
ontology-mediated
query answering

Meghyn Bienvenu (CNRS & Université de Bordeaux)

ontology-mediated query answering (omqa)

data

incomplete
database

(ground facts)

ontology
(logical theory)

???

user query

The ontology (logical theory) specifies:
∙ terminology (or vocabulary) of the domain
∙ semantic relationships between terms
∙ relations of specificity or generality, equivalence, disjointness, ...

2/59

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

The ontology (logical theory) specifies:
∙ terminology (or vocabulary) of the domain
∙ semantic relationships between terms
∙ relations of specificity or generality, equivalence, disjointness, ...

2/59

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

expected answers: Melanie, Paul

The ontology (logical theory) specifies:
∙ terminology (or vocabulary) of the domain
∙ semantic relationships between terms
∙ relations of specificity or generality, equivalence, disjointness, ...

2/59

what are ontologies good for?

To standardize the terminology of an application domain
∙ meaning of terms is constrained, so less misunderstandings
∙ by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/59

what are ontologies good for?

To standardize the terminology of an application domain
∙ meaning of terms is constrained, so less misunderstandings
∙ by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/59

what are ontologies good for?

To standardize the terminology of an application domain
∙ meaning of terms is constrained, so less misunderstandings
∙ by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/59

applications of omqa: medicine

General medical ontologies: SNOMED CT (∼ 400,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Querying & exchanging medical records (find patients for medical trials)
∙ myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays) 4/59

applications of omqa: life sciences

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/):
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data

5/59

applications of omqa: entreprise information systems

Companies and organizations have lots of data
∙ need easy and flexible access to support decision-making

Example industrial projects:
∙ Public debt data: Sapienza Univ. & Italian Department of Treasury
∙ Energy sector: Optique EU project (several univ, StatOil, Siemens)

6/59

ontology languages

Ontologies typically described using logic-based formalisms

Description logics (DLs)
∙ family of decidable fragments of first-order logic (FO)
∙ concise variable-free syntax
∙ only unary and binary predicates

Existential rules (aka Datalog+/−, tuple-generating dependencies)
∙ family of languages of rules of the form ∀x(∃⃗yφ(⃗x, y⃗) → ∃⃗zψ(⃗x, z⃗))
where φ(⃗x, y⃗) and ψ(⃗x, z⃗) are conjunctions of atoms

∙ can have predicates of arbitrary arity

Two approaches are incomparable and complementary

7/59

ontology languages

Ontologies typically described using logic-based formalisms

Description logics (DLs)
∙ family of decidable fragments of first-order logic (FO)
∙ concise variable-free syntax
∙ only unary and binary predicates

Existential rules (aka Datalog+/−, tuple-generating dependencies)
∙ family of languages of rules of the form ∀x(∃⃗yφ(⃗x, y⃗) → ∃⃗zψ(⃗x, z⃗))
where φ(⃗x, y⃗) and ψ(⃗x, z⃗) are conjunctions of atoms

∙ can have predicates of arbitrary arity

Two approaches are incomparable and complementary

7/59

ontology languages

Ontologies typically described using logic-based formalisms

Description logics (DLs)
∙ family of decidable fragments of first-order logic (FO)
∙ concise variable-free syntax
∙ only unary and binary predicates

Existential rules (aka Datalog+/−, tuple-generating dependencies)
∙ family of languages of rules of the form ∀x(∃⃗yφ(⃗x, y⃗) → ∃⃗zψ(⃗x, z⃗))
where φ(⃗x, y⃗) and ψ(⃗x, z⃗) are conjunctions of atoms

∙ can have predicates of arbitrary arity

Two approaches are incomparable and complementary

7/59

description logics

Description logics (DLs) are:
∙ family of knowledge representation languages
∙ popular means for specifying ontologies
∙ range from fairly simple to highly expressive
∙ basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

8/59

description logics

Description logics (DLs) are:
∙ family of knowledge representation languages
∙ popular means for specifying ontologies
∙ range from fairly simple to highly expressive
∙ basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

8/59

description logics

Description logics (DLs) are:
∙ family of knowledge representation languages
∙ popular means for specifying ontologies
∙ range from fairly simple to highly expressive
∙ basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

8/59

description logics

Description logics (DLs) are:
∙ family of knowledge representation languages
∙ popular means for specifying ontologies
∙ range from fairly simple to highly expressive
∙ basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use
8/59

rule-based ontology languages

Sets of existential rules (aka tuple-generating dependencies):

∀⃗x φ(⃗x) → ∃⃗y ψ(⃗x, y⃗)

Undecidable in general, different restrictions to achieve decidability
∙ forward chaining (chase) halts
∙ backward chaining (rewriting) halts
∙ tree-like models

Many complexity & decidability results, few implemented algorithms

Can consider extensions allowing equality, disjunction in rule heads
∙ such extensions less well understood

9/59

rule-based ontology languages

Sets of existential rules (aka tuple-generating dependencies):

∀⃗x φ(⃗x) → ∃⃗y ψ(⃗x, y⃗)

Undecidable in general, different restrictions to achieve decidability
∙ forward chaining (chase) halts
∙ backward chaining (rewriting) halts
∙ tree-like models

Many complexity & decidability results, few implemented algorithms

Can consider extensions allowing equality, disjunction in rule heads
∙ such extensions less well understood

9/59

rule-based ontology languages

Sets of existential rules (aka tuple-generating dependencies):

∀⃗x φ(⃗x) → ∃⃗y ψ(⃗x, y⃗)

Undecidable in general, different restrictions to achieve decidability
∙ forward chaining (chase) halts
∙ backward chaining (rewriting) halts
∙ tree-like models

Many complexity & decidability results, few implemented algorithms

Can consider extensions allowing equality, disjunction in rule heads
∙ such extensions less well understood

9/59

rule-based ontology languages

Sets of existential rules (aka tuple-generating dependencies):

∀⃗x φ(⃗x) → ∃⃗y ψ(⃗x, y⃗)

Undecidable in general, different restrictions to achieve decidability
∙ forward chaining (chase) halts
∙ backward chaining (rewriting) halts
∙ tree-like models

Many complexity & decidability results, few implemented algorithms

Can consider extensions allowing equality, disjunction in rule heads
∙ such extensions less well understood

9/59

plan for this talk

Introduction to DLs

Introduction to OMQA

Techniques for OMQA with Lightweight DLs

Research Questions in OMQA

10/59

introduction to dls

description logics: building blocks

Building blocks:

∙ concept names (unary predicates, classes) Prof Fellow Course

∙ role names (binary predicates, properties) teaches headOf

∙ individual names (constants) anna, cs101

Constructors to build complex concepts and roles ⊔,⊓,¬, ∀,∃, ...

Faculty ⊓ ¬Prof ∃teaches.GradCourse teaches−

Note: allowed constructors depends on chosen DL

12/59

description logics: building blocks

Building blocks:

∙ concept names (unary predicates, classes) Prof Fellow Course

∙ role names (binary predicates, properties) teaches headOf

∙ individual names (constants) anna, cs101

Constructors to build complex concepts and roles ⊔,⊓,¬, ∀,∃, ...

Faculty ⊓ ¬Prof ∃teaches.GradCourse teaches−

Note: allowed constructors depends on chosen DL

12/59

description logic knowledge bases

DL knowledge base (KB) = ABox (data) + TBox (ontology)

ABox = finite set of concept and role assertions (facts)

Prof(anna) teaches(tom, cs101)

TBox (ontology) = finite set of axioms

∙ concept inclusions C ⊑ D (C,D possibly complex concepts)

Prof ⊑ Faculty ∃teaches.GradCourse ⊑ Prof

∙ role inclusions R ⊑ S (R, S possibly complex roles)

taughtBy ⊑ teaches− headOf ⊑ memberOf

Note: allowed axioms depends on chosen DL

13/59

description logic knowledge bases

DL knowledge base (KB) = ABox (data) + TBox (ontology)

ABox = finite set of concept and role assertions (facts)

Prof(anna) teaches(tom, cs101)

TBox (ontology) = finite set of axioms

∙ concept inclusions C ⊑ D (C,D possibly complex concepts)

Prof ⊑ Faculty ∃teaches.GradCourse ⊑ Prof

∙ role inclusions R ⊑ S (R, S possibly complex roles)

taughtBy ⊑ teaches− headOf ⊑ memberOf

Note: allowed axioms depends on chosen DL
13/59

examples of tbox axioms

Professors and lecturers are disjoint classes of faculty

Prof ⊑ Faculty Lect ⊑ Faculty Prof ⊑ ¬Lect

Every course is either an undergrad or grad course

Course ⊑ UCourse ⊔ GCourse

The relation takesCourse connects students to courses

∃takesCourse.⊤ ⊑ Student ∃takesCourse−.⊤ ⊑ Course

Every student takes at least 2 and at most 5 courses

Student ⊑ ≥ 2takesCourse.⊤⊓ ≤ 5takesCourse.⊤

14/59

more examples of tbox axioms

Every grad student is supervised by some faculty member

GStudent ⊑ ∃supervisedBy.Faculty

The academic ancestor relation is transitive

supervisedBy ⊑ academicAnc trans(academicAnc)

Students who only take grad-level courses are grad students

Student ⊓ ∀takesCourse.GCourse ⊑ GStudent

FO translation:
∀x (Student(x) ∧ (∀y takesCourse(x, y) → GCourse(y)) → GStudent(x)

15/59

semantics of dl kbs

Interpretation I (“possible world”) (like in first-order logic)

∙ domain of objects ∆I (possibly infinite set)
∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

Interpretation function ·I extends to complex concepts and roles:
⊤ ∆I

⊥ ∅
¬C ∆I \ CI

C1 ⊓ C2 C1I ∩ C2I

∃R.C {d1 | there exists (d1,d2) ∈ RI with d2 ∈ CI}
∀R.C {d1 | d2 ∈ CI for all (d1,d2) ∈ RI}
r− {(d2,d1) | (d1,d2) ∈ rI}

16/59

semantics of dl kbs

Interpretation I (“possible world”) (like in first-order logic)

∙ domain of objects ∆I (possibly infinite set)
∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

Interpretation function ·I extends to complex concepts and roles:
⊤ ∆I

⊥ ∅
¬C ∆I \ CI

C1 ⊓ C2 C1I ∩ C2I

∃R.C {d1 | there exists (d1,d2) ∈ RI with d2 ∈ CI}
∀R.C {d1 | d2 ∈ CI for all (d1,d2) ∈ RI}
r− {(d2,d1) | (d1,d2) ∈ rI}

16/59

semantics of dl kbs, cont.

Satisfaction in an interpretation
∙ I satisfies C ⊑ D ⇔ CI ⊆ DI

∙ I satisfies R ⊑ S ⇔ RI ⊆ SI

∙ I satisfies A(a) ⇔ aI ∈ AI

∙ I satisfies r(a,b) ⇔ (aI ,bI) ∈ rI

Model of a KB K = interpretation that satisfies all statements in K

K is satisfiable = K has at least one model

K entails α (written K |= α) = every model I of K satisfies α

Basic reasoning tasks:
∙ KB satisfiability: decide whether K is satisfiable
∙ Axiom entailment: decide whether T |= α (with α an axiom)
∙ Classification: decide T |= A ⊑ B for every pair A,B of concept names

17/59

semantics of dl kbs, cont.

Satisfaction in an interpretation
∙ I satisfies C ⊑ D ⇔ CI ⊆ DI

∙ I satisfies R ⊑ S ⇔ RI ⊆ SI

∙ I satisfies A(a) ⇔ aI ∈ AI

∙ I satisfies r(a,b) ⇔ (aI ,bI) ∈ rI

Model of a KB K = interpretation that satisfies all statements in K

K is satisfiable = K has at least one model

K entails α (written K |= α) = every model I of K satisfies α

Basic reasoning tasks:
∙ KB satisfiability: decide whether K is satisfiable
∙ Axiom entailment: decide whether T |= α (with α an axiom)
∙ Classification: decide T |= A ⊑ B for every pair A,B of concept names

17/59

semantics of dl kbs, cont.

Satisfaction in an interpretation
∙ I satisfies C ⊑ D ⇔ CI ⊆ DI

∙ I satisfies R ⊑ S ⇔ RI ⊆ SI

∙ I satisfies A(a) ⇔ aI ∈ AI

∙ I satisfies r(a,b) ⇔ (aI ,bI) ∈ rI

Model of a KB K = interpretation that satisfies all statements in K

K is satisfiable = K has at least one model

K entails α (written K |= α) = every model I of K satisfies α

Basic reasoning tasks:
∙ KB satisfiability: decide whether K is satisfiable
∙ Axiom entailment: decide whether T |= α (with α an axiom)
∙ Classification: decide T |= A ⊑ B for every pair A,B of concept names

17/59

differences with database setting

ABoxes are interpreted under the open-world assumption
∙ facts that are not in the ABox may still be true (e.g. can be inferred
by exploiting information in the TBox)

∙ differs from the typical closed-world assumption from databases,
where absent facts are interpreted as false

Semantics in terms of arbitrary (possibly infinite) interpretations
∙ differs from finite models considered in databases
∙ may consider an alternative semantics based upon finite models
∙ for some DLs, two semantics behave the same
∙ for others, often possible to reduce to arbitrary model reasoning

For today’s talk, we’ll focus on standard semantics (arbitrary models)

18/59

differences with database setting

ABoxes are interpreted under the open-world assumption
∙ facts that are not in the ABox may still be true (e.g. can be inferred
by exploiting information in the TBox)

∙ differs from the typical closed-world assumption from databases,
where absent facts are interpreted as false

Semantics in terms of arbitrary (possibly infinite) interpretations
∙ differs from finite models considered in databases
∙ may consider an alternative semantics based upon finite models
∙ for some DLs, two semantics behave the same
∙ for others, often possible to reduce to arbitrary model reasoning

For today’s talk, we’ll focus on standard semantics (arbitrary models)

18/59

example dls

Prototypical expressive description logic ALC:

∙ Concepts: C := ⊤ | ⊥ | A | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C
∙ TBox axioms: only concept inclusions

Highly expressive description logic SHOIQ (∼ OWL 2)

∙ Extends ALC with:
∙ number restrictions ≤ nR.C ≥ nR.C and nominals {a}

∙ role inclusions R1 ⊑ R2 and transitivity axioms trans(R)

∙ inverse roles r− (allowed in all types of axioms)

“Lightweight” description logic EL (∼ OWL 2 EL)

∙ Fragment of ALC with concepts C := ⊤ | A | C ⊓ C | ∃r.C

ALCI = extension of ALC with inverse roles (I)

ELH = extension of EL with role inclusions (H)

19/59

example dls

Prototypical expressive description logic ALC:

∙ Concepts: C := ⊤ | ⊥ | A | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C
∙ TBox axioms: only concept inclusions

Highly expressive description logic SHOIQ (∼ OWL 2)

∙ Extends ALC with:
∙ number restrictions ≤ nR.C ≥ nR.C and nominals {a}

∙ role inclusions R1 ⊑ R2 and transitivity axioms trans(R)

∙ inverse roles r− (allowed in all types of axioms)

“Lightweight” description logic EL (∼ OWL 2 EL)

∙ Fragment of ALC with concepts C := ⊤ | A | C ⊓ C | ∃r.C

ALCI = extension of ALC with inverse roles (I)

ELH = extension of EL with role inclusions (H)

19/59

example dls

Prototypical expressive description logic ALC:

∙ Concepts: C := ⊤ | ⊥ | A | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C
∙ TBox axioms: only concept inclusions

Highly expressive description logic SHOIQ (∼ OWL 2)

∙ Extends ALC with:
∙ number restrictions ≤ nR.C ≥ nR.C and nominals {a}

∙ role inclusions R1 ⊑ R2 and transitivity axioms trans(R)

∙ inverse roles r− (allowed in all types of axioms)

“Lightweight” description logic EL (∼ OWL 2 EL)

∙ Fragment of ALC with concepts C := ⊤ | A | C ⊓ C | ∃r.C

ALCI = extension of ALC with inverse roles (I)

ELH = extension of EL with role inclusions (H)

19/59

example dls

Prototypical expressive description logic ALC:

∙ Concepts: C := ⊤ | ⊥ | A | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C
∙ TBox axioms: only concept inclusions

Highly expressive description logic SHOIQ (∼ OWL 2)

∙ Extends ALC with:
∙ number restrictions ≤ nR.C ≥ nR.C and nominals {a}

∙ role inclusions R1 ⊑ R2 and transitivity axioms trans(R)

∙ inverse roles r− (allowed in all types of axioms)

“Lightweight” description logic EL (∼ OWL 2 EL)

∙ Fragment of ALC with concepts C := ⊤ | A | C ⊓ C | ∃r.C

ALCI = extension of ALC with inverse roles (I)

ELH = extension of EL with role inclusions (H) 19/59

introduction to omqa

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)

(find all faculty members that teach something)

Ontology-mediated query (OMQ):
pair (T ,q) with T a TBox and q a query (IQ / CQ)

21/59

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)

(find all faculty members that teach something)

Ontology-mediated query (OMQ):
pair (T ,q) with T a TBox and q a query (IQ / CQ)

21/59

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)

(find all faculty members that teach something)

Ontology-mediated query (OMQ):
pair (T ,q) with T a TBox and q a query (IQ / CQ)

21/59

query answering: database vs ontology settings

Answering CQs in database setting

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

database D + query q ⇝ set of answers ans(q,D)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

model I of KB (T ,A) + query q ⇝ set of answers ans(q, I)

22/59

query answering: database vs ontology settings

Answering CQs in database setting

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

database D + query q ⇝ set of answers ans(q,D)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

model I of KB (T ,A) + query q ⇝ set of answers ans(q, I)

22/59

omqa and certain answers

Question: how to combine the answers from different models?

Certain answers:
∙ tuples of inds a⃗ such that a⃗ ∈ ans(q, I) for every model I of (T ,A)

∙ corresponds to a form of entailment, we’ll write T ,A |= q(a⃗)

Ontology-mediated query answering =
problem of computing / verifying certain answers

23/59

omqa and certain answers

Question: how to combine the answers from different models?

Certain answers:
∙ tuples of inds a⃗ such that a⃗ ∈ ans(q, I) for every model I of (T ,A)

∙ corresponds to a form of entailment, we’ll write T ,A |= q(a⃗)

Ontology-mediated query answering =
problem of computing / verifying certain answers

23/59

omqa example

TBox (ontology):

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃teaches.⊤ ∃teaches−.⊤⊑ Course

ABox (data):

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

Query: q(x) = ∃y.Faculty(x) ∧ teaches(x, y)

Get the following certain answers:
∙ anna Prof(anna) + Prof ⊑ Faculty + Prof ⊑ ∃teaches.⊤

∙ tom Fellow(tom) + Fellow ⊑ Faculty + teaches(tom, cs101)

24/59

omqa example

TBox (ontology):

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃teaches.⊤ ∃teaches−.⊤⊑ Course

ABox (data):

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

Query: q(x) = ∃y.Faculty(x) ∧ teaches(x, y)

Get the following certain answers:
∙ anna Prof(anna) + Prof ⊑ Faculty + Prof ⊑ ∃teaches.⊤

∙ tom Fellow(tom) + Fellow ⊑ Faculty + teaches(tom, cs101)

24/59

complexity of omqa

OMQA viewed as a decision problem (yes-or-no question):
Problem: Q answering in L (Q a query language, L a DL)
Input: An n-ary query q ∈ Q, an ABox A, an L-TBox T ,

and a tuple a⃗ ∈ Ind(A)n

Question: Does T ,A |= q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox (data) typically much larger than rest of input

data complexity ≤ combined complexity

25/59

complexity of omqa

OMQA viewed as a decision problem (yes-or-no question):
Problem: Q answering in L (Q a query language, L a DL)
Input: An n-ary query q ∈ Q, an ABox A, an L-TBox T ,

and a tuple a⃗ ∈ Ind(A)n

Question: Does T ,A |= q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox (data) typically much larger than rest of input

data complexity ≤ combined complexity

25/59

intractability for expressive dls

Recall the DL ALC: C := ⊤ | ⊥ | A | ¬C | C ⊓ C | C ⊔ C | ∃r.C | ∀r.C

Satisfiability, IQ answering, and CQ answering in ALC are:

∙ EXPTIME-complete in combined complexity
∙ coNP-complete in data complexity

Even worse news for CQ answering in ALCI (= ALC + inverse roles):

∙ 2EXPTIME-complete in combined complexity
∙ coNP-complete in data complexity

26/59

omqa with lightweight dls

data-tractable dls

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)
∙ designed with OMQA in mind
∙ capture main constructs from conceptual modelling
∙ key technique: query rewriting (∼ backward chaining)

EL family of DLs (basis for OWL 2 EL)
∙ designed to allow efficient reasoning with large ontologies
∙ well suited for medical and life science applications
∙ key technique: saturation (∼ forward chaining)

Commonality: cannot express disjunction (Horn logics),
existence of a canonical / universal model

28/59

data-tractable dls

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)
∙ designed with OMQA in mind
∙ capture main constructs from conceptual modelling
∙ key technique: query rewriting (∼ backward chaining)

EL family of DLs (basis for OWL 2 EL)
∙ designed to allow efficient reasoning with large ontologies
∙ well suited for medical and life science applications
∙ key technique: saturation (∼ forward chaining)

Commonality: cannot express disjunction (Horn logics),
existence of a canonical / universal model

28/59

data-tractable dls

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)
∙ designed with OMQA in mind
∙ capture main constructs from conceptual modelling
∙ key technique: query rewriting (∼ backward chaining)

EL family of DLs (basis for OWL 2 EL)
∙ designed to allow efficient reasoning with large ontologies
∙ well suited for medical and life science applications
∙ key technique: saturation (∼ forward chaining)

Commonality: cannot express disjunction (Horn logics),
existence of a canonical / universal model

28/59

data-tractable dls

Negative results led to proposal of new DLs with lower complexity

DL-Lite family of DLs (basis for OWL 2 QL)
∙ designed with OMQA in mind
∙ capture main constructs from conceptual modelling
∙ key technique: query rewriting (∼ backward chaining)

EL family of DLs (basis for OWL 2 EL)
∙ designed to allow efficient reasoning with large ontologies
∙ well suited for medical and life science applications
∙ key technique: saturation (∼ forward chaining)

Commonality: cannot express disjunction (Horn logics),
existence of a canonical / universal model

28/59

canonical models

For Horn ontologies (no form of disjunction) like DL-Lite, EL:
enough to consider a single canonical model
∙ idea: exhaustively apply ontology axioms to dataset (like the chase)
∙ possibly infinite (A ⊑ ∃r.A)
∙ forest-shaped (dataset + new tree structures for ∃-axioms)
∙ give correct answer to all CQs

A

R

P-
R

a

...
aR

aRR
aRP-

OMQA with Horn DLs =
finding ways to
map the query into
the canonical model

29/59

canonical models

For Horn ontologies (no form of disjunction) like DL-Lite, EL:
enough to consider a single canonical model
∙ idea: exhaustively apply ontology axioms to dataset (like the chase)
∙ possibly infinite (A ⊑ ∃r.A)
∙ forest-shaped (dataset + new tree structures for ∃-axioms)
∙ give correct answer to all CQs

A

R

P-
R

a

...
aR

aRR
aRP-

OMQA with Horn DLs =
finding ways to
map the query into
the canonical model

29/59

description logic dl-lite

We present the dialect DL-LiteR (which underlies OWL2 QL profile).

DL-LiteR TBoxes contain

∙ concept inclusions B1 ⊑ B2, B1 ⊑ ¬B2
∙ role inclusions R1 ⊑ R2, R1 ⊑ ¬R2

where B := A | ∃R R := r | r−

Example TBox inclusions:
∙ Every professor teaches something: Prof ⊑ ∃teaches
∙ Everything that is taught is a course: ∃teaches− ⊑ Course
∙ Head of dept implies member of dept: headOf ⊑ memberOf

30/59

description logic dl-lite

We present the dialect DL-LiteR (which underlies OWL2 QL profile).

DL-LiteR TBoxes contain

∙ concept inclusions B1 ⊑ B2, B1 ⊑ ¬B2
∙ role inclusions R1 ⊑ R2, R1 ⊑ ¬R2

where B := A | ∃R R := r | r−

Example TBox inclusions:
∙ Every professor teaches something: Prof ⊑ ∃teaches
∙ Everything that is taught is a course: ∃teaches− ⊑ Course
∙ Head of dept implies member of dept: headOf ⊑ memberOf

30/59

query rewriting

Idea: reduce OMQA to database query evaluation
∙ rewriting step: TBox T + query q⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting
∙ FO query q′ is an FO-rewriting of q w.r.t. TBox T iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Good news: every CQ and DL-Lite ontology has FO-rewriting

31/59

query rewriting

Idea: reduce OMQA to database query evaluation
∙ rewriting step: TBox T + query q⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting
∙ FO query q′ is an FO-rewriting of q w.r.t. TBox T iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Good news: every CQ and DL-Lite ontology has FO-rewriting

31/59

query rewriting

Idea: reduce OMQA to database query evaluation
∙ rewriting step: TBox T + query q⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting
∙ FO query q′ is an FO-rewriting of q w.r.t. TBox T iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Good news: every CQ and DL-Lite ontology has FO-rewriting
31/59

example: query rewriting in dl-lite

Reconsider the DL-Lite TBox T :

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃teaches ∃teaches− ⊑ Course

and the query q(x) = ∃y.Faculty(x) ∧ teaches(x, y)

The following query is a rewriting of q(x) w.r.t. T :

q(x) ∨ Prof(x) ∨ ∃y.Fellow(x) ∧ teaches(x, y)

Evaluating the rewritten query over the earlier ABox

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

produces the two certain answers: anna and tom

32/59

example: query rewriting in dl-lite

Reconsider the DL-Lite TBox T :

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃teaches ∃teaches− ⊑ Course

and the query q(x) = ∃y.Faculty(x) ∧ teaches(x, y)

The following query is a rewriting of q(x) w.r.t. T :

q(x) ∨ Prof(x) ∨ ∃y.Fellow(x) ∧ teaches(x, y)

Evaluating the rewritten query over the earlier ABox

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

produces the two certain answers: anna and tom

32/59

example: query rewriting in dl-lite

Reconsider the DL-Lite TBox T :

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃teaches ∃teaches− ⊑ Course

and the query q(x) = ∃y.Faculty(x) ∧ teaches(x, y)

The following query is a rewriting of q(x) w.r.t. T :

q(x) ∨ Prof(x) ∨ ∃y.Fellow(x) ∧ teaches(x, y)

Evaluating the rewritten query over the earlier ABox

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

produces the two certain answers: anna and tom

32/59

query rewriting algorithms

Can focus w.l.o.g. on rewritings over consistent ABoxes

“Classic” approach works roughly as follows on input (q, T):
∙ Start with S = {q}
∙ Until S stabilizes, pick some q′ ∈ S and do one of the following:
∙ Apply an axiom in T to an atom in q′, and add the result to S
∙ Merge two variables x and y in q′, and add the result to S

∙ Output the UCQ
∨
q′∈S q′

Alternative “semantic” approach (also producing a UCQ):
∙ Big

∨
over possible decompositions of q into ABox and “tree parts”

∙ For atoms mapped to ABox: check if find implying atom in data
∙ For subqueries mapped to tree parts:
∙ ensure generating atom in data, merge ”root” variables

33/59

query rewriting algorithms

Can focus w.l.o.g. on rewritings over consistent ABoxes

“Classic” approach works roughly as follows on input (q, T):
∙ Start with S = {q}
∙ Until S stabilizes, pick some q′ ∈ S and do one of the following:
∙ Apply an axiom in T to an atom in q′, and add the result to S
∙ Merge two variables x and y in q′, and add the result to S

∙ Output the UCQ
∨
q′∈S q′

Alternative “semantic” approach (also producing a UCQ):
∙ Big

∨
over possible decompositions of q into ABox and “tree parts”

∙ For atoms mapped to ABox: check if find implying atom in data
∙ For subqueries mapped to tree parts:
∙ ensure generating atom in data, merge ”root” variables

33/59

complexity of omqa in dl-lite

Data complexity:

∙ rewriting takes constant time, yields FO query

∙ upper bound from FO query evaluation: AC0 (AC0 ⊆ LogSpace ⊆ P)

∙ CQ answering is in AC0 for data complexity

Combined complexity:

∙ ‘guess’ a disjunct of UCQ-rewriting and how to map it into ABox

∙ CQ answering is NP-complete (same as for DBs)

∙ IQ answering is NLogSpace-complete (NLogSpace ⊆ P)

34/59

complexity of omqa in dl-lite

Data complexity:

∙ rewriting takes constant time, yields FO query

∙ upper bound from FO query evaluation: AC0 (AC0 ⊆ LogSpace ⊆ P)

∙ CQ answering is in AC0 for data complexity

Combined complexity:

∙ ‘guess’ a disjunct of UCQ-rewriting and how to map it into ABox

∙ CQ answering is NP-complete (same as for DBs)

∙ IQ answering is NLogSpace-complete (NLogSpace ⊆ P)

34/59

worst-case size of rewritings

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = ∨ of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ A

i1
1 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

What happens if we adopt other representations?
∙ positive existential queries (PE), non-recursive Datalog (NDL),
first-order queries (FO)

35/59

worst-case size of rewritings

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = ∨ of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ A

i1
1 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

What happens if we adopt other representations?
∙ positive existential queries (PE), non-recursive Datalog (NDL),
first-order queries (FO)

35/59

worst-case size of rewritings

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = ∨ of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ A

i1
1 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

What happens if we adopt other representations?
∙ positive existential queries (PE), non-recursive Datalog (NDL),
first-order queries (FO)

35/59

worst-case size of rewritings

Many of the proposed rewriting algorithms produce unions of
conjunctive queries (UCQs = ∨ of CQs)

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ A

i1
1 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

What happens if we adopt other representations?
∙ positive existential queries (PE), non-recursive Datalog (NDL),
first-order queries (FO)

35/59

succinctness landscape for dl-lite

(for DL-LiteR ontologies, so-called ‘pure’ rewritings)

1 2 3 . . . d arb.

2

. . .

ℓ

trees

tw 2

. . .

tw t

arb.

Ontology depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

no poly PE but poly NDL
(poly FO⇔ NL/poly ⊆ NC1)

no poly PE but poly NDL
(poly FO⇔ SAC1 ⊆ NC1)

po
ly
FO

⇔
NP

/
p

ol
y
⊆

NC
1

≥
≤

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL
poly FO unless NL/poly ⊆ NC1

Qu
er
y
st
ru
ct
ur
e

(∼ longest chain of witnesses for existential axioms)
36/59

omqa in el

Next consider the logic EL:
∙ Concepts: C := ⊤ | A | C ⊓ C | ∃r.C
∙ Only concept inclusions in the TBox, no inverse roles

Cannot use FO query rewriting approach for EL:

no FO-rewriting of A(x) w.r.t. T = {∃r.A⊑ A}

We start with IQs and present a saturation-based approach.

Convenient to assume EL TBoxes given in normal form:

A1 ⊓ . . . ⊓ An ⊑ B A⊑ ∃r.B ∃r.A⊑ B

(A, Ai,B concept names or ⊤)

37/59

omqa in el

Next consider the logic EL:
∙ Concepts: C := ⊤ | A | C ⊓ C | ∃r.C
∙ Only concept inclusions in the TBox, no inverse roles

Cannot use FO query rewriting approach for EL:

no FO-rewriting of A(x) w.r.t. T = {∃r.A⊑ A}

We start with IQs and present a saturation-based approach.

Convenient to assume EL TBoxes given in normal form:

A1 ⊓ . . . ⊓ An ⊑ B A⊑ ∃r.B ∃r.A⊑ B

(A, Ai,B concept names or ⊤)

37/59

omqa in el

Next consider the logic EL:
∙ Concepts: C := ⊤ | A | C ⊓ C | ∃r.C
∙ Only concept inclusions in the TBox, no inverse roles

Cannot use FO query rewriting approach for EL:

no FO-rewriting of A(x) w.r.t. T = {∃r.A⊑ A}

We start with IQs and present a saturation-based approach.

Convenient to assume EL TBoxes given in normal form:

A1 ⊓ . . . ⊓ An ⊑ B A⊑ ∃r.B ∃r.A⊑ B

(A, Ai,B concept names or ⊤)
37/59

saturation rules for el

TBox rules

A⊑ Bi (1 ≤ i ≤ n) B1 ⊓ . . . ⊓ Bn ⊑ D
A⊑ D

T1 A⊑ B B⊑ ∃r.D
A⊑ ∃r.D

T2

A⊑ ∃r.B B⊑ D ∃r.D⊑ E
A⊑ E

T3

ABox rules

A1 ⊓ . . . ⊓ An ⊑ B Ai(a) (1 ≤ i ≤ n)
B(a)

A1
∃r.B⊑ A r(a,b) B(b)

A(a)
A2

Algorithm: apply rules exhaustively, check if A(a) (r(a,b)) is present
38/59

example: saturation in el

ArrabSauce⊑ Spicy T3 : (5), (6), (7) (10)
PenneArrab⊑ Spicy T3 : (1), (10), (7) (11)
PenneArrab⊑ Dish T1 : (2), (3) (12)
PenneArrab⊑ ∃hasIngred.Pasta T2 : (2), (4) (13)
PenneArrab⊑ SpicyDish T1 : (11), (12), (8) (14)
Spicy(p) A1 : (11), (9) (15)
Dish(p) A1 : (12), (9) (16)
SpicyDish(p) A1 : (16), (15) (17)

39/59

example: saturation in el

ArrabSauce⊑ Spicy T3 : (5), (6), (7) (10)
PenneArrab⊑ Spicy T3 : (1), (10), (7) (11)
PenneArrab⊑ Dish T1 : (2), (3) (12)
PenneArrab⊑ ∃hasIngred.Pasta T2 : (2), (4) (13)
PenneArrab⊑ SpicyDish T1 : (11), (12), (8) (14)
Spicy(p) A1 : (11), (9) (15)
Dish(p) A1 : (12), (9) (16)
SpicyDish(p) A1 : (16), (15) (17)

39/59

complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for IQs, since for every ABox assertion α, we have:

K |= α iff α ∈ sat(K)

Note: does not make all consequences explicit
∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Procedure runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity

40/59

complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for IQs, since for every ABox assertion α, we have:

K |= α iff α ∈ sat(K)

Note: does not make all consequences explicit
∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Procedure runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity

40/59

complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for IQs, since for every ABox assertion α, we have:

K |= α iff α ∈ sat(K)

Note: does not make all consequences explicit
∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Procedure runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity

40/59

complexity of iq answering in el

Saturation approach is sound: everything derived is entailed

Also complete for IQs, since for every ABox assertion α, we have:

K |= α iff α ∈ sat(K)

Note: does not make all consequences explicit
∙ can have infinitely many implied axioms⇝ would not terminate!
∙ so: only complete for some reasoning tasks

Procedure runs in polynomial time in |K|. This is optimal:

IQ answering in EL is P-complete for data & combined complexity

40/59

cq answering in el

Saw earlier that FO-rewritings may not exist

Can show Datalog rewritings exist for all CQs and EL ontologies
∙ rules that generate all entailed facts over original individuals
∙ can be obtained from axioms in sat(T)

∙ rules that check whether query holds
∙ idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in EL:
∙ P-complete in data complexity
∙ NP-complete in combined complexity

P data complexity extends to much richer Horn DLs

41/59

cq answering in el

Saw earlier that FO-rewritings may not exist

Can show Datalog rewritings exist for all CQs and EL ontologies
∙ rules that generate all entailed facts over original individuals
∙ can be obtained from axioms in sat(T)

∙ rules that check whether query holds
∙ idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in EL:
∙ P-complete in data complexity
∙ NP-complete in combined complexity

P data complexity extends to much richer Horn DLs

41/59

cq answering in el

Saw earlier that FO-rewritings may not exist

Can show Datalog rewritings exist for all CQs and EL ontologies
∙ rules that generate all entailed facts over original individuals
∙ can be obtained from axioms in sat(T)

∙ rules that check whether query holds
∙ idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in EL:
∙ P-complete in data complexity
∙ NP-complete in combined complexity

P data complexity extends to much richer Horn DLs

41/59

cq answering in el

Saw earlier that FO-rewritings may not exist

Can show Datalog rewritings exist for all CQs and EL ontologies
∙ rules that generate all entailed facts over original individuals
∙ can be obtained from axioms in sat(T)

∙ rules that check whether query holds
∙ idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in EL:
∙ P-complete in data complexity
∙ NP-complete in combined complexity

P data complexity extends to much richer Horn DLs
41/59

combined approach to cq answering in el

Way to use relational DBs to do CQ answering in EL:
∙ saturate ABox using TBox axioms
∙ introduce new individuals to witness existentials on LHS (A ⊑ ∃r.B)
∙ to ensure finite: reuse individuals as witnesses
∙ can be viewed as compact representation of canonical model

∙ evaluate query on saturated ABox⇒ superset of certain answers
∙ two strategies to block unsound answers:
∙ add extra conditions to query
∙ post-processing to identify and remove false answers

Student

takesCourse teaches

Prof

wCourse

Course

anna marie

Student v takesCourse.Course

Prof v teaches.Course

q = 9y.takesCourse(anna, y) ^ teaches(marie, y)

Saturated ABox

holds in - wrong!

Solution: disallow y 7! wCourse

q

A⇤

A⇤

new constant

42/59

combined approach to cq answering in el

Way to use relational DBs to do CQ answering in EL:
∙ saturate ABox using TBox axioms
∙ introduce new individuals to witness existentials on LHS (A ⊑ ∃r.B)
∙ to ensure finite: reuse individuals as witnesses
∙ can be viewed as compact representation of canonical model

∙ evaluate query on saturated ABox⇒ superset of certain answers
∙ two strategies to block unsound answers:
∙ add extra conditions to query
∙ post-processing to identify and remove false answers

Student

takesCourse teaches

Prof

wCourse

Course

anna marie

Student v takesCourse.Course

Prof v teaches.Course

q = 9y.takesCourse(anna, y) ^ teaches(marie, y)

Saturated ABox

holds in - wrong!

Solution: disallow y 7! wCourse

q

A⇤

A⇤

new constant

42/59

identifying fo-rewritable cases

Lack of FO-rewritings is a worst-case result
∙ possible that rewritings do exist for many real-world OMQs

Motivates looking at FO-rewritability problem for (L,Q):
∙ input: OMQ (T ,q) with T an L-TBox and q ∈ Q
∙ problem: decide if there exists an FO-rewriting of (T ,q)

Form of static analysis, related to Datalog boundedness

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

43/59

identifying fo-rewritable cases

Lack of FO-rewritings is a worst-case result
∙ possible that rewritings do exist for many real-world OMQs

Motivates looking at FO-rewritability problem for (L,Q):
∙ input: OMQ (T ,q) with T an L-TBox and q ∈ Q
∙ problem: decide if there exists an FO-rewriting of (T ,q)

Form of static analysis, related to Datalog boundedness

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

43/59

identifying fo-rewritable cases

Lack of FO-rewritings is a worst-case result
∙ possible that rewritings do exist for many real-world OMQs

Motivates looking at FO-rewritability problem for (L,Q):
∙ input: OMQ (T ,q) with T an L-TBox and q ∈ Q
∙ problem: decide if there exists an FO-rewriting of (T ,q)

Form of static analysis, related to Datalog boundedness

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

43/59

proof ideas for deciding fo-rewritability

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs and richer Horn DLs

44/59

proof ideas for deciding fo-rewritability

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs and richer Horn DLs

44/59

proof ideas for deciding fo-rewritability

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs and richer Horn DLs

44/59

proof ideas for deciding fo-rewritability

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs and richer Horn DLs

44/59

linking to existing data
via mappings

two variants of omqa

46/59

mappings

So far: data given as ABox (unary + binary facts using TBox predicates)

Problem: how to apply the approach to existing relational data
(arbitrary arity, different vocabulary)?

Solution: use mapping that specifies relationship between the
database relations and the ontology predicates

Formally: mapping assertions of the form ∀⃗xφ(⃗x) → ψ(⃗x) where:

∙ φ(⃗x) is an query formulated using DB relations
∙ ψ(⃗x) is a query in the ontology vocabulary

Global-as-view (GAV) mappings: ψ is an atom (without ∃-vars)

47/59

omqa with mappings

Database D + mappingM ⇝ ABox AM,D

Models of ⟨T ,M,D⟩ = models of the KB ⟨T ,AM,D⟩

Certain answers to q w.r.t. ⟨T ,M,D⟩ =
tuples of constants a from D ∪M such that ⟨T ,AM,D⟩ |= q(a)

Handling mappings:
∙ apply mappings to generate ABox, proceed as usual
∙ virtual ABox: combine query rewriting with an extra unfolding step
to get rewriting over DB relations

48/59

omqa with mappings

Database D + mappingM ⇝ ABox AM,D

Models of ⟨T ,M,D⟩ = models of the KB ⟨T ,AM,D⟩

Certain answers to q w.r.t. ⟨T ,M,D⟩ =
tuples of constants a from D ∪M such that ⟨T ,AM,D⟩ |= q(a)

Handling mappings:
∙ apply mappings to generate ABox, proceed as usual
∙ virtual ABox: combine query rewriting with an extra unfolding step
to get rewriting over DB relations

48/59

example: mappings

Suppose course data is stored in the two database tables:

UndergradCourses[CourseID, Year, Lecturer, Room, Timeslot]
GradCourses[CourseID, Lecturer, Room, Timeslot]

and employee data is stored in the table

Employee[EmpID,Name,Position,Dept]

The mapping could contain statements like: (initial ∀ omitted)

∃y,r,tUndergradCourses(c, y, l, r, t) → teaches(l, c)
∃y,r,tGradCourses(c, l, r, t) → teaches(l, c)
∃n,dEmployee(x,n,Professor,d) → Prof(x)

to populate the ontology predicates teaches and Prof

49/59

example: mapping unfolding

Unfolding of query q (over ontology vocabulary) w.r.t. mapping:
∙ find ways of unifying atoms in q with head atoms in mapping rules
∙ replace atoms in q by the bodies of (unified) matching rules

For q(x, y) = Prof(x) ∧ teaches(x, y), unfolding yields the following:

∃n,d,z,r,tEmployee(x,n,Professor,d)∧UndergradCourses(y, z, x, r, t)
∨ ∃n,d,r,tEmployee(x,n,Professor,d)∧GradCourses(y, x, r, t)

Observe result uses only DB predicates, can be converted to SQL

Opportunities for optimization: simplify rewriting by exploiting the
fact that only needs to work for ABoxes induced by the mapping

50/59

example: mapping unfolding

Unfolding of query q (over ontology vocabulary) w.r.t. mapping:
∙ find ways of unifying atoms in q with head atoms in mapping rules
∙ replace atoms in q by the bodies of (unified) matching rules

For q(x, y) = Prof(x) ∧ teaches(x, y), unfolding yields the following:

∃n,d,z,r,tEmployee(x,n,Professor,d)∧UndergradCourses(y, z, x, r, t)
∨ ∃n,d,r,tEmployee(x,n,Professor,d)∧GradCourses(y, x, r, t)

Observe result uses only DB predicates, can be converted to SQL

Opportunities for optimization: simplify rewriting by exploiting the
fact that only needs to work for ABoxes induced by the mapping

50/59

example: mapping unfolding

Unfolding of query q (over ontology vocabulary) w.r.t. mapping:
∙ find ways of unifying atoms in q with head atoms in mapping rules
∙ replace atoms in q by the bodies of (unified) matching rules

For q(x, y) = Prof(x) ∧ teaches(x, y), unfolding yields the following:

∃n,d,z,r,tEmployee(x,n,Professor,d)∧UndergradCourses(y, z, x, r, t)
∨ ∃n,d,r,tEmployee(x,n,Professor,d)∧GradCourses(y, x, r, t)

Observe result uses only DB predicates, can be converted to SQL

Opportunities for optimization: simplify rewriting by exploiting the
fact that only needs to work for ABoxes induced by the mapping

50/59

omqa research

research topics in omqa

Ontology-mediated query answering:
∙ new paradigm for intelligent information systems
∙ offers many advantages, but also computational challenges
∙ active area with lots left to explore!

Efficient OMQA algorithms:
∙ optimized rewriting algorithms: compact rewritings, exploit
mapping structure, cost-based rewriting selection

∙ tackling more expressive DLs: identify easier cases (existence of
rewritings), use upper + lower approximations

Support for building and maintaining OMQA systems
∙ ontology + mapping bootstrapping, module extraction, debugging,
ontology evolution and versioning

∙ inspired new reasoning tasks: query inseparability, query
emptiness, justification finding, logical difference, ...

52/59

research topics in omqa

Ontology-mediated query answering:
∙ new paradigm for intelligent information systems
∙ offers many advantages, but also computational challenges
∙ active area with lots left to explore!

Efficient OMQA algorithms:
∙ optimized rewriting algorithms: compact rewritings, exploit
mapping structure, cost-based rewriting selection

∙ tackling more expressive DLs: identify easier cases (existence of
rewritings), use upper + lower approximations

Support for building and maintaining OMQA systems
∙ ontology + mapping bootstrapping, module extraction, debugging,
ontology evolution and versioning

∙ inspired new reasoning tasks: query inseparability, query
emptiness, justification finding, logical difference, ...

52/59

research topics in omqa

Ontology-mediated query answering:
∙ new paradigm for intelligent information systems
∙ offers many advantages, but also computational challenges
∙ active area with lots left to explore!

Efficient OMQA algorithms:
∙ optimized rewriting algorithms: compact rewritings, exploit
mapping structure, cost-based rewriting selection

∙ tackling more expressive DLs: identify easier cases (existence of
rewritings), use upper + lower approximations

Support for building and maintaining OMQA systems
∙ ontology + mapping bootstrapping, module extraction, debugging,
ontology evolution and versioning

∙ inspired new reasoning tasks: query inseparability, query
emptiness, justification finding, logical difference, ...

52/59

research topics in omqa

Improving the usability of OMQA systems
∙ interfaces and support for query formulation
∙ explaining query (non-)answers

Broadening the scope:
∙ new data formats: graph data, key-value stores, temporal data
∙ further query languages: regular path queries, streaming queries

Beyond classical OMQA:
∙ inconsistency-tolerant query answering
∙ probabilistic query answering
∙ privacy-aware query answering

53/59

research topics in omqa

Improving the usability of OMQA systems
∙ interfaces and support for query formulation
∙ explaining query (non-)answers

Broadening the scope:
∙ new data formats: graph data, key-value stores, temporal data
∙ further query languages: regular path queries, streaming queries

Beyond classical OMQA:
∙ inconsistency-tolerant query answering
∙ probabilistic query answering
∙ privacy-aware query answering

53/59

research topics in omqa

Improving the usability of OMQA systems
∙ interfaces and support for query formulation
∙ explaining query (non-)answers

Broadening the scope:
∙ new data formats: graph data, key-value stores, temporal data
∙ further query languages: regular path queries, streaming queries

Beyond classical OMQA:
∙ inconsistency-tolerant query answering
∙ probabilistic query answering
∙ privacy-aware query answering

53/59

references

basic references

Recent textbook on DLs:

An Introduction to Description Logic. By F. Baader, I. Horrocks, C.
Lutz, and U. Sattler. Cambridge University Press (2017).

Lecture notes on OMQA (look here for further refs!):

M. Bienvenu and M. Ortiz. Ontology-mediated query answering with
data-tractable description logics. Lecture Notes of Reasoning Web.
Springer LNCS, 2015.

Short recent survey, focusing on linking to DBs:

G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and
M. Zakharyaschev. Ontology-based data access: A survey. Proc. of
IJCAI, 2018.

55/59

rewriting algorithms for dl-lite

Original PerfectRef algorithm presented here:

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati:
Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. Journal of Automated Reasoning (JAR)
39(3), 385–429, 2007.

“Semantic” tree witness rewriting is described here:

S. Kikot, R. Kontchakov, M. Zakharyaschev: Conjunctive query
answering with OWL 2 QL. Proc. of KR, 2012.

(far from an exhaustive list, refer to RW chapter for further refs)

56/59

references on succinctness of rewriting

The following paper presents the landscape for pure rewritings:

M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M.
Zakharyaschev: Ontology-Mediated Queries: Combined Complexity
and Succinctness of Rewritings via Circuit Complexity. Journal of the
ACM (JACM), 2018.

Optimal NDL-rewritings presented here:

M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M.
Zakharyaschev: The Complexity of Ontology-Based Data Access with
OWL 2 QL and Bounded Treewidth Queries. Proc. of PODS, 2017.

Polynomial impure rewritings can be found here:

G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M.
Zakharyaschev: The Price of Query Rewriting in Ontology-based
Data Access. Artificial Intelligence (AIJ), 2014.

57/59

querying algorithms for el and horn dls

Combined approach for EL:

C. Lutz, D. Toman, F. Wolter: Conjunctive query answering in the
description logic EL using a relational database system. Proc. of
IJCAI, 2009.

Datalog rewriting approach that works for Horn-SHIQ:

T. Eiter, M. Ortiz, M. Simkus, T. Tran, G. Xiao: Query rewriting for
Horn-SHIQ plus rules. Proc. of AAAI, 2012.

(just two examples of algorithms, see RW chapter for more refs)

58/59

references on existence of fo-rewritings in horn dls

M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of
Atomic Queries in Horn Description Logics. Proc. of IJCAI, 2013.

P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting
in the Description Logic EL and Beyond. Proc. of IJCAI, 2015.

M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First
Order-Rewritability and Containment of Conjunctive Queries in
Horn Description Logics. Proc. of IJCAI, 2016.

P. Hansen and C. Lutz: Computing FO-Rewritings in EL in Practice:
from Atomic to Conjunctive Queries. Proc. of ISWC, 2017.

59/59

	Introduction to DLs
	Introduction to OMQA
	OMQA with Lightweight DLs
	Linking to existing data via mappings
	OMQA Research
	References

