function of M.

We add to PM,k the following rules:

STATEq′(x ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)︸ ︷︷ ︸
at time t := nr (x), M is in state q, reads symbol a, and nr (x ′) = t + 1

TAPEa′(x
′, y)︸ ︷︷ ︸ ←

︷ ︸︸ ︷
SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

at time t+1, position nr (y) carries the letter written at step t

And all other tape positions carry the same letter at time t+1 as at time t :
For every tape symbol b add the rule

TAPEb(x ′, y ′) ← TAPEb(x , y ′), SUCCk (x , x ′), STATEq(x), HEAD(x , y), NEQ(y , y ′)

Add similar rules for representing the head movement of M:
m ∈ {0, 1,−1} indicates whether the head stays or moves one position to the right
or the left, respectively.
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Proof of the Simulation Lemma (5/5)
Recall that we consider M ’s transition (q′, a′,m) := δ(q, a).

• If m = 0, we add to PM,k the rule

HEAD(x ′, y) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y)

• If m = 1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y , y ′)

• If m = −1, we add to PM,k the rule

HEAD(x ′, y ′) ← SUCCk (x , x ′), STATEq(x), HEAD(x , y), TAPEa(x , y), SUCCk (y ′, y)

To ensure that the Datalog query outputs the correct result, we add the rule

GOAL() ← STATEaccept(x)

This finally completes the construction of the Datalog program PM,k .
It is straightforward to verify that this proves the Simulation Lemma.
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Datalog can simulate runs of Turing machines (2/2)
Simulation Lemma: For every deterministic Turing machine M with input alpha-
bet Σ and every integer k > 1, there is a Datalog program PM,k with edb-predicates
SΣ and a 0-ary idb-predicate GOAL, such that the following is true for the Datalog
query QM,k := (PM,k , GOAL) and for every non-empty word w ∈ Σ∗:

QM,k (Iw ) = “yes” ⇐⇒ upon input w , M stops in an accepting state after
at most |w |k−1 steps.

Furthermore, upon input of M and k , the query QM,k can be constructed in time
polynomial in k and the size of M. Moreover, there is a log-space algorithm which,
upon input of a string w , constructs the database Iw .

Easy consequences:

(1) Datalog captures PTIME on database-respresentations of strings.2

(2) Datalog query evaluation is EXPTIME-complete w.r.t. combined complexity.

(3) Datalog query evaluation is PTIME-complete w.r.t. data complexity.

(4) The Boundedness Problem for Datalog is undecidable.

2This is the variant of the Immerman-Vardi Theorem promised at the beginning of the talk.
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INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

In this talk

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally labeled (i.e., colored) by a symbol
from a finite alphabet Σ.

I p is a graph property, if the following is true:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph query, if the following is true:

if π : G ∼= H, then for all a1, . . . ,ak ∈ V G,(
a1, . . . ,ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak )

)
∈ q(H)

I I.e., graph properties and queries are closed under isomorphisms.
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Logics expressing graph properties and queries
Classical logics like, e.g.
I FO (first-order logic: Boolean combinations + quantification over nodes)

I EMSO (existential monadic second-order logic: FO + existential quantification
over sets of nodes)

express graph properties and queries in a straightforward way.

Example:

I q(G) := { x ∈ V G : x lies on a triangle } is expressed in FO via

ϕ(x) := ∃y ∃z
(

E(x , y) ∧ E(y , z) ∧ E(z, x)
)

I p = { G : G is 3-colorable } is expressed in EMSO via

∃R ∃B ∃G
(
∀x
(
R(x) ∨ B(x) ∨G(x)

)
∧

∀x ∀y
(

E(x , y)→ ¬
(
(R(x) ∧ R(y)) ∨ (B(x) ∧ B(y)) ∨ (G(x) ∧G(y))

) ))
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Question

How can we prove that

certain properties or queries

are NOT expressible in a particular logic?
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Overview

Introduction

Zero-One Laws

Ehrenfeucht-Fraïssé games

Logical Reductions

Locality Results

Reductions to known results in circuit complexity

The “Algebraic” Approach

Final Remarks
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Zero-One Laws
I Let p be a graph property.
I Let µn(p) be the probability that a graph chosen uniformly at random from the set

of all graphs on n vertices has property p.

I The asymptotic probability of p is µ(p) := lim
n→∞

µn(p) (if the limit exists).

I A logic L is said to have the zero-one law, if for every L-definable graph property
p, the asymptotic probability µ(p) exists and is either 0 or 1.

Theorem:
I FO has the zero-one law. (Glebskii et al. 1969; Fagin 1976)
I Lω∞,ω has the zero-one law. (Kolaitis, Vardi 1992])

Thus, also the fixed point logics LFP and PFP have the zero-one law.

Example: The property of having an even number of nodes or edges is not definable
in a logic that has the zero-one law (since µ(p) doesn’t exist, resp., is equal to 0.5).

Note: There are properties with µ(p) ∈ {0, 1} which cannot be expressed in FO.
Example: Connectivity.
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The Ehrenfeucht-Fraïssé game
is played on 2 graphs: A&B,

by 2 players: Spoiler & Duplicator,

in r rounds.

A :

a1

a2

a3

B :

b1

b2 b3

Here: A ≈2 B, but A 6≈3 B.

Each round i ∈ {1, . . . , r} is played as follows:

1. Spoiler chooses a vertex in one of the two graphs,

2. Duplicator chooses a vertex in the other graph.

After r rounds, vertices a1, . . . , ar have been chosen in A, and
vertices b1, . . . , br have been chosen in B.

Duplicator wins, iff the mapping
(
ai 7→ bi) is an isomorphism on the induced

subgraphs A|{a1,...,ar} and B|{b1,...,br}.

Write A ≈r B iff Duplicator has a winning strategy.
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Ehrenfeucht-Fraïssé Theorem
Theorem:
A ≈r B ⇐⇒ A and B satisfy the same FO-sentences of quantifier depth 6 r .

Corollary
A graph property p is not FO-expressible, if the following is true:
For every r there are graphs Ar and Br such that
I Ar has property p,
I Br doesn’t have property p, and
I Ar ≈r Br .

Examples:
I The property of being a linear order of even cardinality is not FO-expressible.
I Connectivity is not EMSO-expressible (Fagin, 1975);

not even on linearly ordered graphs (Schwentick, 1996).

Note: Finding winning strategies for Duplicator often requires highly non-trivial
combinatorial arguments.
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Logical Reductions (1/2)

Use known non-expressibility results for showing new non-expressibility results!

Example:

I Show that the property of being acyclic is not FO-definable.

I Use that we already know that being a linear order of even cardinality is
not FO-definable.

I Assume, for contradiction, that acyclicity is FO-definable by a formula ϕacyclic.

I Transform ϕacyclic into a formula ψeven which, when evaluated in a linear order A,
simulates the evaluation of ϕacyclic on a graph GA with

GA acyclic ⇐⇒ A has even cardinality.
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Logical Reductions (2/2)

Transform ϕacyclic into a formula ψeven which, when evaluated in a linear order A,
simulates the evaluation of ϕacyclic on a graph GA with

GA acyclic ⇐⇒ A has even cardinality.

|A| = 5 =⇒ GA :

a1 a2 a3 a4 a5

|A| = 6 =⇒ GA :

a1 a2 a3 a4 a5 a6
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Neighborhoods
Graph G = (V ,E)

Distance dist(u, v) : length of a shortest path between u, v in G.

Shell Sr (a) of nodes at distance exactly r from a.

Ball Nr (a) of radius r at a in G.

Neighborhood Nr (a) of radius r at a in G.

a

r = 1

r = 2

r = 0
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Gaifman-local queries

I For a list a = a1, . . . , ak of nodes, NG
r (a) = NG

r (a1) ∪ · · · ∪ NG
r (ak ).

I The r -neighborhood NG
r (a) is the structure (G|NG

r (a), a) consisting of the induced
subgraph of G on NG

r (a), together with the distinguished nodes a.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-local if there is an n0 such that for every n > n0 and every graph G
with |V G| = n, the following is true for all k -tuples a and b of nodes:

if NG
f (n)(a) ∼= NG

f (n)(b) then a ∈ q(G) ⇐⇒ b ∈ q(G).
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Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(for short: q is definable in <-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (for short: q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)
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Use locality for proving non-expressibility

Example: The reachability query

REACH(G) := { (a1, a2) : there is a directed path from a1 to a2 in G }

is not n
5 -local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G:
a
1 b

1

a
2 b

2
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Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

• Does node x lie on a cycle?

• Does node x belong to a connected component that is acyclic?

• Is node x reachable from a node that belongs to a triangle?

• Do nodes x and y have the same distance to node z?
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Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain an AC0 circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).
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Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC0 circuit family C?

• Represent graph G = (V ,E) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by a circuit family of constant depth and polynomial size.

(implicit in Immerman’87)
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Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO.

Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).
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For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.

Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).
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Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni(a) with the corresponding
endpoints of the edges leaving Ni(b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.
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0

m

b a
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ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)
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ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 24/37



INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si(a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.
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Hanf-local graph properties

I Let G = (V G,EG) and H = (V H ,EH) be two graphs.
I Let r ∈ N.

I G �r H :⇐⇒ there is a bijection β : V G → V H such that for every a ∈ V G

NG
r
(
a
) ∼= NH

r
(
β(a)

)

Definition
A graph property p is Hanf f (n)-local if there is an n0 such that
for all graphs G and H of size n > n0 the following is true:

If G �f (n) H then G has property p iff H has property p.
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Hanf-locality of FO

Theorem:

I For every graph property p that is FO-definable,
there is a constant c such that p is Hanf c-local.

(Fagin, Stockmeyer, Vardi ’95; Hanf ’65)

I For every property of strings or trees that is definable in <-invariant FO,
there is a constant c such that p is Hanf c-local.

(Benedikt, Segoufin ’09)

I For every property of strings that is definable in Arb-invariant FO(Succ),
there is a constant c such that p is Hanf (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

Example: The class of all strings of the form c∗a c∗b c∗ is not definable in
Arb-invariant FO(Succ).
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Reductions to known results in circuit complexity

Idea: Use known lower bounds in circuit complexity to show non-expressibility in
certain logics.

Examples:

I Seen already in this talk:

Proof of poly-logarithmic Gaifman-locality of graph queries definable in
Arb-invariant FO.

I Rossman’s proof of the strictness of the bounded variable hierarchy of FO on
finite ordered graphs (Rossman ’08):
I Precise (stronger) statement: The existence of a k -clique cannot be

expressed by an Arb-invariant FO-sentence using only bk/4c variables.
I Main ingredients of the proof:

(1) Note that for every k -variable Arb-invariant FO-sentence ϕ there exists a constant
depth circuit family (Cn)n of size nk such that Cn evaluates ϕ on graphs of size n.

(2) Prove a new lower bound of ω(nk/4) on the size of constant-depth circuits solving
the k -clique problem on n-vertex graphs.
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The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37



INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37



INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O.

I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37



INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37



INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.

NICOLE SCHWEIKARDT A TOOLKIT FOR PROVING LIMITATIONS OF THE EXPRESSIVE POWER 30/37



INTRO 0-1 LAWS EF-GAMES REDUCTIONS LOCALITY CIRCUITS “ALGEBRAIC” FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09):
A string-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(Succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)
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definable in FO(Succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-invariant FO(Succ) is aperiodic
and closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)
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Some further results proved using this method

Theorem:

I A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcard(Succ). (Anderson, van Melkebeek, S., Segoufin ’11)
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Gaifman-locality
If NG

r (a) ∼= NG
r (b) then

(
a ∈ q(G) ⇐⇒ b ∈ q(G)

)
.

Known:

I Queries definable in order-invariant FO are Gaifman-local with respect to a
constant locality radius. (Grohe, Schwentick ’98)

I Queries definable in Arb-invariant FO are Gaifman-local with respect to a
poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

I How about addition-invariant FO — is it Gaifman-local with respect to a
constant locality radius?
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Hanf-locality
A graph property p is Hanf-local w.r.t. locality radius r , if

any two graphs having the same r -neighbourhood types with the same multiplicities,
are not distinguished by p.

Known:
I Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality

radius. (Fagin, Stockmeyer, Vardi ’95)
I Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t.

a constant locality radius. (Benedikt, Segoufin ’09)

I Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a
poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin ’11)

Open Question:
I Do these results generalise from strings to arbitrary finite graphs?
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Decidable Characterisations

Open Question:

Are there decidable characterisations of

I order-invariant FO?
I addition-invariant FO?
I (+,×)-invariant FO?

Known:

I On finite strings and trees: order-invariant FO ≡ FO. (Benedikt, Segoufin ’10)
I On finite coloured sets: addition-invariant FO ≡ FO enriched by “cardinality

modulo” quantifiers. (S., Segoufin ’10)
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Thank You!
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