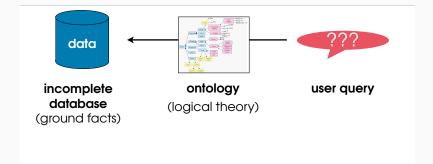
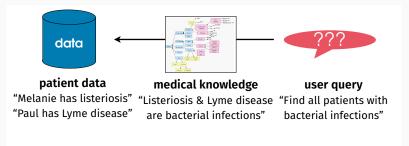
ONTOLOGY-MEDIATED QUERY ANSWERING

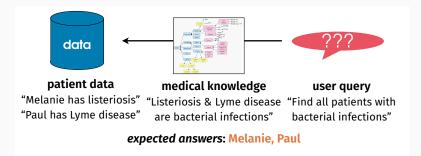
Meghyn Bienvenu (CNRS & Université de Bordeaux)





The **ontology** (logical theory) specifies:

- terminology (or vocabulary) of the domain
- · semantic relationships between terms
 - · relations of specificity or generality, equivalence, disjointness, ...



The **ontology** (logical theory) specifies:

- terminology (or vocabulary) of the domain
- · semantic relationships between terms
 - · relations of specificity or generality, equivalence, disjointness, ...

To standardize the terminology of an application domain

- · meaning of terms is constrained, so less misunderstandings
- \cdot by adopting a common vocabulary, easy to share information

To **standardize the terminology** of an application domain

- · meaning of terms is constrained, so less misunderstandings
- · by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources

- ontology can be used to enrich the data vocabulary, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To **standardize the terminology** of an application domain

- · meaning of terms is constrained, so less misunderstandings
- · by adopting a common vocabulary, easy to share information

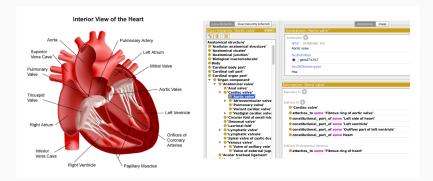
To present an intuitive and unified view of data sources

- ontology can be used to enrich the data vocabulary, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To support automated reasoning

- · uncover implicit connections between terms, errors in modelling
- exploit knowledge in the ontology during query answering, to get back a more complete set of answers to queries

General medical ontologies: SNOMED CT (\sim 400,000 terms!), GALEN Specialized ontologies: FMA (anatomy), NCI (cancer), ...

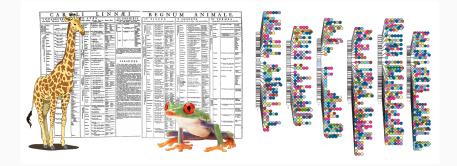


Querying & exchanging medical records (find patients for medical trials)

· myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays)

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/): Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...



Help scientists share, query, & visualize experimental data

APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data

need easy and flexible access to support decision-making

Example industrial projects:

- · Public debt data: Sapienza Univ. & Italian Department of Treasury
- · Energy sector: Optique EU project (several univ, StatOil, Siemens)

Ontologies typically described using logic-based formalisms

Description logics (DLs)

- \cdot family of decidable fragments of first-order logic (FO)
- \cdot concise variable-free syntax
- $\cdot\,$ only unary and binary predicates

Ontologies typically described using logic-based formalisms

Description logics (DLs)

- \cdot family of decidable fragments of first-order logic (FO)
- · concise variable-free syntax
- \cdot only unary and binary predicates

Existential rules (aka Datalog^{+/-}, tuple-generating dependencies)

- family of languages of rules of the form $\forall x (\exists \vec{y} \varphi(\vec{x}, \vec{y}) \to \exists \vec{z} \psi(\vec{x}, \vec{z}))$ where $\varphi(\vec{x}, \vec{y})$ and $\psi(\vec{x}, \vec{z})$ are conjunctions of atoms
- \cdot can have predicates of arbitrary arity

Ontologies typically described using logic-based formalisms

Description logics (DLs)

- \cdot family of decidable fragments of first-order logic (FO)
- · concise variable-free syntax
- \cdot only unary and binary predicates

Existential rules (aka Datalog^{+/-}, tuple-generating dependencies)

- family of languages of rules of the form $\forall x (\exists \vec{y} \varphi(\vec{x}, \vec{y}) \to \exists \vec{z} \psi(\vec{x}, \vec{z}))$ where $\varphi(\vec{x}, \vec{y})$ and $\psi(\vec{x}, \vec{z})$ are conjunctions of atoms
- $\cdot\,$ can have predicates of arbitrary arity

Two approaches are incomparable and complementary

- · family of knowledge representation languages
- · popular means for specifying ontologies
- · range from fairly simple to highly expressive
- \cdot basis of the web ontology language OWL (W3C standard)

- · family of knowledge representation languages
- popular means for specifying ontologies
- · range from fairly simple to highly expressive
- \cdot basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic

- \cdot inherit well-defined semantics
- succinct, variable-free syntax

- \cdot family of knowledge representation languages
- · popular means for specifying ontologies
- · range from fairly simple to highly expressive
- \cdot basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic

- $\cdot\,$ inherit well-defined semantics
- succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

- · family of knowledge representation languages
- · popular means for specifying ontologies
- · range from fairly simple to highly expressive
- \cdot basis of the web ontology language OWL (W3C standard)

Formally: correspond to decidable fragments of first-order logic

- \cdot inherit well-defined semantics
- succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

 $\forall \vec{x} \; \varphi(\vec{x}) \to \exists \vec{y} \; \psi(\vec{x}, \vec{y})$

 $\forall \vec{x} \ \varphi(\vec{x}) \rightarrow \exists \vec{y} \ \psi(\vec{x}, \vec{y})$

Undecidable in general, different restrictions to achieve decidability

- \cdot forward chaining (chase) halts
- · backward chaining (rewriting) halts
- \cdot tree-like models

 $\forall \vec{x} \ \varphi(\vec{x}) \rightarrow \exists \vec{y} \ \psi(\vec{x}, \vec{y})$

Undecidable in general, different restrictions to achieve decidability

- \cdot forward chaining (chase) halts
- · backward chaining (rewriting) halts
- \cdot tree-like models

Many complexity & decidability results, few implemented algorithms

 $\forall \vec{x} \ \varphi(\vec{x}) \rightarrow \exists \vec{y} \ \psi(\vec{x}, \vec{y})$

Undecidable in general, different restrictions to achieve decidability

- \cdot forward chaining (chase) halts
- · backward chaining (rewriting) halts
- \cdot tree-like models

Many complexity & decidability results, few implemented algorithms

Can consider extensions allowing equality, disjunction in rule heads

• such extensions less well understood

Introduction to DLs

Introduction to OMQA

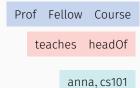
Techniques for OMQA with Lightweight DLs

Research Questions in OMQA

INTRODUCTION TO DLS

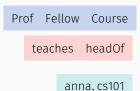
Building blocks:

- **concept names** (unary predicates, classes)
- role names (binary predicates, properties)
- · individual names (constants)



Building blocks:

- **concept names** (unary predicates, classes)
- · role names (binary predicates, properties)
- · individual names (constants)



Constructors to build complex concepts and roles $\Box, \Box, \neg, \forall, \exists, ...$ Faculty $\Box \neg$ Prof \exists teaches.GradCourseteaches⁻

Note: allowed constructors depends on chosen DL

DL knowledge base (KB) = ABox (data) + TBox (ontology)

ABox = finite set of concept and role assertions (facts)

Prof(anna) teaches(tom, cs101)

TBox (ontology) = finite set of axioms

DL knowledge base (KB) = ABox (data) + TBox (ontology)

ABox = finite set of concept and role assertions (facts)

Prof(anna) teaches(tom, cs101)

TBox (ontology) = finite set of axioms

• concept inclusions $C \sqsubseteq D$ (*C*, *D* possibly complex concepts)

 $\mathsf{Prof} \sqsubseteq \mathsf{Faculty} \quad \exists \mathsf{teaches}.\mathsf{GradCourse} \sqsubseteq \mathsf{Prof}$

• role inclusions $R \sqsubseteq S$ (*R*, *S* possibly complex roles)

taughtBy \sqsubseteq teaches headOf \sqsubseteq memberOf

Note: allowed axioms depends on chosen DL

Professors and lecturers are disjoint classes of faculty $Prof \sqsubseteq Faculty \quad Lect \sqsubseteq Faculty \quad Prof \sqsubseteq \neg Lect$

Every course is either an undergrad or grad course

 $Course \sqsubseteq UCourse \sqcup GCourse$

The relation takesCourse connects students to courses

 $\exists takesCourse. \top \sqsubseteq Student \exists takesCourse^-. \top \sqsubseteq Course$

Every student takes at least 2 and at most 5 courses

Student $\sqsubseteq \ge 2$ takesCourse. $\top \sqcap \le 5$ takesCourse. \top

Every grad student is supervised by some faculty member

 $\mathsf{GStudent}\sqsubseteq \exists \mathsf{supervisedBy}.\mathsf{Faculty}$

The academic ancestor relation is transitive

supervisedBy \sum academicAnc trans(academicAnc)

Students who only take grad-level courses are grad students

Student $\sqcap \forall$ takesCourse.GCourse \sqsubseteq GStudent

FO translation: $\forall x \text{ (Student}(x) \land (\forall y \text{ takesCourse}(x, y) \rightarrow \text{GCourse}(y)) \rightarrow \text{GStudent}(x)$

SEMANTICS OF DL KBS

Interpretation *I* ("possible world")

(like in first-order logic)

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

SEMANTICS OF DL KBS

Interpretation *I* ("possible world")

(like in first-order logic)

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Interpretation function \mathcal{I} extends to complex concepts and roles:

Т	$\Delta^{\mathcal{I}}$
\perp	Ø
$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$
$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$
$\exists R.C$	$\{d_1 \mid \text{there exists } (d_1, d_2) \in R^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}\}$
∀R.C	$\{d_1 \mid d_2 \in C^{\mathcal{I}} \text{ for all } (d_1, d_2) \in R^{\mathcal{I}}\}$
r ⁻	$\{(d_2, d_1) \mid (d_1, d_2) \in r^{\mathcal{I}}\}$

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $A(a) \Leftrightarrow a^{\mathcal{I}} \in A^{\mathcal{I}}$
- $\cdot \mathcal{I} \text{ satisfies } r(a,b) \quad \Leftrightarrow \quad (a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $A(a) \Leftrightarrow a^{\mathcal{I}} \in A^{\mathcal{I}}$
- $\cdot \mathcal{I} \text{ satisfies } r(a,b) \quad \Leftrightarrow \quad (a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Model of a KB \mathcal{K} = interpretation that satisfies all statements in \mathcal{K}

 \mathcal{K} is satisfiable = \mathcal{K} has at least one model

 \mathcal{K} entails α (written $\mathcal{K} \models \alpha$) = every model \mathcal{I} of \mathcal{K} satisfies α

Satisfaction in an interpretation

- $\cdot \mathcal{I}$ satisfies $C \sqsubseteq D \quad \Leftrightarrow \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $R \sqsubseteq S \iff R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\cdot \mathcal{I}$ satisfies $A(a) \Leftrightarrow a^{\mathcal{I}} \in A^{\mathcal{I}}$
- $\cdot \mathcal{I} \text{ satisfies } r(a,b) \quad \Leftrightarrow \quad (a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Model of a KB \mathcal{K} = interpretation that satisfies all statements in \mathcal{K}

 \mathcal{K} is satisfiable = \mathcal{K} has at least one model

 \mathcal{K} entails α (written $\mathcal{K} \models \alpha$) = every model \mathcal{I} of \mathcal{K} satisfies α

Basic reasoning tasks:

- $\cdot\,$ KB satisfiability: decide whether ${\cal K}$ is satisfiable
- · Axiom entailment: decide whether $\mathcal{T} \models \alpha$ (with α an axiom)
 - · Classification: decide $\mathcal{T} \models A \sqsubseteq B$ for every pair A, B of concept names

ABoxes are interpreted under the **open-world assumption**

- facts that are not in the ABox may still be true (e.g. can be inferred by exploiting information in the TBox)
- differs from the typical closed-world assumption from databases, where absent facts are interpreted as false

ABoxes are interpreted under the open-world assumption

- facts that are not in the ABox may still be true (e.g. can be inferred by exploiting information in the TBox)
- differs from the typical closed-world assumption from databases, where absent facts are interpreted as false

Semantics in terms of arbitrary (possibly infinite) interpretations

- $\cdot\,$ differs from finite models considered in databases
- \cdot may consider an alternative semantics based upon finite models
 - $\cdot\,$ for some DLs, two semantics behave the same
 - $\cdot\,$ for others, often possible to reduce to arbitrary model reasoning

For today's talk, we'll focus on standard semantics (arbitrary models)

Prototypical expressive description logic *ALC*:

- Concepts: $C := \top | \perp | A | \neg C | C \sqcap C | C \sqcup C | \exists r.C | \forall r.C$
- TBox axioms: only concept inclusions

EXAMPLE DLS

Prototypical expressive description logic *ALC*:

- · Concepts: $C := \top | \perp | A | \neg C | C \sqcap C | C \sqcup C | \exists r.C | \forall r.C$
- TBox axioms: only concept inclusions

Highly expressive description logic SHOIQ (~ OWL 2)

- \cdot Extends \mathcal{ALC} with:
 - · number restrictions $\leq nR.C \geq nR.C$ and nominals $\{a\}$
 - · role inclusions $R_1 \sqsubseteq R_2$ and transitivity axioms trans(R)
 - · inverse roles r^- (allowed in all types of axioms)

EXAMPLE DLS

Prototypical expressive description logic *ALC*:

- · Concepts: $C := \top | \perp | A | \neg C | C \sqcap C | C \sqcup C | \exists r.C | \forall r.C$
- TBox axioms: only concept inclusions

Highly expressive description logic SHOIQ (~ OWL 2)

- \cdot Extends \mathcal{ALC} with:
 - · number restrictions $\leq nR.C \geq nR.C$ and nominals $\{a\}$
 - · role inclusions $R_1 \sqsubseteq R_2$ and transitivity axioms trans(R)
 - · inverse roles r^- (allowed in all types of axioms)
- "Lightweight" description logic \mathcal{EL} (~ OWL 2 EL)
- Fragment of \mathcal{ALC} with concepts $C := \top |A| C \sqcap C | \exists r.C$

EXAMPLE DLS

Prototypical expressive description logic *ALC*:

- · Concepts: $C := \top | \perp | A | \neg C | C \sqcap C | C \sqcup C | \exists r.C | \forall r.C$
- TBox axioms: only concept inclusions

Highly expressive description logic SHOIQ (~ OWL 2)

- \cdot Extends \mathcal{ALC} with:
 - · number restrictions $\leq nR.C \geq nR.C$ and nominals $\{a\}$
 - · role inclusions $R_1 \sqsubseteq R_2$ and transitivity axioms trans(R)
 - · inverse roles r^- (allowed in all types of axioms)
- "Lightweight" description logic \mathcal{EL} (~ OWL 2 EL)
- Fragment of \mathcal{ALC} with concepts $C := \top |A| C \sqcap C | \exists r.C$

 \mathcal{ALCI} = extension of \mathcal{ALC} with inverse roles (\mathcal{I}) \mathcal{ELH} = extension of \mathcal{EL} with role inclusions (\mathcal{H})

INTRODUCTION TO OMQA

Instance queries (IQs): find instances of a given concept or role

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ~ SPJ queries in SQL, BGPs in SPARQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land teaches(x, y)$

(find all faculty members that teach something)

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ~ SPJ queries in SQL, BGPs in SPARQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land teaches(x, y)$

(find all faculty members that teach something)

Ontology-mediated query (OMQ): pair (\mathcal{T}, q) with \mathcal{T} a TBox and q a query (IQ / CQ)

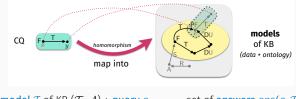
QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

Answering CQs in the presence of a TBox (ontology)



model \mathcal{I} of KB $(\mathcal{T}, \mathcal{A})$ + query $q \quad \rightsquigarrow \quad \text{set of answers } ans(q, \mathcal{I})$

Question: how to combine the answers from different models?

Certain answers:

- tuples of inds \vec{a} such that $\vec{a} \in ans(q, \mathcal{I})$ for every model \mathcal{I} of $(\mathcal{T}, \mathcal{A})$
- · corresponds to a form of **entailment**, we'll write $\mathcal{T}, \mathcal{A} \models q(\vec{a})$

Question: how to combine the answers from different models?

Certain answers:

- tuples of inds \vec{a} such that $\vec{a} \in ans(q, \mathcal{I})$ for every model \mathcal{I} of $(\mathcal{T}, \mathcal{A})$
- · corresponds to a form of **entailment**, we'll write $\mathcal{T}, \mathcal{A} \models q(\vec{a})$

Ontology-mediated query answering =

problem of computing / verifying certain answers

TBox (ontology):

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf $\sqsubseteq \neg$ FellowProf \sqsubseteq \exists teaches. \top \exists teaches $^-$. \top \sqsubseteq Course

ABox (data):

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

Query: $q(x) = \exists y. Faculty(x) \land teaches(x, y)$

TBox (ontology):

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq \exists teaches. \top \sqsubseteq Course

ABox (data):

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

Query: $q(x) = \exists y. Faculty(x) \land teaches(x, y)$

Get the following certain answers:

anna Prof(anna) + Prof ⊑ Faculty + Prof ⊑ ∃teaches.⊤
tom Fellow(tom) + Fellow ⊑ Faculty + teaches(tom, cs101)

OMQA viewed as a **decision problem** (yes-or-no question):

- PROBLEM: Q answering in \mathcal{L} (Q a query language, \mathcal{L} a DL)
- INPUT: An *n*-ary query $q \in Q$, an ABox A, an \mathcal{L} -TBox \mathcal{T} , and a tuple $\vec{a} \in \text{Ind}(A)^n$
- QUESTION: **Does** $\mathcal{T}, \mathcal{A} \models q(\vec{a})$?

OMQA viewed as a **decision problem** (yes-or-no question):

- PROBLEM: Q answering in $\mathcal{L}(Q$ a query language, \mathcal{L} a DL)
- INPUT: An *n*-ary query $q \in Q$, an ABox A, an \mathcal{L} -TBox \mathcal{T} , and a **tuple** $\vec{a} \in \text{Ind}(A)^n$

QUESTION: **Does** $T, A \models q(\vec{a})$?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only

- view rest of input as fixed (of constant size)
- motivation: ABox (data) typically much larger than rest of input

data complexity < combined complexity

Recall the DL \mathcal{ALC} : C := T | \bot | A | \neg C | C \Box C | C \sqcup C | \exists r.C | \forall r.C

Satisfiability, IQ answering, and CQ answering in \mathcal{ALC} are:

- · EXPTIME-complete in combined complexity
- · coNP-complete in data complexity

Even worse news for CQ answering in ALCI (= ALC + inverse roles):

- · 2EXPTIME-complete in combined complexity
- · coNP-complete in data complexity

OMQA WITH LIGHTWEIGHT DLS

DL-Lite family of DLs

(basis for OWL 2 QL)

- $\cdot\,$ designed with OMQA in mind
- $\cdot\,$ capture main constructs from conceptual modelling
- · key technique: query rewriting (~ backward chaining)

DL-Lite family of DLs

(basis for OWL 2 QL)

- $\cdot\,$ designed with OMQA in mind
- $\cdot\,$ capture main constructs from conceptual modelling
- \cdot key technique: query rewriting (~ backward chaining)

\mathcal{EL} family of DLs

(basis for OWL 2 EL)

- $\cdot\,$ designed to allow efficient reasoning with large ontologies
- $\cdot\,$ well suited for medical and life science applications
- \cdot key technique: saturation (~ forward chaining)

DL-Lite family of DLs

(basis for OWL 2 QL)

- $\cdot\,$ designed with OMQA in mind
- $\cdot\,$ capture main constructs from conceptual modelling
- \cdot key technique: query rewriting (~ backward chaining)

\mathcal{EL} family of DLs

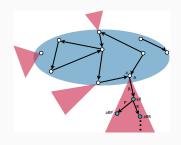
(basis for OWL 2 EL)

- $\cdot\,$ designed to allow efficient reasoning with large ontologies
- $\cdot\,$ well suited for medical and life science applications
- \cdot key technique: saturation (~ forward chaining)

Commonality: cannot express disjunction (Horn logics), existence of a canonical / universal model

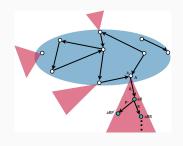
For Horn ontologies (no form of disjunction) like DL-Lite, \mathcal{EL} : enough to consider a single canonical model

- · idea: exhaustively apply ontology axioms to dataset (like the chase)
- · possibly infinite ($A \sqsubseteq \exists r.A$)
- · **forest-shaped** (dataset + new tree structures for \exists -axioms)
- · give correct answer to all CQs



For Horn ontologies (no form of disjunction) like DL-Lite, \mathcal{EL} : enough to consider a single canonical model

- · idea: exhaustively apply ontology axioms to dataset (like the chase)
- · possibly infinite ($A \sqsubseteq \exists r.A$)
- · **forest-shaped** (dataset + new tree structures for \exists -axioms)
- · give correct answer to all CQs



OMQA with Horn DLs = finding ways to map the query into the canonical model We present the dialect $DL-Lite_R$ (which underlies OWL2 QL profile).

DL-Lite_R TBoxes contain

- concept inclusions $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$
- role inclusions $R_1 \sqsubseteq R_2$, $R_1 \sqsubseteq \neg R_2$

where $B := A \mid \exists R \quad R := r \mid r^-$

We present the dialect $DL-Lite_R$ (which underlies OWL2 QL profile).

DL-Lite_R TBoxes contain

- concept inclusions $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$
- role inclusions $R_1 \sqsubseteq R_2$, $R_1 \sqsubseteq \neg R_2$

where $B := A \mid \exists R \qquad R := r \mid r^-$

Example TBox inclusions:

- · Every professor teaches something: Prof \sqsubseteq Eteaches
- \cdot Everything that is taught is a course: <code> \exists teaches⁻ \sqsubseteq Course</code>
- $\cdot \,$ Head of dept implies member of dept: headOf \sqsubseteq memberOf

Idea: reduce OMQA to database query evaluation

- · rewriting step: TBox T + query $q \rightsquigarrow$ first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Idea: reduce OMQA to database query evaluation

- · rewriting step: TBox T + query $q \rightsquigarrow$ first-order (SQL) query q'
- evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of q w.r.t. TBox \mathcal{T} iff for every ABox \mathcal{A} :

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad DB_{\mathcal{A}} \models q'(\vec{a})$$

Informally: evaluating q' over \mathcal{A} (viewed as DB) gives correct result

Idea: reduce OMQA to database query evaluation

- · rewriting step: TBox T + query $q \rightsquigarrow$ first-order (SQL) query q'
- evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of q w.r.t. TBox T iff for every ABox A:

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad DB_{\mathcal{A}} \models q'(\vec{a})$$

Informally: evaluating q' over \mathcal{A} (viewed as DB) gives correct result

Good news: every CQ and DL-Lite ontology has FO-rewriting

EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite TBox \mathcal{T} :

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf $\sqsubseteq \neg$ FellowProf \sqsubseteq ∃teaches∃teaches \neg Course

and the query $q(x) = \exists y. Faculty(x) \land teaches(x, y)$

EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite TBox \mathcal{T} :

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq \exists teaches \exists teaches \neg \sqsubseteq Course

and the query
$$q(x) = \exists y. Faculty(x) \land teaches(x, y)$$

The following query is a rewriting of q(x) w.r.t. T:

 $q(x) \lor \operatorname{Prof}(x) \lor \exists y.\operatorname{Fellow}(x) \land \operatorname{teaches}(x, y)$

EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite TBox \mathcal{T} :

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq \exists teaches \exists teaches \neg \sqsubseteq Course

and the query
$$q(x) = \exists y. Faculty(x) \land teaches(x, y)$$

The following query is a rewriting of q(x) w.r.t. T:

 $q(x) \lor \operatorname{Prof}(x) \lor \exists y.\operatorname{Fellow}(x) \land \operatorname{teaches}(x, y)$

Evaluating the rewritten query over the earlier ABox

{Prof(anna), Fellow(tom), teaches(tom, cs101)}

produces the two certain answers: anna and tom

Can focus w.l.o.g. on rewritings over consistent ABoxes

"Classic" approach works roughly as follows on input (q, T):

- Start with $S = \{q\}$
- · Until S stabilizes, pick some $q' \in S$ and do one of the following:
 - \cdot Apply an axiom in $\mathcal T$ to an atom in q', and add the result to S
 - Merge two variables x and y in q', and add the result to S
- · Output the UCQ $\bigvee_{q' \in S} q'$

Can focus w.l.o.g. on rewritings over consistent ABoxes

"Classic" approach works roughly as follows on input (q, T):

- Start with $S = \{q\}$
- · Until S stabilizes, pick some $q' \in S$ and do one of the following:
 - \cdot Apply an axiom in $\mathcal T$ to an atom in q', and add the result to S
 - Merge two variables x and y in q', and add the result to S
- · Output the UCQ $\bigvee_{q' \in S} q'$

Alternative "semantic" approach (also producing a UCQ):

- · Big \bigvee over possible decompositions of q into ABox and "tree parts"
- · For atoms mapped to ABox: check if find implying atom in data
- · For subqueries mapped to tree parts:
 - · ensure generating atom in data, merge "root" variables

Data complexity:

- \cdot rewriting takes constant time, yields FO query
- \cdot upper bound from FO query evaluation: $AC_0 \quad (AC_0 \subseteq LOGSPACE \subseteq P)$
- · CQ answering is in AC₀ for data complexity

Data complexity:

- rewriting takes constant time, yields FO query
- · upper bound from FO query evaluation: AC_0 ($AC_0 \subseteq LOGSPACE \subseteq P$)
- · CQ answering is in AC₀ for data complexity

Combined complexity:

- $\cdot\,$ 'guess' a disjunct of UCQ-rewriting and how to map it into ABox
- · CQ answering is NP-complete

(same as for DBs)

· IQ answering is NLOGSPACE-complete

 $(NLOGSPACE \subseteq P)$

Not hard to see smallest UCQ-rewriting may be exponentially large:

- · Query: $A_1^0(x) \land \ldots \land A_n^0(x)$
- $\cdot \mbox{ Ontology: } A^1_1 \sqsubseteq A^0_1 \quad A^1_2 \sqsubseteq A^0_2 \quad \dots \quad A^1_n \sqsubseteq A^0_n$
- · Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}}A_1^{i_1}(x)\wedge A_1^{i_1}(x)\wedge\ldots\wedge A_1^{i_1}(x)$

Not hard to see smallest UCQ-rewriting may be exponentially large:

- · Query: $A_1^0(x) \wedge \ldots \wedge A_n^0(x)$
- $\cdot \mbox{ Ontology: } A^1_1 \sqsubseteq A^0_1 \quad A^1_2 \sqsubseteq A^0_2 \quad \dots \quad A^1_n \sqsubseteq A^0_n$
- · Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}}A_1^{i_1}(x)\wedge A_1^{i_1}(x)\wedge\ldots\wedge A_1^{i_1}(x)$

But: simple polysize FO-rewriting does exist! $\bigwedge_{i=1}^{n} (A_{i}^{0}(x) \vee A_{i}^{1}(x))$

Not hard to see smallest UCQ-rewriting may be exponentially large:

- · Query: $A_1^0(x) \land \ldots \land A_n^0(x)$
- $\cdot \mbox{ Ontology: } A^1_1 \sqsubseteq A^0_1 \quad A^1_2 \sqsubseteq A^0_2 \quad \dots \quad A^1_n \sqsubseteq A^0_n$
- \cdot Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}}A_1^{i_1}(x)\wedge A_1^{i_1}(x)\wedge\ldots\wedge A_1^{i_1}(x)$

But: simple polysize FO-rewriting does exist!

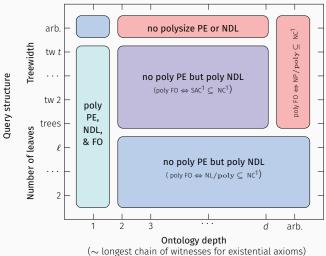
 ${\textstyle\bigwedge_{i=1}^n}(A^0_i(x)\vee A^1_i(x))$

What happens if we adopt other representations?

 positive existential queries (PE), non-recursive Datalog (NDL), first-order queries (FO)

SUCCINCTNESS LANDSCAPE FOR DL-LITE

(for DL-Lite_{\mathcal{R}} ontologies, so-called 'pure' rewritings)



Next consider the logic \mathcal{EL} :

- Concepts: $C := \top |A| C \sqcap C | \exists r.C$
- $\cdot\,$ Only concept inclusions in the TBox, no inverse roles

Next consider the logic \mathcal{EL} :

- Concepts: $C := \top |A| C \sqcap C | \exists r.C$
- $\cdot\,$ Only concept inclusions in the TBox, no inverse roles

Cannot use FO query rewriting approach for \mathcal{EL} :

no FO-rewriting of A(x) w.r.t. $\mathcal{T} = \{ \exists r.A \sqsubseteq A \}$

Next consider the logic \mathcal{EL} :

- Concepts: $C := \top |A| C \sqcap C | \exists r.C$
- $\cdot\,$ Only concept inclusions in the TBox, no inverse roles

Cannot use FO query rewriting approach for \mathcal{EL} :

no FO-rewriting of A(x) w.r.t. $\mathcal{T} = \{\exists r.A \sqsubseteq A\}$

We start with IQs and present a saturation-based approach.

Convenient to assume \mathcal{EL} TBoxes given in normal form:

 $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ $A \sqsubseteq \exists r.B$ $\exists r.A \sqsubseteq B$

 $(A, A_i, B \text{ concept names or } \top)$

TBox rules

$$\frac{A \sqsubseteq B_i \ (1 \le i \le n) \quad B_1 \sqcap \ldots \sqcap B_n \sqsubseteq D}{A \sqsubseteq D} \ T1 \qquad \frac{A \sqsubseteq B \quad B \sqsubseteq \exists r.D}{A \sqsubseteq \exists r.D} \ T2$$
$$\frac{A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq E}{A \sqsubseteq E} \ T3$$

ABox rules

$$\frac{A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \quad A_i(a) \ (1 \le i \le n)}{B(a)} \text{ A1 } \qquad \frac{\exists r.B \sqsubseteq A \quad r(a,b) \quad B(b)}{A(a)} \text{ A2}$$

Algorithm: apply rules exhaustively, check if A(a) (r(a, b)) is present

EXAMPLE: SATURATION IN EL

- Peperoncino \sqsubseteq Spicy (6)
- \exists hasIngred.Spicy \sqsubseteq Spicy (7)
- Spicy \sqcap Dish \sqsubseteq SpicyDish (8)
 - PenneArrabiata(p). (9)

- PenneArrabiata $\sqsubseteq \exists hasIngred.ArrabiataSauce$ (1)
 - PenneArrabiata \sqsubseteq PastaDish (2)
 - PastaDish⊑Dish (3)
 - PastaDish $\sqsubseteq \exists$ hasIngred.Pasta (4)
 - ArrabiataSauce $\sqsubseteq \exists hasIngred.Peperoncino$ (5)

EXAMPLE: SATURATION IN EL

Ρ	$PastaDish \sqsubseteq Dish$	staDish (2) \exists hasIngred.Spicy \sqsubseteq Spicy (7) $\Box \sqsubseteq$ Dish (3) Spicy \sqcap Dish \sqsubseteq SpicyDish (8) d.Pasta (4) PenneArrabiata(p). (9)		
	ArrabSauce ⊑ Spicy		T3 : (5), (6), (7)	(10)
	PenneArrab ⊑ Spicy		T3 : (1) , (10), (7)	(11)
	PenneArrab 드 Dish		T1 : (2), (3)	(12)
	PenneArrab ⊑ ∃hasIngred.Pasta		T2 : (2), (4)	(13)
	PenneArrab ⊑ SpicyDish		T1 : (11), (12), (8)	(14)
	Spicy (p)		A1 : (11), (9)	(15)
	Dish (p)		A1 : (12), (9)	(16)
	SpicyDish (p)		A1 : (16), (15)	(17)

Also **complete for IQs**, since for every ABox assertion α , we have:

 $\mathcal{K} \models \alpha$ iff $\alpha \in sat(\mathcal{K})$

Also **complete for IQs**, since for every ABox assertion α , we have:

 $\mathcal{K} \models \alpha$ iff $\alpha \in \mathsf{sat}(\mathcal{K})$

Note: does not make all consequences explicit

- · can have infinitely many implied axioms → would not terminate!
- \cdot so: only complete for some reasoning tasks

Also **complete for IQs**, since for every ABox assertion α , we have:

 $\mathcal{K} \models \alpha$ iff $\alpha \in \mathsf{sat}(\mathcal{K})$

Note: does not make all consequences explicit

- · can have infinitely many implied axioms → would not terminate!
- \cdot so: only complete for some reasoning tasks

Procedure runs in **polynomial time** in $|\mathcal{K}|$. This is **optimal**:

IQ answering in \mathcal{EL} is P-complete for data & combined complexity

Can show Datalog rewritings exist for all CQs and \mathcal{EL} ontologies

- \cdot rules that generate all entailed facts over original individuals
 - \cdot can be obtained from axioms in sat(\mathcal{T})
- $\cdot\,$ rules that check whether query holds
 - · idea: rewrite query so enough to consider matches to original inds

Can show Datalog rewritings exist for all CQs and \mathcal{EL} ontologies

- · rules that generate all entailed facts over original individuals
 - \cdot can be obtained from axioms in sat(\mathcal{T})
- · rules that check whether query holds
 - · idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in \mathcal{EL} :

- · P-complete in data complexity
- NP-complete in combined complexity

Can show Datalog rewritings exist for all CQs and \mathcal{EL} ontologies

- · rules that generate all entailed facts over original individuals
 - \cdot can be obtained from axioms in sat(\mathcal{T})
- · rules that check whether query holds
 - · idea: rewrite query so enough to consider matches to original inds

Complexity of CQ answering in \mathcal{EL} :

- · P-complete in data complexity
- NP-complete in combined complexity

P data complexity extends to much richer Horn DLs

COMBINED APPROACH TO CQ ANSWERING IN EL

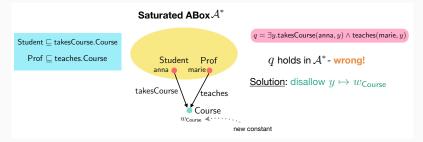
Way to use relational DBs to do CQ answering in \mathcal{EL} :

- saturate ABox using TBox axioms
 - · introduce new individuals to witness existentials on LHS ($A \sqsubseteq \exists r.B$)
 - $\cdot\,$ to ensure finite: reuse individuals as witnesses
 - \cdot can be viewed as compact representation of canonical model

COMBINED APPROACH TO CQ ANSWERING IN EL

Way to use relational DBs to do CQ answering in \mathcal{EL} :

- saturate ABox using TBox axioms
 - · introduce new individuals to witness existentials on LHS (A $\sqsubseteq \exists r.B$)
 - $\cdot\,$ to ensure finite: reuse individuals as witnesses
 - \cdot can be viewed as compact representation of canonical model
- \cdot evaluate query on saturated ABox \Rightarrow superset of certain answers
- · two strategies to **block unsound answers**:
 - $\cdot\,$ add extra conditions to query
 - · post-processing to identify and remove false answers



Lack of FO-rewritings is a worst-case result

· possible that rewritings do exist for many real-world OMQs

Lack of FO-rewritings is a worst-case result

· possible that rewritings do exist for many real-world OMQs

Motivates looking at FO-rewritability problem for $(\mathcal{L}, \mathcal{Q})$:

- · input: OMQ (\mathcal{T}, q) with \mathcal{T} an \mathcal{L} -TBox and $q \in \mathcal{Q}$
- · problem: decide if there exists an FO-rewriting of (T, q)

Form of static analysis, related to Datalog boundedness

Lack of FO-rewritings is a worst-case result

· possible that rewritings do exist for many real-world OMQs

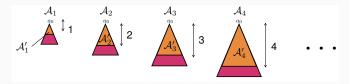
Motivates looking at FO-rewritability problem for $(\mathcal{L}, \mathcal{Q})$:

- · input: OMQ (\mathcal{T}, q) with \mathcal{T} an \mathcal{L} -TBox and $q \in \mathcal{Q}$
- · problem: decide if there exists an FO-rewriting of (T, q)

Form of static analysis, related to Datalog boundedness

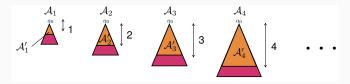
FO-rewritability is **EXPTIME-complete** in (\mathcal{EL}, IQ) and (\mathcal{EL}, CQ)

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes



such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes

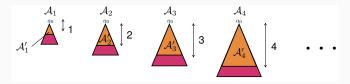


such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

Pumping argument: enough to find ABox of particular finite size k_0

· desired ABox A_{k_0} exists \Rightarrow can construct full sequence of ABoxes

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes

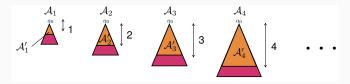


such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

Pumping argument: enough to find ABox of particular finite size k_0 · desired ABox A_{k_0} exists \Rightarrow can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes



such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

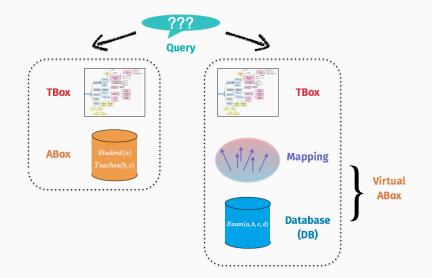
Pumping argument: enough to find ABox of particular finite size k_0 · desired ABox A_{k_0} exists \Rightarrow can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs and richer Horn DLs

LINKING TO EXISTING DATA VIA MAPPINGS

TWO VARIANTS OF OMQA



So far: data given as ABox (unary + binary facts using TBox predicates)

Problem: how to apply the approach to **existing relational data** (arbitrary arity, different vocabulary)?

Solution: use mapping that specifies relationship between the database relations and the ontology predicates

Formally: mapping assertions of the form $\forall \vec{x} \varphi(\vec{x}) \rightarrow \psi(\vec{x})$ where:

- $\cdot \varphi(\vec{x})$ is an query formulated using DB relations
- $\psi(\vec{x})$ is a query in the ontology vocabulary

Global-as-view (GAV) mappings: ψ is an atom (without \exists -vars)

Database D + mapping $\mathcal{M} \longrightarrow \operatorname{ABox} \mathcal{A}_{\mathcal{M},D}$

Models of $\langle \mathcal{T}, \mathcal{M}, D \rangle$ = models of the KB $\langle \mathcal{T}, \mathcal{A}_{\mathcal{M}, D} \rangle$

Certain answers to *q* **w.r.t.** $\langle \mathcal{T}, \mathcal{M}, D \rangle$ = tuples of **constants a from** $D \cup \mathcal{M}$ such that $\langle \mathcal{T}, \mathcal{A}_{\mathcal{M}, D} \rangle \models q(\mathbf{a})$ Database D + mapping $\mathcal{M} \longrightarrow \operatorname{ABox} \mathcal{A}_{\mathcal{M},D}$

Models of $\langle \mathcal{T}, \mathcal{M}, D \rangle$ = models of the KB $\langle \mathcal{T}, \mathcal{A}_{\mathcal{M}, D} \rangle$

Certain answers to q w.r.t. $\langle \mathcal{T}, \mathcal{M}, D \rangle$ = tuples of **constants a from** $D \cup \mathcal{M}$ such that $\langle \mathcal{T}, \mathcal{A}_{\mathcal{M}, D} \rangle \models q(\mathbf{a})$

Handling mappings:

- · apply mappings to generate ABox, proceed as usual
- virtual ABox: combine query rewriting with an extra unfolding step to get rewriting over DB relations

Suppose course data is stored in the two database tables:

UndergradCourses[CourseID, Year, Lecturer, Room, Timeslot] GradCourses[CourseID, Lecturer, Room, Timeslot] and employee data is stored in the table Employee[EmpID,Name,Position,Dept]

The mapping could contain statements like: (initial ∀ omitted)

 $\exists y, r, t \, UndergradCourses(\mathbf{c}, y, \mathbf{l}, r, t) \rightarrow teaches(\mathbf{l}, \mathbf{c})$ $\exists y, r, t \, GradCourses(\mathbf{c}, \mathbf{l}, r, t) \rightarrow teaches(\mathbf{l}, \mathbf{c})$ $\exists n, d \, Employee(\mathbf{x}, n, Professor, d) \rightarrow Prof(\mathbf{x})$

to populate the ontology predicates teaches and Prof

Unfolding of query q (over ontology vocabulary) w.r.t. mapping:

- find ways of unifying atoms in q with head atoms in mapping rules
- replace atoms in q by the bodies of (unified) matching rules

Unfolding of query q (over ontology vocabulary) w.r.t. mapping:

- find ways of unifying atoms in q with head atoms in mapping rules
- replace atoms in q by the bodies of (unified) matching rules

For $q(x, y) = Prof(x) \wedge teaches(x, y)$, unfolding yields the following:

 $\exists n, d, z, r, t \, Employee(\mathbf{x}, n, Professor, d) \land UndergradCourses(\mathbf{y}, z, \mathbf{x}, r, t)$ $\lor \exists n, d, r, t \, Employee(\mathbf{x}, n, Professor, d) \land GradCourses(\mathbf{y}, \mathbf{x}, r, t)$

Observe result uses only DB predicates, can be converted to SQL

Unfolding of query q (over ontology vocabulary) w.r.t. mapping:

- find ways of unifying atoms in q with head atoms in mapping rules
- replace atoms in q by the bodies of (unified) matching rules

For $q(x, y) = Prof(x) \wedge teaches(x, y)$, unfolding yields the following:

 $\exists n, d, z, r, t \, Employee(\mathbf{x}, n, Professor, d) \land UndergradCourses(\mathbf{y}, z, \mathbf{x}, r, t)$ $\lor \exists n, d, r, t \, Employee(\mathbf{x}, n, Professor, d) \land GradCourses(\mathbf{y}, \mathbf{x}, r, t)$

Observe result uses only DB predicates, can be converted to SQL

Opportunities for optimization: simplify rewriting by exploiting the fact that only needs to work for ABoxes induced by the mapping

OMQA RESEARCH

Ontology-mediated query answering:

- \cdot new paradigm for intelligent information systems
- · offers many advantages, but also computational challenges
- · active area with lots left to explore!

Ontology-mediated query answering:

- \cdot new paradigm for intelligent information systems
- · offers many advantages, but also computational challenges
- active area with lots left to explore!

Efficient OMQA algorithms:

- optimized rewriting algorithms: compact rewritings, exploit mapping structure, cost-based rewriting selection
- tackling more expressive DLs: **identify easier cases** (existence of rewritings), use upper + lower **approximations**

Ontology-mediated query answering:

- \cdot new paradigm for intelligent information systems
- · offers many advantages, but also computational challenges
- active area with lots left to explore!

Efficient OMQA algorithms:

- optimized rewriting algorithms: compact rewritings, exploit mapping structure, cost-based rewriting selection
- tackling more expressive DLs: **identify easier cases** (existence of rewritings), use upper + lower **approximations**

Support for building and maintaining OMQA systems

- ontology + mapping bootstrapping, module extraction, debugging, ontology evolution and versioning
- inspired **new reasoning tasks**: query inseparability, query emptiness, justification finding, logical difference, ...

Improving the usability of OMQA systems

- · interfaces and support for query formulation
- explaining query (non-)answers

Improving the **usability** of OMQA systems

- interfaces and support for query formulation
- explaining query (non-)answers

Broadening the scope:

- new data formats: graph data, key-value stores, temporal data
- further query languages: regular path queries, streaming queries

Improving the **usability** of OMQA systems

- interfaces and support for query formulation
- explaining query (non-)answers

Broadening the scope:

- new data formats: graph data, key-value stores, temporal data
- further query languages: regular path queries, streaming queries

Beyond classical OMQA:

- · inconsistency-tolerant query answering
- · probabilistic query answering
- · privacy-aware query answering

REFERENCES

Recent textbook on DLs:

An Introduction to Description Logic. By F. Baader, I. Horrocks, C. Lutz, and U. Sattler. Cambridge University Press (2017).

Lecture notes on OMQA (look here for further refs!):

M. Bienvenu and M. Ortiz. **Ontology-mediated query answering with data-tractable description logics**. Lecture Notes of Reasoning Web. Springer LNCS, 2015.

Short recent survey, focusing on linking to DBs:

G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Zakharyaschev. Ontology-based data access: A survey. Proc. of IJCAI, 2018.

Original PerfectRef algorithm presented here:

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning (JAR) 39(3), 385–429, 2007.

"Semantic" tree witness rewriting is described here:

S. Kikot, R. Kontchakov, M. Zakharyaschev: Conjunctive query answering with OWL 2 QL. Proc. of KR, 2012.

(far from an exhaustive list, refer to RW chapter for further refs)

The following paper presents the landscape for pure rewritings:

M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity. Journal of the ACM (JACM), 2018.

Optimal NDL-rewritings presented here:

M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M. Zakharyaschev: The Complexity of Ontology-Based Data Access with OWL 2 QL and Bounded Treewidth Queries. Proc. of PODS, 2017.

Polynomial impure rewritings can be found here:

G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M. Zakharyaschev: The Price of Query Rewriting in Ontology-based Data Access. Artificial Intelligence (AIJ), 2014.

Combined approach for *EL*:

C. Lutz, D. Toman, F. Wolter: Conjunctive query answering in the description logic \mathcal{EL} using a relational database system. Proc. of IJCAI, 2009.

Datalog rewriting approach that works for Horn-*SHIQ*:

T. Eiter, M. Ortiz, M. Simkus, T. Tran, G. Xiao: **Query rewriting for Horn-***SHIQ* **plus rules**. Proc. of AAAI, 2012.

(just two examples of algorithms, see RW chapter for more refs)

M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of Atomic Queries in Horn Description Logics. Proc. of IJCAI, 2013.

P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting in the Description Logic EL and Beyond. Proc. of IJCAI, 2015.

M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First Order-Rewritability and Containment of Conjunctive Queries in Horn Description Logics. Proc. of IJCAI, 2016.

P. Hansen and C. Lutz: Computing FO-Rewritings in *EL* in Practice: from Atomic to Conjunctive Queries. Proc. of ISWC, 2017.