ONTOLOGY-MEDIATED
QUERY ANSWERING

Meghyn Bienvenu (CNRS & Université de Bordeaux)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

incomplete ontology user query

database (logical theory)
(ground facts)

2/59

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

The ontology (logical theory) specifies:
- terminology (or vocabulary) of the domain
- semantic relationships between terms
- relations of specificity or generality, equivalence, disjointness, ...

2/59

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

LVE'_ ¢

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

expected answers: Melanie, Paul

The ontology (logical theory) specifies:
- terminology (or vocabulary) of the domain
- semantic relationships between terms
- relations of specificity or generality, equivalence, disjointness, ...

2/59

WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- meaning of terms is constrained, so less misunderstandings

- by adopting a common vocabulary, easy to share information

3/59

WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- meaning of terms is constrained, so less misunderstandings

- by adopting a common vocabulary, easy to share information

To present an
- ontology can be used to , making it

- especially useful when

3/59

WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- meaning of terms is constrained, so less misunderstandings

- by adopting a common vocabulary, easy to share information

To present an
- ontology can be used to , making it

- especially useful when

To support automated reasoning

- uncover implicit connections between terms, errors in modelling

- exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/59

APPLICATIONS OF OMQA: MEDICINE

General medical ontologies: SNOMED CT (~ 400,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Interior View of the Heart

Aorta
Aortcvale
Superior a

* _cena74267

Pulmonary
Valve

Aortic Valve
Tricuspid
Valve

Left Ventricle

Right Atrium

Orifices of
Coronary
Arteries

Inferior
Vena Cava

Right Ventricle Papilary Muscles.

Querying & exchanging medical records (find patients for medical trials)
- myocardial infarction vs. Ml vs. heart attack vs. 410.0

Supports tools for (scans, x-rays) -

APPLICATIONS OF OMQA: LIFE SCIENCES

Hundreds of ontologies at BioPortal ():
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data

5/59

APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data
to support decision-making

Example industrial projects:
- Public debt data: Sapienza Univ. & Italian Department of Treasury
- Energy sector: Optique EU project (several univ, StatOil, Siemens)

6/59

ONTOLOGY LANGUAGES

Ontologies typically described using logic-based formalisms

Description logics (DLs)
- family of decidable fragments of first-order logic (FO)
- concise variable-free syntax

- only unary and binary predicates

7/59

ONTOLOGY LANGUAGES

Ontologies typically described using logic-based formalisms

Description logics (DLs)
- family of decidable fragments of first-order logic (FO)
- concise variable-free syntax

- only unary and binary predicates

Existential rules (aka Datalog*/—, tuple-generating dependencies)

- family of languages of rules of the form vx(3y (X, y) — 7 1(X, 7))
where (X, ¥) and (X, Z) are conjunctions of atoms

- can have predicates of arbitrary arity

7/59

ONTOLOGY LANGUAGES

Ontologies typically described using logic-based formalisms

Description logics (DLs)
- family of decidable fragments of first-order logic (FO)
- concise variable-free syntax

- only unary and binary predicates

Existential rules (aka Datalog*/—, tuple-generating dependencies)

- family of languages of rules of the form vx(3y (X, y) — 7 1(X, 7))
where (X, ¥) and (X, Z) are conjunctions of atoms

- can have predicates of arbitrary arity
Two approaches are

7/59

DESCRIPTION LOGICS

Description logics (DLs) are:

- family of knowledge representation languages

- popular means for specifying ontologies

- range from fairly simple to highly expressive

- basis of the web ontology language OWL (W3C standard)

8/59

DESCRIPTION LOGICS

Description logics (DLs) are:

- family of knowledge representation languages

- popular means for specifying ontologies

- range from fairly simple to highly expressive

- basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic
- inherit well-defined semantics

- succinct, variable-free syntax

8/59

DESCRIPTION LOGICS

Description logics (DLs) are:

- family of knowledge representation languages

- popular means for specifying ontologies

- range from fairly simple to highly expressive

- basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic
- inherit well-defined semantics

- succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

8/59

DESCRIPTION LOGICS

Description logics (DLs) are:

- family of knowledge representation languages

- popular means for specifying ontologies

- range from fairly simple to highly expressive

- basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic
- inherit well-defined semantics

- succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many available for use

8/59

RULE-BASED ONTOLOGY LANGUAGES

Sets of existential rules (aka tuple-generating dependencies):

VX o(X) = 3y $(X,¥)

9/59

RULE-BASED ONTOLOGY LANGUAGES

Sets of existential rules (aka tuple-generating dependencies):
VX o(X) = Y »(X,Y)

Undecidable in general, different restrictions to achieve decidability
- forward chaining (chase) halts

- backward chaining (rewriting) halts

- tree-like models

9/59

RULE-BASED ONTOLOGY LANGUAGES

Sets of existential rules (aka tuple-generating dependencies):

VX @(X) = 3V (X, V)
Undecidable in general, different restrictions to achieve decidability
- forward chaining (chase) halts

- backward chaining (rewriting) halts
- tree-like models

Many complexity & decidability results, few implemented algorithms

9/59

RULE-BASED ONTOLOGY LANGUAGES

Sets of existential rules (aka tuple-generating dependencies):
VX o(X) = Y »(X,Y)

Undecidable in general, different restrictions to achieve decidability
- forward chaining (chase) halts

- backward chaining (rewriting) halts

- tree-like models

Many complexity & decidability results, few implemented algorithms

Can consider

9/59

PLAN FOR THIS TALK

Introduction to DLs

Introduction to OMQA

Research Questions in OMQA

10/59

INTRODUCTION TO DLS

DESCRIPTION LOGICS: BUILDING BLOCKS

Building blocks:

- concept names (unary predicates, classes) Prof Fellow Course

- role names (binary predicates, properties) teaches headOf

- individual names (constants) anna, cs101

12/59

DESCRIPTION LOGICS: BUILDING BLOCKS

Building blocks:

- concept names (unary predicates, classes) Prof Fellow Course

- role names (binary predicates, properties) teaches headOf

- individual names (constants) anna, cs101

Constructors to build complex concepts and roles U, M, —,V, 3, ...

Faculty M —Prof dteaches.GradCourse teaches™

Note: allowed constructors depends on chosen DL

12/59

DESCRIPTION LOGIC KNOWLEDGE BASES

DL knowledge base (KB) = ABox (data) + (ontology)

ABox = finite set of concept and role assertions (facts)

Prof(anna) teaches(tom, cs101)

= finite set of

13/59

DESCRIPTION LOGIC KNOWLEDGE BASES

DL knowledge base (KB) = ABox (data) + (ontology)

ABox = finite set of concept and role assertions (facts)

Prof(anna) teaches(tom, cs101)
= finite set of
- concept inclusions CC D (C, D possibly complex concepts)

Prof C Faculty 3teaches.GradCourse C Prof
- role inclusionsRC S (R, S possibly complex roles)
taughtBy C teaches™ headOf C memberOf

Note: allowed axioms depends on chosen DL
13/59

EXAMPLES OF TBOX AXIOMS

Professors and lecturers are disjoint classes of faculty

Prof C Faculty Lect C Faculty Prof C —lect

Every is

The relation takesCourse connects students to courses

dtakesCourse.T C Student 3JtakesCourse™.T C Course

Every student takes at least 2 and at most 5 courses
Student C > 2takesCourse.T N < 5takesCourse. T

14/59

MORE EXAMPLES OF TBOX AXIOMS

Every grad student is supervised by some faculty member

GStudent C JsupervisedBy.Faculty

The academic ancestor relation is transitive

supervisedBy C academicAnc trans(academicAnc)

Students who only take grad-level courses are grad students
Student M VtakesCourse.GCourse C GStudent

FO translation:
vx (Student(x) A (Vy takesCourse(x,y) — GCourse(y)) — GStudent(x)

15/59

SEMANTICS OF DL KBS

Interpretation Z (“possible world”) (like in first-order logic)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object

16/59

SEMANTICS OF DL KBS

Interpretation Z (“possible world”) (like in first-order logic)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object

Interpretation function -Z extends to complex concepts and roles:

T AT
il 0
—C AT\

GnG GIPnG*t

JR.C {di | there exists (di,d>) € RT with d, € C*}
VR.C {di | d» € C* forall (di,d,) € RT}

r- {(d27d1) | (dq,dz) € I’I}

16/59

SEMANTICS OF DL KBS, CONT.

Satisfaction in an interpretation

- IsatishesCCD <« fcD?

- TsatisfiesRCS & RECS?

- I satisfiesA(a) <« afeAl

- T satisfiesr(a,b) & (af,b%)er?

17/59

SEMANTICS OF DL KBS, CONT.

Satisfaction in an interpretation

- IsatishesCCD <« fcD?

- TsatisfiesRCS & RECS?

- I satisfiesA(a) <« afeAl

- T satisfiesr(a,b) & (af,b%)er?

Model of a KB K = interpretation that satisfies all statements in K
K is satisfiable = K has at least one model

(written) = every model Z of K satisfies o

17/59

SEMANTICS OF DL KBS, CONT.

Satisfaction in an interpretation

- IsatishesCCD <« fcD?

- TsatisfiesRCS & RECS?

- I satisfiesA(a) <« afeAl

- T satisfiesr(a,b) & (af,b%)er?

Model of a KB K = interpretation that satisfies all statements in K
K is satisfiable = K has at least one model
(written) = every model Z of K satisfies o

Basic reasoning tasks:
- KB satisfiability: decide whether K is satisfiable
- Axiom entailment: decide whether T = « (with « an axiom)
- Classification: decide T = A C B for every pair A, B of concept names

17/59

DIFFERENCES WITH DATABASE SETTING

ABoxes are interpreted under the open-world assumption

- facts that are not in the ABox may still be true (e.g. can be inferred
by exploiting information in the TBox)

from the from databases,
where

18/59

DIFFERENCES WITH DATABASE SETTING

ABoxes are interpreted under the open-world assumption

- facts that are not in the ABox may still be true (e.g. can be inferred
by exploiting information in the TBox)

from the from databases,
where

Semantics in terms of arbitrary (possibly infinite) interpretations
- differs from finite models considered in databases
- may consider an alternative semantics based upon finite models

- for some DLs, two semantics behave the same
- for others, often possible to reduce to arbitrary model reasoning

For today’s talk, we'll focus on standard semantics (arbitrary models)

18/59

EXAMPLE DLS

Prototypical expressive description logic ALC:

- Concepts: C:=T | L|A|=C|CRC|CUC|3r.C|VrC
- TBox axioms: only concept inclusions

19/59

EXAMPLE DLS

Prototypical expressive description logic ALC:

- Concepts: C:=T | L|A|=C|CRC|CUC|3r.C|VrC
- TBox axioms: only concept inclusions

Highly expressive description logic SHOZQO (~ OWL 2)

- Extends ALC with:
- number restrictions |[< nR.C ' > nR.C and nominals [{a}

- role inclusions 'Ry E R, and transitivity axioms trans(R)

- inverse roles 'r~ (allowed in all types of axioms)

19/59

EXAMPLE DLS

Prototypical expressive description logic ALC:

- Concepts: C:=T | L|A|=C|CRC|CUC|3r.C|VrC
- TBox axioms: only concept inclusions

Highly expressive description logic SHOZQO (~ OWL 2)

- Extends ALC with:
- number restrictions |[< nR.C ' > nR.C and nominals [{a}

- role inclusions 'Ry E R, and transitivity axioms trans(R)

- inverse roles 'r~ (allowed in all types of axioms)

“Lightweight” description logic ££ (~ OWL2EL)
- Fragment of ALC with concepts C:=T [A|CRC|3r.C

19/59

EXAMPLE DLS

Prototypical expressive description logic ALC:

- Concepts: C:=T | L|A|=C|CRC|CUC|3r.C|VrC
- TBox axioms: only concept inclusions

Highly expressive description logic SHOZQO (~ OWL 2)

- Extends ALC with:
- number restrictions |[< nR.C ' > nR.C and nominals [{a}

- role inclusions 'Ry E R, and transitivity axioms trans(R)

- inverse roles 'r~ (allowed in all types of axioms)

“Lightweight” description logic ££ (~ OWL2EL)
- Fragment of ALC with concepts C:=T [A|CRC|3r.C

= extension of ALC with

ELH = extension of £L with role inclusions (#) 19/59

INTRODUCTION TO OMQA

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x, y)

21/59

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ~ SP) queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A teaches(x, y)

(find all faculty members that teach something)

21/59

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ~ SP) queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A teaches(x, y)

(find all faculty members that teach something)

pair with 7 a TBox and g a query (1Q / CQ)

21/59

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

map into

dataset

cQ F?—>z/ homomarphism

database D + query g ~» set of answers ans(q, D)

22/59

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

map into

cQ F?—%./ homomarphism

dataset

database D + query g ~» set of answers ans(q, D)
Answering CQs in the presence of a TBox (ontology)
models

of KB
(data + ontology)

Q Fe——s W

map into

model Z of KB (T, .A) + queryg ~ set of answers ans(q,Z)

22/59

OMQA AND CERTAIN ANSWERS

Question: how to ?

Certain answers:
- tuples of inds d such that d € ans(q,Z) for every model Z of (T, .A)
- corresponds to a form of entailment, we'll write 7, A = q(d)

23/59

OMQA AND CERTAIN ANSWERS

Question: how to ?

Certain answers:
- tuples of inds @ such that d € ans(q,Z) for every model Z of (T,.4)
- corresponds to a form of entailment, we'll write 7, A |= q(d)

Ontology-mediated query answering =
problem of computing / verifying certain answers

23/59

OMQA EXAMPLE

TBox (ontology):

Prof C Faculty Fellow C Faculty ProfC —Fellow
Prof C Jteaches. T dteaches™ .T C Course

ABox (data):

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

Query: g(x) = 3y.Faculty(x) A teaches(x, y)

24/59

OMQA EXAMPLE

TBox (ontology):

Prof C Faculty Fellow C Faculty ProfC —Fellow
Prof C Jteaches. T dteaches™ .T C Course

ABox (data):

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

Query: g(x) = 3y.Faculty(x) A teaches(x, y)

Get the following certain answers:
anna Prof(anna) + Prof C Faculty + Prof C Jteaches.T

tom Fellow(tom) + Fellow C Faculty + teaches(tom, cs101)

24/59

COMPLEXITY OF OMQA

OMQA viewed as a decision problem (yes-or-no question):
PROBLEM: O answering in £ (Q a query language, £ a DL)

INPUT: An n-ary query g € Q, an ABox A4, an L-TBox T,
and a tuple @ € Ind(A)"

QUESTION: Does 7, A = q(d)?

25/59

COMPLEXITY OF OMQA

OMQA viewed as a decision problem (yes-or-no question):
PROBLEM: O answeringin £ (Q a query language, £ a DL)

INPUT: An n-ary query g € Q, an ABox A4, an L-TBox T,
and a tuple @ € Ind(A)"

QUESTION: Does 7, A = q(d)?

:in terms of

Data complexity: in terms of size of A only
- view rest of input as fixed (of constant size)
- motivation: ABox (data) typically much larger than rest of input

data complexity <

25/59

INTRACTABILITY FOR EXPRESSIVE DLS

Recallthe DLALC: C:=T|L|A|=C|CRAC|CUC|3r.C|Vr.C

Satisfiability, IQ answering, and CQ answering in ALC are:

- EXPTIME-complete in combined complexity
- coNP-complete in data complexity

Even worse news for CQ answering in ALCZ (= ALC + inverse roles):
in

- coNP-complete in data complexity

26/59

OMQA WITH LIGHTWEIGHT DLS

DATA-TRACTABLE DLS

Negative results led to proposal of new DLs with lower complexity

28/59

DATA-TRACTABLE DLS

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)
- designed with OMQA in mind

- capture main constructs from conceptual modelling

- key technique: query rewriting (~ backward chaining)

28/59

DATA-TRACTABLE DLS

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)
- designed with OMQA in mind

- capture main constructs from conceptual modelling

- key technique: query rewriting (~ backward chaining)

EL family of DLs (basis for OWL 2 EL)
- designed to allow efficient reasoning with large ontologies

- well suited for medical and life science applications

- key technique: saturation (~ forward chaining)

28/59

DATA-TRACTABLE DLS

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)
- designed with OMQA in mind

- capture main constructs from conceptual modelling

- key technique: query rewriting (~ backward chaining)

EL family of DLs (basis for OWL 2 EL)
- designed to allow efficient reasoning with large ontologies

- well suited for medical and life science applications

- key technique: saturation (~ forward chaining)

Commonality:)
existence of a
28/59

CANONICAL MODELS

For Horn ontologies (no form of disjunction) like DL-Lite, £L£:

enough to consider a single canonical model

- idea: exhaustively apply ontology axioms to dataset (like the chase)
- possibly infinite (A C 3r.A)

- forest-shaped (dataset + new tree structures for 3-axioms)

- give correct answer to all CQs

29/59

CANONICAL MODELS

For Horn ontologies (no form of disjunction) like DL-Lite, £L£:
enough to consider a single canonical model
- idea: exhaustively apply ontology axioms to dataset (like the chase)

- possibly infinite (A C 3r.A)
- forest-shaped (dataset + new tree structures for 3-axioms)

- give correct answer to all CQs
0\‘0 OMQA with Horn DLs =
m finding ways to
into

29/59

DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Litey (which underlies OWL2 QL profile).

DL-Liteg TBoxes contain

- concept inclusions By C By, B; C =B,

- role inclusions R{ C Ry, Ry C =R,

where

30/59

DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Litey (which underlies OWL2 QL profile).

DL-Liteg TBoxes contain

- concept inclusions By C By, B; C =B,

- role inclusions R{ C Ry, Ry C =R,

where

Example TBox inclusions:
- Every professor teaches something: Prof C Jteaches
- Everything that is taught is a course:

- Head of dept implies member of dept: headOf = memberOf

30/59

QUERY REWRITING

Idea: reduce OMQA to database query evaluation
- rewriting step: TBox 7 + query g ~ first-order (SQL) query q’
- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

31/59

QUERY REWRITING

Idea: reduce OMQA to database query evaluation
- rewriting step: TBox 7 + query g ~ first-order (SQL) query q’
- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:
- FO query @’ is an FO-rewriting of g w.rt. TBox 7 iff for every ABox A:

-

Informally:

31/59

QUERY REWRITING

Idea: reduce OMQA to database query evaluation
- rewriting step: TBox 7 + query g ~ first-order (SQL) query q’
- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:
- FO query @’ is an FO-rewriting of g w.rt. TBox 7 iff for every ABox A:

-

Informally:

Good news: every CQ and DL-Lite ontology has FO-rewriting

31/59

EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite TBox 7
Prof C Faculty Fellow C Faculty ProfC —Fellow

Prof C Jteaches dJteaches™ C Course

and the query g(x) = Jy.Faculty(x) A teaches(x, y)

32/59

EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite TBox T

Prof C Faculty Fellow C Faculty ProfC —Fellow
Prof C Jteaches dJteaches™ C Course

and the query g(x) = Jy.Faculty(x) A teaches(x, y)

The following query is a rewriting of g(x) w.rt. T:

g(x) Vv Prof(x) Vv 3Jy.Fellow(x) A teaches(x,y)

32/59

EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite TBox T

Prof C Faculty Fellow C Faculty ProfC —Fellow
Prof C Jteaches dJteaches™ C Course

and the query g(x) = Jy.Faculty(x) A teaches(x, y)
The following query is a rewriting of g(x) w.r.t. 7:

g(x) Vv Prof(x) Vv 3Jy.Fellow(x) A teaches(x,y)
Evaluating the rewritten query over the earlier ABox

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

produces the two certain answers: anna and tom

32/59

QUERY REWRITING ALGORITHMS

Can focus w.l.o.g. on

“Classic” approach works roughly as follows on input (g, 7):
- Start with S = {qg}

- Until S stabilizes, pick some g’ € S and do one of the following:

- Apply an axiom in 7 to an atom in @, and add the resultto S
- Merge two variables x and y in ¢/, and add the resultto S

- Output the UCQ Vs ¢’

33/59

QUERY REWRITING ALGORITHMS

Can focus w.l.o.g. on

“Classic” approach works roughly as follows on input (g, 7):
- Start with S = {qg}

- Until S stabilizes, pick some g’ € S and do one of the following:

- Apply an axiom in 7 to an atom in @, and add the resultto S
- Merge two variables x and y in ¢/, and add the resultto S

- Output the UCQ Vs ¢’

Alternative “semantic” approach (also producing a UCQ):
- Big\/ over possible decompositions of g into ABox and “tree parts”
- For atoms mapped to ABox: check if find implying atom in data

- For subqueries mapped to tree parts:
- ensure generating atom in data, merge "root” variables

33/59

COMPLEXITY OF OMQA IN DL-LITE

- rewriting takes ,yields FO query
- upper bound from FO query evaluation: (ACo C LOGSPACE C P)

- CQ answering is in AC, for data complexity

34/59

COMPLEXITY OF OMQA IN DL-LITE

- rewriting takes ,yields FO query
- upper bound from FO query evaluation: (ACo C LOGSPACE C P)

- CQ answering is in AC, for data complexity

Combined complexity:
- ‘guess’ a disjunct of UCQ-rewriting and how to map it into ABox
- CQ answering is NP-complete (same as for DBs)

- 1Q answering is NLOGSPACE-complete (NLOGSPACE C P)

34/59

WORST-CASE SIZE OF REWRITINGS

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = Vv of CQs)

35/59

WORST-CASE SIZE OF REWRITINGS

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = Vv of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

- Query: Ad(x) A ... AA%(X)
- Ontology: Aj CAY AJCAY ... AICAS
- Rewriting: \/; (0.1} AR (X) AAT(X) A .. AAD(X)

..... in)e

35/59

WORST-CASE SIZE OF REWRITINGS

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = Vv of CQs)
Not hard to see smallest UCQ-rewriting may be exponentially large:

- Query: Ad(x) A ... AA%(X)
- Ontology: Aj CAY AJCAY ... AICAS
+ Rewriting: \/, i eqoay AT (X) AAT(X) A .. AAT(X)

But: simple polysize FO-rewriting does exist! Aii (A2 (x) v Al(x))

35/59

WORST-CASE SIZE OF REWRITINGS

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = Vv of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

- Query: Ad(x) A ... AA%(X)
- Ontology: Aj CAY AJCAY ... AICAS
+ Rewriting: \/, i eqoay AT (X) AAT(X) A .. AAT(X)

But: simple polysize FO-rewriting does exist! Aii (A2 (x) v Al(x))

What happens if we adopt other representations?

- positive existential queries (PE),
first-order queries (FO)

35/59

SUCCINCTNESS LANDSCAPE FOR DL-LITE

(for DL-Liter ontologies, so-called ‘pure’ rewritings)

T T T T T
arb. - [] [no polysize PE or NDL] < -
=
2wl () .
o @ - N _
L £ no poly PE but poly NDL =
© (poly FO <« sac! € NC1) ¢
2 tw 2 [~ 2 -
@ poly =
o trees - PE, e
é 9 NDL,
T & FO
< 0 _
§ no poly PE but poly NDL
2 [(poly FO < NL/poly C NC') T
£
2 2F f
\ J
| | | | | |
1 2 3 T d arb.

Ontology depth
(~ longest chain of witnesses for existential axioms)
36/59

OMOQA IN EL

Next consider the logic £L:
- Concepts: C:=T |A|CRC|3r.C
- Only concept inclusions in the TBox, no inverse roles

37/59

OMOQA IN EL

Next consider the logic £L:
- Concepts: C:=T |A|CRC|3r.C
- Only concept inclusions in the TBox, no inverse roles

Cannot use FO query rewriting approach for ££:

no FO-rewriting of A(x) w.r.t. 7 = {3rAC A}

37/59

OMOQA IN EL

Next consider the logic £L:
- Concepts: C:=T |A|CRC|3r.C
- Only concept inclusions in the TBox, no inverse roles

Cannot use FO query rewriting approach for ££:

no FO-rewriting of A(x) w.r.t. 7 = {3rAC A}

We start with 1Qs and present a saturation-based approach.

Convenient to assume £L TBoxes given in

(A, A, B concept names or T)
37/59

SATURATION RULES FOR EL

TBox rules

ACB (I<i<n) BM...MBED_~ ACB BLC3rD
ACD AC3r.D

AEdrB BCD 3JrDCE
ACE

ABox rules

AnN...NACB Ai(a) (1<i<n) n JBEA r(a,b) B(b)
B(a) Aa)

A2

Algorithm: apply rules exhaustively, check if A(a) (r(a, b)) is present
38/59

EXAMPLE: SATURATION IN EL

PenneArrabiata C Jhasingred.ArrabiataSauce (1) Peperoncino C Spicy (6)
PenneArrabiata C PastaDish (2) 3hasingred.Spicy C Spicy (7)

PastaDish C Dish (3) spicy r Dish C SpicyDish (8)

PastaDish C Jhaslngred.Pasta (&)

)) PenneArrabiata(p). (9)
ArrabiataSauce C 3haslngred.Peperoncino (5)

39/59

EXAMPLE: SATURATION IN EL

PenneArrabiata C JhasIngred.ArrabiataSauce (1) Peperoncino C Spicy (6)
PenneArrabiata C PastaDish (2) 3hasingred.Spicy C Spicy (7)

PastaDish C Dish (3) spicy r Dish C SpicyDish (8)

PastaDish C 3haslngred.Pasta (&)

)) PenneArrabiata(p). (9)
ArrabiataSauce C 3haslngred.Peperoncino (5)

ArrabSauce C Spicy T3: (5),(6),(7) (10)
PenneArrab C Spicy T3 : (1),(10), (7) (11
PenneArrab C Dish T1:(2),(3) (12)
PenneArrab C Jhaslngred.Pasta T2:(2),(4) (13)
PenneArrab C SpicyDish T1:(11),(12), (8) (14)
Spicy(p) A1:(11),(9) (15)
Dish(p) A1 (12), (9) (16)
SpicyDish(p) A1:(16),(15) (17)

39/59

COMPLEXITY OF IQ ANSWERING IN EL

Saturation approach is sound: everything derived is entailed

40/59

COMPLEXITY OF IQ ANSWERING IN EL

Saturation approach is sound: everything derived is entailed
Also complete for 1Qs, since for every ABox assertion a, we have:

KE=a iff aesat(k)

40/59

COMPLEXITY OF IQ ANSWERING IN EL

Saturation approach is sound: everything derived is entailed

Also complete for 1Qs, since for every ABox assertion a, we have:
KE=a iff aesat(k)

Note: does not make all consequences explicit

- can have infinitely many implied axioms ~ would not terminate!

- so: only complete for some reasoning tasks

40/59

COMPLEXITY OF IQ ANSWERING IN EL

Saturation approach is sound: everything derived is entailed

Also complete for 1Qs, since for every ABox assertion a, we have:
KE=a iff aesat(k)

Note: does not make all consequences explicit

- can have infinitely many implied axioms ~ would not terminate!

- so: only complete for some reasoning tasks

Procedure runs in polynomial time in |K|. This is optimal:

IQ answering in EL is

40/59

CQ ANSWERING IN EL

Saw earlier that FO-rewritings may not exist

41/59

CQ ANSWERING IN EL

Saw earlier that FO-rewritings may not exist

Can show Datalog rewritings exist for all CQs and ££ ontologies
- rules that generate all entailed facts over original individuals
- can be obtained from axioms in sat(7)
- rules that check whether query holds
- idea: rewrite query so enough to consider matches to original inds

41/59

CQ ANSWERING IN EL

Saw earlier that FO-rewritings may not exist

Can show Datalog rewritings exist for all CQs and ££ ontologies
- rules that generate all entailed facts over original individuals
- can be obtained from axioms in sat(7)

- rules that check whether query holds
- idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in £L:
- P-complete in data complexity

in

41/59

CQ ANSWERING IN EL

Saw earlier that FO-rewritings may not exist

Can show Datalog rewritings exist for all CQs and ££ ontologies
- rules that generate all entailed facts over original individuals
- can be obtained from axioms in sat(7)

- rules that check whether query holds
- idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in £L:
- P-complete in data complexity

in

P data complexity extends to much richer Horn DLs

41/59

COMBINED APPROACH TO CQ ANSWERING IN EL

Way to use relational DBs to do CQ answering in £L:

- saturate ABox using TBox axioms
- introduce new individuals to witness existentials on LHS (A C 3r.B)
- to ensure finite: reuse individuals as witnesses
- can be viewed as compact representation of canonical model

42/59

COMBINED APPROACH TO CQ ANSWERING IN EL

Way to use relational DBs to do CQ answering in £L:
- saturate ABox using TBox axioms
- introduce new individuals to witness existentials on LHS (A C 3r.B)
- to ensure finite: reuse individuals as witnesses
- can be viewed as compact representation of canonical model
- evaluate query on saturated ABox = superset of certain answers
- two strategies to block unsound answers:
- add extra conditions to query
- post-processing to identify and remove false answers

Saturated ABox.A”
q = Jy.takesCourse(anna, y) A teaches(marie, y
Student C takesCourse.Course () ()
Prof C teaches. Course Student Prof @ holds in A*-
anna marie
Solution: disallow 1y > Wcourse
takesCourse teaches
Course
WCourse " "+ s

new constant

42/59

IDENTIFYING FO-REWRITABLE CASES

Lack of FO-rewritings is a worst-case result
- possible that rewritings do exist for many real-world OMQs

43/59

IDENTIFYING FO-REWRITABLE CASES

Lack of FO-rewritings is a worst-case result
- possible that rewritings do exist for many real-world OMQs

Motivates looking at FO-rewritability problem for (£, Q):
- input: OMQ (7, q) with 7 an £-TBox and g € Q

- problem: decide if there exists an FO-rewriting of (7, q)

Form of static analysis, related to Datalog boundedness

43/59

IDENTIFYING FO-REWRITABLE CASES

Lack of FO-rewritings is a worst-case result
- possible that rewritings do exist for many real-world OMQs

Motivates looking at FO-rewritability problem for (£, Q):
- input: OMQ (7, q) with 7 an £-TBox and g € Q

- problem: decide if there exists an FO-rewriting of (7, q)

Form of static analysis, related to Datalog boundedness

FO-rewritability is in and

43/59

PROOF IDEAS FOR DECIDING FO-REWRITABILITY

Characterization of non-existence of FO-rewriting
oMQ is iff there exist tree-shaped ABoxes

Ay Ay As Ay

such thatforalli> 1. 7, A &= A(ap) and

44/59

PROOF IDEAS FOR DECIDING FO-REWRITABILITY

Characterization of non-existence of FO-rewriting
oMQ is iff there exist tree-shaped ABoxes

Ay As A3 Ay

,ztg/A11 AIZ l3 ‘4

such thatforalli> 1. 7, A &= A(ap) and

Pumping argument: enough to find ABox of particular finite size kg
- desired ABox Ay, exists = can construct full sequence of ABoxes

44/59

PROOF IDEAS FOR DECIDING FO-REWRITABILITY

Characterization of non-existence of FO-rewriting
oMQ is iff there exist tree-shaped ABoxes

Ay As A3 Ay

,ztfl/A11 AIZ l3 ‘4

such that foralli > 1: T, A; = A(ag) and

Pumping argument: enough to find ABox of particular finite size kg
- desired ABox Ay, exists = can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

44/59

PROOF IDEAS FOR DECIDING FO-REWRITABILITY

Characterization of non-existence of FO-rewriting
oMQ is iff there exist tree-shaped ABoxes

Ay As A3 Ay

,alfl/A11 AIZ l3 ‘4

such that foralli > 1: T, A; = A(ag) and

Pumping argument: enough to find ABox of particular finite size kg
- desired ABox Ay, exists = can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs and richer Horn DLs

44/59

LINKING TO EXISTING DATA
VIA MAPPINGS

TWO VARIANTS OF OMQA

(iuery "».\>
TBox P TBox
ay i
ABoX '\TT/‘T/. Mapping
- Virtual
........................... ABox

PN Database :
(DB)

46/59

MAPPINGS

So far: data given as ABox (unary + binary facts using TBox predicates)

Problem: how to apply the approach to
(arbitrary arity, different vocabulary)?

Solution: use mapping that specifies relationship between the
database relations and the ontology predicates

Formally: mapping assertions of the form = VX¢(X) — ¥(X) where:

- (X) is an query formulated using DB relations
- 9(X) is a query in the ontology vocabulary

Global-as-view (GAV) mappings: v is an atom (without 3-vars)

47/59

OMQA WITH MAPPINGS

Database D + mapping M~ ABOX A p
= models of the KB

Certain answers to g w.r.t. (7, M,D) =
tuples of constants a from D U M such that (7, Aarp) = q(a)

48/59

OMQA WITH MAPPINGS

Database D + mapping M~ ABOX A p

= models of the KB

Certain answers to g w.r.t. (7, M, D) =
tuples of constants a from D U M such that (7, Aarp) = q(a)

Handling mappings:

- apply mappings to generate ABox, proceed as usual

- virtual ABox: combine query rewriting with an extra unfolding step
to get rewriting over DB relations

48/59

EXAMPLE: MAPPINGS

Suppose course data is stored in the two database tables:

UndergradCourses[CourselD, Year, Lecturer, Room, Timeslot]

GradCourses[CourselD, Lecturer, Room, Timeslot]
and employee data is stored in the table

Employee[EmpID,Name,Position,Dept]

The mapping could contain statements like: (initial ¥ omitted)

Jy,ritUndergradCourses(c,y,l,r,t) — teaches(l, c)
3y,ritGradCourses(c,l,r,t) — teaches(l, c)

3n,d Employee(x, n, Professor, d) — (x)
to populate the ontology predicates teaches and

49/59

EXAMPLE: MAPPING UNFOLDING

- find ways of in mapping rules
by the

50/59

EXAMPLE: MAPPING UNFOLDING

- find ways of in mapping rules
by the

For g(x,y) = Prof(x) A teaches(x,y), unfolding yields the following:

an,d,z,rit Employee(x, n, Professor,d)AUndergradCourses(y,z,x,r,t)

Vv 3n.d,r,t Employee(x, n, Professor,d)AGradCourses(y,Xx,r,t)

Observe result uses only DB predicates, can be converted to SQL

50/59

EXAMPLE: MAPPING UNFOLDING

- find ways of in mapping rules
by the

For g(x,y) = Prof(x) A teaches(x,y), unfolding yields the following:

an,d,z,rit Employee(x, n, Professor,d)AUndergradCourses(y,z,x,r,t)
Vv 3n.d,r,t Employee(x, n, Professor,d)AGradCourses(y,Xx,r,t)

Observe result uses only DB predicates, can be converted to SQL

Opportunities for optimization: simplify rewriting by exploiting the
fact that only needs to work for ABoxes induced by the mapping

50/59

OMQA RESEARCH

RESEARCH TOPICS IN OMQA

Ontology-mediated query answering:

- new paradigm for intelligent information systems

- offers many advantages, but also computational challenges
- active area with lots left to explore!

52/59

RESEARCH TOPICS IN OMQA

Ontology-mediated query answering:

- new paradigm for intelligent information systems

- offers many advantages, but also computational challenges
- active area with lots left to explore!

Efficient OMQA algorithms:

- optimized rewriting algorithms: compact rewritings, exploit
mapping structure, cost-based rewriting selection

- tackling more expressive DLs: identify easier cases (existence of
rewritings), use upper + lower approximations

52/59

RESEARCH TOPICS IN OMQA

Ontology-mediated query answering:

- new paradigm for intelligent information systems

- offers many advantages, but also computational challenges
- active area with lots left to explore!

Efficient OMQA algorithms:

- optimized rewriting algorithms: compact rewritings, exploit
mapping structure, cost-based rewriting selection

- tackling more expressive DLs: identify easier cases (existence of
rewritings), use upper + lower approximations

Support for building and maintaining OMQA systems

- ontology + mapping bootstrapping, module extraction, debugging,
ontology evolution and versioning

- inspired new reasoning tasks: query inseparability, query
emptiness, justification finding, logical difference, ...

52/59

RESEARCH TOPICS IN OMQA

Improving the of OMQA systems
and support for

query (non-)answers

53/59

RESEARCH TOPICS IN OMQA

Improving the of OMQA systems
and support for

query (non-)answers

Broadening the scope:
- new data formats: graph data, key-value stores, temporal data

- further query languages: regular path queries, streaming queries

53/59

RESEARCH TOPICS IN OMQA

Improving the of OMQA systems
and support for

query (non-)answers

Broadening the scope:
- new data formats: graph data, key-value stores, temporal data

- further query languages: regular path queries, streaming queries

Beyond classical OMQA:
- inconsistency-tolerant query answering
- probabilistic query answering

- privacy-aware query answering

53/59

REFERENCES

BASIC REFERENCES

Recent textbook on DLs:

An Introduction to Description Logic. By F. Baader, I. Horrocks, C.
Lutz, and U. Sattler. Cambridge University Press (2017).

Lecture notes on OMQA (look here for further refs!):

M. Bienvenu and M. Ortiz. Ontology-mediated query answering with
data-tractable description logics. Lecture Notes of Reasoning Web.
Springer LNCS, 2015.

Short recent survey, focusing on linking to DBs:

G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and
M. Zakharyaschev. Ontology-based data access: A survey. Proc. of
[JCAI, 2018.

55/59

REWRITING ALGORITHMS FOR DL-LITE

Original PerfectRef algorithm presented here:

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati:
Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. Journal of Automated Reasoning (JAR)
39(3), 385-429, 2007.

“Semantic” tree witness rewriting is described here:

S. Kikot, R. Kontchakov, M. Zakharyaschev: Conjunctive query
answering with OWL 2 QL. Proc. of KR, 2012.

(far from an exhaustive list, refer to RW chapter for further refs)

56/59

REFERENCES ON SUCCINCTNESS OF REWRITING

The following paper presents the landscape for pure rewritings:

M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M.
Zakharyaschev: Ontology-Mediated Queries: Combined Complexity
and Succinctness of Rewritings via Circuit Complexity. Journal of the
ACM (JACM), 2018.

Optimal NDL-rewritings presented here:

M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M.
Zakharyaschev: The Complexity of Ontology-Based Data Access with
OWL 2 QL and Bounded Treewidth Queries. Proc. of PODS, 2017.

Polynomial impure rewritings can be found here:

G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M.
Zakharyaschev: The Price of Query Rewriting in Ontology-based
Data Access. Artificial Intelligence (Al}), 2014.

57/59

QUERYING ALGORITHMS FOR EL AND HORN DLS

Combined approach for £L:

C. Lutz, D. Toman, F. Wolter: Conjunctive query answering in the
description logic ££ using a relational database system. Proc. of
[JCAI, 2009.

Datalog rewriting approach that works for Horn-SHZ Q:

T. Eiter, M. Ortiz, M. Simkus, T. Tran, G. Xiao: Query rewriting for
Horn-SHZQ plus rules. Proc. of AAAI, 2012.

(just two examples of algorithms, see RW chapter for more refs)

58/59

REFERENCES ON EXISTENCE OF FO-REWRITINGS IN HORN DLS

M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of
Atomic Queries in Horn Description Logics. Proc. of IJCAI, 2013.

P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting
in the Description Logic EL and Beyond. Proc. of IJCAI, 2015.

M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First
Order-Rewritability and Containment of Conjunctive Queries in
Horn Description Logics. Proc. of IJCAl, 2016.

P. Hansen and C. Lutz:
. Proc. of ISWC, 2017.

59/59

	Introduction to DLs
	Introduction to OMQA
	OMQA with Lightweight DLs
	Linking to existing data via mappings
	OMQA Research
	References

