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Mean Field Games (MFG) are Nash equilibria in

nonatomic games = infinitely many agents having individually a negligible influence on the
global system (as in Schmeidler (1973), or Mas-Colell (1983, 1984))

in a optimal control framework = each agent acts on his state which evolves in continuous
time and has a payoff depending on the other’s position
(stochastic optimal control)

Pioneering works :

— Models invented by Lasry-Lions (2006)
and Caines-Huang-Malhamé (2006)

— Similar models in the economic literature : heterogeneous agent models
(Aiyagari (’94), Bewley (’86), Krusell-Smith (’98),...)
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The MFG equilibrium

Description of the MFG equilibrium

The MFG system is a Nash equilibrium of a continuous game where the payoff is of optimal
control type.

Each tiny agent knows the initial density m0 of all agents and forecasts that this probability
density will be (m(t , ·))t≥0 in the future.

He solves his optimal control problem accordingly.

When all the agents play optimality, their probability density (m̃(t , ·))t≥0 evolves in time.

Nash equilibrium means that the original forecast was correct : m̃(t , ·) = m(t , ·) for all t .

Notation
T is the finite horizon of the game, the state space is Rd (d ∈ N\{0}),
The initial population density at time t0 = 0 is m0,

L = L(x , α,m) is the running cost, g = g(x ,m) is the terminal cost,

If u = u(t , x) is a map, Du(t , x) is its first order space derivative.
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The MFG equilibrium

The problem for a small player.

A small agent is at initial time t0 at a position x0. He acts through his control (αt ) on his
state (Xt ), which evolves according to the SDE

dXt = αt dt +
√

2dBt , Xt0 = x0,

where (Bt )t∈[0,T ] is a standard Brownian Motion.

Forecasting the evolution of the population density (m(t))t∈[0,T ], the agent solves the
optimal control problem

u(t0, x0) := inf
α

E

[∫ T

t0
L(Xs, αs,m(s)) ds + g(XT ,m(T ))

]
.

The value function u is characterized by the Hamilton-Jacobi equation{
−∂t u(t , x)−∆u(t , x) + H(x ,Du(t , x),m(t)) = 0 in (0,T )× Rd

u(T , x) = g(x ,m(T )) in Rd

where H(x , p,m) = sup
α∈Rd

−α · p − L(x , α,m).

The optimal feedback of the agent is then given by α∗(t , x) := −DpH(x ,Du(t , x),m(t)).
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The MFG equilibrium

Evolution of the population density.

If all agents implement their optimal control and if their BM are independent, the mean
field theory says that the population density m̃ actually evolves according to the
Kolmogorov equation{

∂t m̃(t , x)−∆m(t , x)− div
(
m̃(t , x)DpH(x ,Du(t , x),m(t)))

)
= 0 in (0,T )× Rd

m̃(0, ·) = m0 in Rd .

At equilibrium,

one must have m̃ = m.

This heuristic yields to the MFG system :

(MFG)


(i) −∂t u −∆u + H(x ,Du,m(t)) = 0 in [0,T ]× Rd

(ii) ∂t m −∆m − div(mDpH(x ,Du,m)) = 0 in [0,T ]× Rd

(iii) m(0, ·) = m0, u(T , x) = g(x ,m(T )) in Rd
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The MFG equilibrium

Basic results of the MFG system

For the MFG equilibrium system :

(MFG)


(i) −∂t u −∆u + H(x ,Du,m(t)) = 0 in [0,T ]× Rd

(ii) ∂t m −∆m − div(mDpH(x ,Du,m)) = 0 in [0,T ]× Rd

(iii) m(0, ·) = m0, u(T , x) = g(x ,m(T )) in Rd

Existence of solutions : holds under general conditions (Lasry-Lions)
Uniqueness cannot be expected in general, but holds

for small couplings or in a short time horizon (Huang-Caines-Malhamé, Lasry-Lions)
under a monotonicity conditions (Lasry-Lions) : if H = H(x , p)− f (x ,m) and∫
Rd

(f (x ,m)− f (x ,m′))d(m −m′) ≥ 0,
∫
Rd

(g(x ,m)− g(x ,m′))d(m −m′) ≥ 0.

Link with differential games with finitely many players.
from the MFG system to the N−player differential games
Many contributions (Huang-Caines-Malahmé, Carmona-Delarue, ...)
from Nash equilibria of N−player differential games to the MFG system.

LQ differential games (Bardi, Bardi-Priuli)
Open loop NE (Fischer, Lacker),
Closed loop NE (C.-Delarue-Lasry-Lions, Lacker).
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Efficiency of MFG equilibria (A) definition of efficiency
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Efficiency of MFG equilibria (A) definition of efficiency

The question of efficiency

Questions :

Does the global cost of a Nash equilibrium differ from the optimal social cost an optimal
planner can achieve?

If different, how far?

Some references :

Dubey (’86) = equilibria are generically inefficient.

“Price of anarchy"
Koutsoupias-Papadimitriou (’99)
Noncooperative games in which agents share a common resource
Roughgarden-Tardos (’02), Johari-Tsitsiklis (’03)
In the framework of selfish routing games and congestion games
...

For differential and MFG problems :
Başar-Zhu (’11) : price of anarchy in LQ differential games
Balandat-Tomlin (’13) : numerical computations and Braess’s paradox
Carmona-Graves-Tan (in preparation) : LQ MFG and MFG on finite Markov chains.
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Efficiency of MFG equilibria (A) definition of efficiency

Problem for the global planner (N−player problem)

The optimal control problem : Agent i ∈ {1, . . . ,N} controls her dynamics :

{
dX i

t = αi
t dt +

√
2dBi

t , t ∈ [0,T ],
X i

0 = x i
0

and wants to minimize the individual cost

J i (α1, . . . , αN ) = E

[∫ T

0
L(X i

t , α
i
t ,m

N
Xt

) dt + g(X i
T ,m

N
XT

)

]
,

where mN
Xt

= 1
N
∑N

j=1 δX j
t

is the empirical measure of the players.

The cost for the global planner is

J(α1, . . . , αN ) =
1
N

N∑
i=1

J i (α1, . . . , αN ).
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Efficiency of MFG equilibria (A) definition of efficiency

Problem for the global planner (mean field limit)

Lacker ’17 proves that
lim

N→+∞
inf

α1,...,αN
J(α1, . . . , αN ) = C∗,

where C∗ is the cost associated with the McKean-Vlasov control problem :

C∗ := inf
(m,α)

∫ T

0

∫
Rd

L(x , α(t , x),m(t))m(t , x) dxdt +

∫
Rd

g(x ,m(T ))m(T , x)dx

subject to
∂t m −∆m + div(mα) = 0, m(0, x) = m0(x).
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Efficiency of MFG equilibria (A) definition of efficiency

Global cost associated with an MFG Nash equilibrium

Given a Nash MFG equilibrium, i.e., a solution (ū, m̄) to

(MFG)


(i) −∂t ū −∆ū + H(x ,Dū, m̄(t)) = 0 in [0,T ]× Rd

(ii) ∂t m̄ −∆m̄ − div(m̄DpH(x ,Dū, m̄)) = 0 in [0,T ]× Rd

(iii) m̄(0, ·) = m0, ū(T , x) = g(x , m̄(T )) in Rd

recall that α∗(t , x) := −DpH(x ,Dū(t , x), m̄(t)) is the optimal feedback.

The social cost associated with (ū, m̄) is defined by

C(ū, m̄) :=

∫ T

0

∫
Rd

L(x , α∗(t , x), m̄(t))m̄(t , x)dxdt +

∫
Rd

g(x , m̄(T ))m̄(T , x)dx .
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Efficiency of MFG equilibria (A) definition of efficiency

Efficiency in MFG systems

Given an MFG Nash equilibrium (ū, m̄), compare

C(ū, m̄) :=

∫ T

0

∫
Rd

L(x , α∗(t , x), m̄(t))m̄(t , x)dxdt +

∫
Rd

g(x , m̄(T ))m̄(T , x)dx .

with the optimal cost of a global planner :

C∗ := inf
(m,α)

∫ T

0

∫
Rd

L(x , α(t , x),m(t))m(t , x) dxdt +

∫
Rd

g(x ,m(T ))m(T , x)dx

subject to
∂t m −∆m + div(mα) = 0, m(0, x) = m0(x).

Definition
An MFG equilibrium (ū, m̄) is efficient if C(ū, m̄) = C∗ .

The MFG system is globally efficient if, for any initial condition (t0,m0), there exists an MFG
equilibrium starting from (t0,m0) which is efficient.
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Efficiency of MFG equilibria Characterization of efficiency

Derivatives in the space of measures

We denote by P(Td ) the set of Borel probability measures on Td , endowed for the
Monge-Kantorovich distance

d1(m,m′) = sup
φ

∫
Td
φ(y) d(m −m′)(y),

where the supremum is taken over all Lipschitz continuous maps φ : Td → R with a Lipschitz
constant bounded by 1.

Derivatives

A map U : P(Td )→ R is C1 if there exists a continuous map
δU
δm

: P(Td )× Td → R such that,

for any m,m′ ∈ P(Td ),

U(m′)− U(m) =

∫ 1

0

∫
Td

δU
δm

((1− s)m + sm′, y)d(m′ −m)(y)ds.

We set
DmU(m, y) := Dy

δU
δm

(m, y).
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Efficiency of MFG equilibria Characterization of efficiency

Note that δU
δm is defined up to an additive constant. We adopt the normalization convention

∫
Td

δU
δm

(m, y)dm(y) = 0.

An example : if

U(m) =

∫
Td
φ(x)dm(x),

then
δU
δm

(m, y) = φ(y)−
∫
Td
φ(z)dm(z), DmU(m, y) = Dφ(y).

DmU controls the Lipschitz norm of U :

|U(m1)− U(m2)| ≤ ‖DmU‖∞d1(m1,m2) ∀m1,m2 ∈ P(Td ).
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Efficiency of MFG equilibria Characterization of efficiency

Assumptions

The Lagrangian L = L(x , α,m) : Td × Rd × P(Td )→ R is of class C2 with respect to all
variables and satisfies

C−1Id ≤ D2
ppL(x , α,m) ≤ CId ,∣∣∣∣ δLδm (x , α,m, y)

∣∣∣∣+

∣∣∣∣∣ δ2L
δm2

(x , α,m, y , z)

∣∣∣∣∣ ≤ C(1 + |α|2),

∣∣∣∣Dα δLδm (x , α,m, y)

∣∣∣∣ ≤ C(1 + |α|),
∣∣∣D2
αL(x , p,m)

∣∣∣ ≤ C.

We define the convex conjugate H of L as

H(x , p,m) = sup
α∈Rd

{−p · α− L(x , α,m)},

and we assume that H is of class C2 as well.

The coupling function g : Td × P(Td )→ R is globally Lipschitz continuous with space
derivatives ∂xi g : Td × P(Td )→ R also Lipschitz continuous. We also assume that the
map g is C2 with respect to m and that its derivatives δg

δm : Td × P(Td )× Td → R and
δ2g
δm2 : Td × P(Td )× Td × Td → R are Lipschitz continuous.
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Efficiency of MFG equilibria Characterization of efficiency

Optimality condition for the planner’s cost

The planner’s problem :

C∗ := inf
(m,α)

∫ T

0

∫
Rd

L(x , α(t , x),m(t))m(t , x) dxdt +

∫
Rd

g(x ,m(T ))m(T , x)dx

subject to
∂t m −∆m + div(mα) = 0, m(0, x) = m0(x).

Proposition (Lasry-Lions ’06, C.-Rainer)

Under our standing assumptions, the planner’s problem has at least one solution.

For any solution (m̂, ŵ) of the planer’s problem, there exists û such that (û, m̂) solves

−∂t û −∆û + H(x ,Dû, m̂(t)) =

∫
Rd

δL
δm

(y , α̂(t , y), x , m̂(t))m̂(t , y)dy in (0,T )× Td

∂t m̂ −∆m̂ − div(m̂DpH(x ,Dû(t , x), m̂(t))) = 0 in (0,T )× Td

m̂(0, x) = m0(x), û(T , x) =
δĜ
δm

(m̂(T ), x) in Td

α̂(t , x) = DpH(x ,Dû(t , x), m̂(t)) in (0,T )× Td ,

where Ĝ(m) :=
∫
Td g(x ,m)m(dx).
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Efficiency of MFG equilibria Characterization of efficiency

A necessary condition for efficiency

Proposition

Let (ū, m̄) be an MFG Nash equilibrium. If (ū, m̄) is efficient, then, for any (t , x) ∈ [0,T ]× Td ,∫
Td

δL
δm

(y , α∗(t , y), x , m̄(t))m̄(t , y)dy = 0 and
∫
Td

δg
δm

(t , m̄(T ), x)m̄(T , y)dy = 0,

where α∗(t , x) := −DpH(x ,Dū(t , x), m̄(t)).
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Efficiency of MFG equilibria Characterization of efficiency

Proof.
As C(ū, m̄) = C∗ holds, (m̄, α∗) minimizes C∗.
Hence there exists v such that (v , m̄) solves

−∂t v −∆v + H(x ,Dv , m̄(t)) =

∫
Rd

δL
δm

(y , α̂(t , y), x , m̄(t))m̄(t , y)dy

∂t m̄ −∆m̄ − div(m̄DpH(x ,Dv(t , x), m̄(t))) = 0

m̄(0, x) = m0(x), v(T , x) =
δĜ
δm

(m̄(T ), x)

α̂(t , x) = DpH(x ,Dv(t , x), m̄(t)).

with −DpH(x ,Dv(t , x),m(t)) = α∗(t , x) = −DpH(x ,Dū(t , x),m(t)).
Hence Dū = Dv .
This implies that ū(t , x) = v(t , x) + c(t) (for some c(t) ∈ R).
Compare the equations satisfied by ū and v :

−c′(t) =

∫
Rd

δL
δm

(y , α∗(t , y), x ,m(t))m(t , y)dy .

Integrate against m(t) :

−c′(t) =

∫
Td

∫
Rd

δL
δm

(y , α∗(t , y), x ,m(t))m(t , y)m(t , x)dydx = 0.

Thus ∫
Rd

δL
δm

(y , α∗(t , y), x , m̄(t))m̄(t , y)dy = 0 ∀(t , x) ∈ [0,T ]× Td .
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Proof.
As C(ū, m̄) = C∗ holds, (m̄, α∗) minimizes C∗.
Hence there exists v such that (v , m̄) solves

−∂t v −∆v + H(x ,Dv , m̄(t)) =

∫
Rd

δL
δm

(y , α̂(t , y), x , m̄(t))m̄(t , y)dy

∂t m̄ −∆m̄ − div(m̄DpH(x ,Dv(t , x), m̄(t))) = 0

m̄(0, x) = m0(x), v(T , x) =
δĜ
δm

(m̄(T ), x)

α̂(t , x) = DpH(x ,Dv(t , x), m̄(t)).

with −DpH(x ,Dv(t , x),m(t)) = α∗(t , x) = −DpH(x ,Dū(t , x),m(t)).
Hence Dū = Dv .
This implies that ū(t , x) = v(t , x) + c(t) (for some c(t) ∈ R).
Compare the equations satisfied by ū and v :

−c′(t) =

∫
Rd

δL
δm

(y , α∗(t , y), x ,m(t))m(t , y)dy .

Integrate against m(t) :
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Td
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Efficiency of MFG equilibria Characterization of efficiency

Characterization of global efficiency

Here we assume that H is of separate form :

H(x , p,m) = H(x ,m)− f (x ,m).

Theorem
The MFG system is globally efficient IFF

(∗)
∫
Td

δf
δm

(y ,m, x)m(dy) = 0,
∫
Td

δg
δm

(y ,m, x)m(dy) = 0, ∀(x ,m) ∈ Td × P(Td ),

Remarks :
The condition is independent of H.

Note that, in the separate setting,

δL
δm

(x , α, y , m̄) =
δf
δm

(x ,m, y).
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Efficiency of MFG equilibria Characterization of efficiency

Remarks (continued) :
Condition (∗) is equivalent to the existence of C2 maps F : P(Td )→ R and
G : P(Td )→ R such that

f (x ,m) = F(m) +
δF
δm

(m, x), g(x ,m) = G(m) +
δG
δm

(m, x).

Moreover, if

f (x ,m) = F(m) +
δF
δm

(m, x)

and F is not affine, then f genuinely depends on m.
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Efficiency of MFG equilibria Characterization of efficiency

(Counter-)Examples

Assume that H is of separate form and g ≡ 0. Recall that the MFG system is globally efficient
IFF

∫
Td

δf
δm (y ,m, x)m(dy) = 0.

1 If f = f (m) does not depend on x , then the MFG system if globally efficient if only if f is
constant.

Proof. Indeed ∫
Td

δf
δm

(m, y)m(dx) =
δf
δm

(m, y).

Hence the MFG system if globally efficient IFF δf
δm ≡ 0, which means f constant.

2 We now assume that f derives from a potential : There exists a C1 map Φ : P(Td )→ R
such that f = δΦ/δm. Then the MFG system is globally efficient IFF f ≡ 0.

Proof. Indeed one can show that∫
Td

δf
δm

(x ,m, y)m(dx) = −f (y ,m).

Hence the MFG system is globally efficient IFF f ≡ 0.

3 If f (x ,m) =

∫
Td
φ(x , y)m(dy) , then the MFG system is globally efficient IFF f does not

depend on m.
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Efficiency of MFG equilibria Quantifying the inefficiency

A lower bound

Theorem
Let (ū, m̄) an MFG equilibrium. Then, for any ε > 0,

C(u,m)− C∗ ≥ C−1ε2
(∫ T−ε

0

∫
Td

[∫
Td

δL
δm

(x , α∗(t , x), y , m̄(t))m̄(t , x)dx
]2

dydt
)2

+ C−1
(∫

Td

[∫
Td

δg
δm

(x , m̄(T ), y)m̄(T , x)dx
]2

dy
)4
,

where α∗(t , x) = −DpH(x ,Dū(t , x), m̄(t)) and the constants C ≥ 1 depends on the regularity of
H, g and on m0 and where C ≥ 1.

Remark If g does not depend on m, one can replace
∫ T−ε

0 by
∫ T

0 .
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Efficiency of MFG equilibria Quantifying the inefficiency

Upper bound

Assume that H = H(x , p)− f (x ,m) is of separated form and set

F̂(m) :=

∫
Td

f (x ,m)m(dx), Ĝ :=

∫
Td

g(x ,m)m(dx).

Theorem
Assume in addition that the maps F̂ and Ĝ are convex on P(Td ). If (ū, m̄) is an MFG equilibrium,
then

C(ū, m̄)− C∗ ≤ C
(∫ T

t0

∫
Td

[∫
Td

δf
δm

(x , y , m̄(t))m̄(t , x)dx
]2

dydt

+

∫
Td

[∫
Td

δg
δm

(x , m̄(T ), y)m̄(T , x)dx
]2

dy
)1/2

,

where the constants C ≥ 1 depends on the regularity of H, f , g and on m0.
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Efficiency of MFG equilibria Quantifying the inefficiency

Examples

We always assume that H is of separate form and g ≡ 0.

1 If f = f (m) does not depend on x , then

C(ū, m̄)− C∗ ≥ C−1
ε

{
sup
t1 6=t2

|f (m̄(t2))− f (m̄(t1))|
(t2 − t1)1/2

}4

.

where the supremum is taken over t1, t2 ∈ [ε,T − ε].

2 We now assume that f derives from a potential : f = δΦ/δm. Then

C−1ε−2

(∫ T−ε

ε

∫
Td

[f (y , m̄(t))]2 dydt

)2

≤ C(ū, m̄)− C∗

≤ C

(∫ T

0

∫
Td

[f (y , m̄(t))]2 dydt

)1/2

.
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Application to a mean field limit Lacker’s convergence result

The N−player game

N−small players

Players now play path dependent strategies :

Ai =
{
αi : [0,T ]× (C0([0,T ],Rd ))N → Rd measurable, bounded, nonanticipative

}
.

Dynamics : dX i
t = αi

t (X·)dt + dBi
t ,

(where the Bi are i.i.d. B.M. and αi is the control of Player i)

Goal of the players : to minimize over αi the cost

J i (α1, . . . , αN ) = E

[∫ T

0
L(X i

t , α
i
t ,m

N,i
Xt

)dt + G(X i
T ,m

N,i
XT

)

]
,

where mN,i
x =

1
N − 1

∑
j 6=i

δxj if x = (x1, . . . , xN ).

Nash equilibrium : (ᾱ1, . . . , ᾱN ) s.t., for any i ∈ {1, . . . ,N}, ᾱi minimizes
αi → J i (αi , (ᾱj )j 6=i ).
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Application to a mean field limit Lacker’s convergence result

Theorem (Lacker ’18)

If ᾱN = (ᾱN,1, . . . , ᾱN,N ) is a Nash equilibrium in the N−player game, then the empirical
measure flow

µN
t :=

1
N

N∑
i=1

δX̄N
t

is tight in C0([0,T ],P(Rd )) and every limit point is a weak MFG equilibrium.

By weak MFG equilibrium µ∗, one means that there exists a complete stochastic basis (Ω,F ,P)
endowed with a filtration (Ft ), a B.M. B, α∗ = α∗(t , x ,m·) semi-Markov and X∗ such that

(µ∗t ) is (Ft )−adapted,

dX∗t = α∗(t ,X∗t , µ
∗
· )dt + dBt ,

α∗ is minimizes

α→ E

[∫ T

0
L(Xt , αt , µ

∗
t )dt + G(XT , µ

∗
T )

]
,

the consistence holds : µ∗t = P
[
X∗t ∈ ·|F

µ∗

t

]
.
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Application to a mean field limit Lacker’s convergence result

Remarks

Actually holds in a broader framework (relaxed controls, approximate equilibria,...).

Here no monotonicity assumption.
Under the monotonicity condition, weak MFG equilibria coincide with classical ones :
Lacker’s result extends C.-Delarue-Lasry-Lions without requiring regularity.

This is a compactness result, no convergence rate.
Seems difficult to apply to local couplings.

The result is surprising because it seems to contradict the “Folk’s Theorem".
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Application to a mean field limit Example of an ergodic cost

The Nash equilibrium payoffs

We assume here that players observe each other passed trajectory (but not the control).

Ai =
{
αi : [0,+∞)× (C0([0,+∞),Td ))N → Rd measurable, bounded, nonanticipative

}
.

The ergodic costs : for player i ∈ {1, . . . ,N},

J i (x0, α) = lim sup
T→+∞

1
T

E

[∫ T

0
L(αi

t ,X
i
t ) + F (mN,i

Xt
) dt

]
,

where x0 = (x1
0 , . . . , x

N
0 ), α = (α1, . . . , αN ) and

dX i
t = αi

t ((Xs)s≤t )dt + dBi
t , X i

0 = x i
0, mN,i

Xt
=

1
N − 1

∑
j 6=i

δ
X j

t
.

Definition
A N−tuple e = (e1, . . . , eN ) ∈ RN is a Nash equilibrium payoff if, for any ε > 0, there exists
(ᾱi,ε) such that ∣∣∣J i (x0, ᾱ

ε)− ei
∣∣∣ ≤ ε, J i (x0, ᾱ

ε) ≤ J i (x0, α
i , (ᾱj,ε)j 6=i ) + ε

for any αi ∈ Ai . Note that (ᾱi,ε)i=1,...,N is an ε−Nash equilibrium.
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Application to a mean field limit Example of an ergodic cost

The unique MFG equilibrium

The ergodic MFG system : find (λ, u,m) such that
−∆u(x) + H(Du(x), x) = F (µ) + λ in Td ,

−∆µ(x)− div(µ(x)Hp(Du(x), x)) = 0 in Td ,

µ ≥ 0,
∫
Td
µ = 1.

Proposition
There is a unique MFG equilibrium, given by (λ, u,m) = (λ0 − F (µ0), u0, µ0), where u0 solves
the ergodic problem

−∆u0(x) + H(Du0(x), x) = λ0, in Td

and µ0 is unique invariant measure

−∆µ0(x)− div(µ0(x)Hp(Du0(x), x)) = 0 in Td , µ0 ≥ 0,
∫
Td
µ0 = 1.

Remark : It is known that (µ0,−Hp(Du0, x)) is a minimum of

inf
(µ,α)

∫
Td

L(α(x), x)µ(dx) = −λ0

under the constraint −∆µ+ div(µα) = 0, µ ≥ 0,
∫
Td µ = 1.
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Application to a mean field limit Example of an ergodic cost

Main results (1)

Convergence Theorem (C.-Rainer ’19)

If F : P(Td )→ R is C1, then there exists a sequence of symmetric Nash equilibrium payoffs
eN = (eN , . . . , eN ) in the N−player game such that

lim
N→+∞

eN = ẽ := inf
α,µ

∫
Td

L(α(x), x)µ(dx) + F (µ),

where the infimum is taken over the pairs (α, µ) such that

−∆µ+ div(µα) = 0 in Td , µ ≥ 0,
∫
Td
µ = 1.

Remark : The RHS can be interpreted as the optimal cost for a global planer (social cost).
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eN = ẽ := inf
α,µ

∫
Td

L(α(x), x)µ(dx) + F (µ),

where the infimum is taken over the pairs (α, µ) such that

−∆µ+ div(µα) = 0 in Td , µ ≥ 0,
∫
Td
µ = 1.

Remark : The RHS can be interpreted as the optimal cost for a global planer (social cost).

P. Cardaliaguet (Paris Dauphine) MFG 38 / 43



Application to a mean field limit Example of an ergodic cost

Main results (2)

Theorem on efficiency (C.-Rainer ’18)

If F : P(Td )→ R is C1 and non constant, then

ẽ := inf
α,µ

∫
Td

L(α(x), x)µ(dx) + F (µ) < λ0 − F (µ0),

where λ0 − F (µ0) is the MFG equilibrium payoff.

Corollary

If F : P(Td )→ R is C1 and non constant, there exists symmetric Nash equilibrium payoffs
eN = (eN , . . . , eN ) which does not converge to the the MFG equilibrium payoff :

lim
N→+∞

eN = ẽ := inf
α,µ

∫
Td

L(α(x), x)µ(dx) + F (µ) < λ0 − F (µ0).

Remark : This is in sharp contrast with Lacker convergence result on finite horizon.
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Application to a mean field limit Example of an ergodic cost

Sketch of proof of Theorem 1

W.l.o.g., we assume that F is non-constant, so that ẽ < −λ0 + F (µ0).
As F is C1 and L coercive, there exists at least one minimizer (µ̃, α̃) of the problem

inf
(α,µ)

∫
Td

L(α(x), x)µ(dx) + F (µ)

under the constraint −∆µ+ div(µα) = 0 in Td , µ ≥ 0,
∫
Td
µ = 1.

By duality arguments, one can prove that there exists ũ and λ̃ with α̃(x) = −Hp(x ,Dũ(x))

and such that (λ̃, ũ, m̃) solves the MFG system
−∆ũ(x) + H(Dũ(x), x) =

δF
δm

(x , µ̃) + λ̃ in Td ,

−∆µ̃(x)− div(µ̃(x)Hp(Dũ(x), x)) = 0 in Td ,

µ̃ ≥ 0,
∫
Td
µ̃ = 1.

Let eN :=

∫
Td

L(α̃(x), x)µ̃(dx) +

∫
(Td )N−1

F (mN,1
x )µ̃(dx2) . . . µ̃(dxN ).

Then eN → ẽ := inf
α,µ

∫
Td

L(α(x), x)µ(dx) + F (µ) < −λ0 + F (µ0).
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µ̃ ≥ 0,
∫
Td
µ̃ = 1.

Let eN :=

∫
Td

L(α̃(x), x)µ̃(dx) +

∫
(Td )N−1

F (mN,1
x )µ̃(dx2) . . . µ̃(dxN ).

Then eN → ẽ := inf
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µ̃ ≥ 0,
∫
Td
µ̃ = 1.

Let eN :=

∫
Td

L(α̃(x), x)µ̃(dx) +

∫
(Td )N−1

F (mN,1
x )µ̃(dx2) . . . µ̃(dxN ).

Then eN → ẽ := inf
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Application to a mean field limit Example of an ergodic cost

Sketch of proof (continued)

Fix ε > 0 and let T , δ > 0 to be chosen below.

We define the strategies βN,T ,δ,i as follows : Given (X 1, . . . ,X N ) ∈ (C0(R+,Rd ))N , let

θN,T ,δ(X 1, . . . ,X N ) = inf

{
t ≥ T , sup

j∈{1,...,N}
d1(

1
t

∫ t

0
δ

X j
s
ds, µ̃) ≥ δ

}
.

We set

βN,T ,δ,i (X 1, . . . ,X N )t =

{
α̃(X i

t ) if t ≤ θN,T ,δ(X 1, . . . ,X N )
α0(X i

t ) otherwise,

where α0(x) = −Hp(Du0(x), x).
(recall that (λ0, u0,m0) is the solution of the MFG system).

If no player deviates, then there exists T = T (N, δ, ε) such that

P
[
θN,T ,δ(X̃ 1, . . . , X̃ N ) < +∞

]
<< 1

and the payoff of each player is close to eN .
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Application to a mean field limit Example of an ergodic cost

Sketch of proof (end)

If Player i deviates and plays αi , then

either the deviation is not detected, i.e., θ = +∞, but then t−1
∫ t

0
δX i

s
ds ∼ µ̃ and

her payoff is close to eN (depending on δ),

or the deviation is detected, i.e., θ < +∞. Then the other players switch to α0.
Thus (for N large)

lim
t→+∞

1
t

∫ 1

0
δ

X j
s
ds = µ0 so that lim sup

t→+∞

1
t

∫ t

0
F (mN,i

Xt
) dt ∼ F (µ0).

Hence Player’s i’s payoff is close to

∼ lim sup
T

1
T

∫
Td

L(Xs, α
i
s)ds + F (µ0) ≥

∫
Td

L(α0(x), x)µ0(x)dx + F (µ0)

≥ −λ0 + F (µ0) ≥ eN − ε.

Taking expectation, we get J i (x0, α
i , (ᾱε,j )j 6=i ) ≥ J i (x0, ᾱ

ε)− ε.
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Conclusion and open problems

So far,

We have characterized the efficiency of MFG
(in most interesting cases, the MFG system is not efficient)

We have (roughly) quantified the lack of efficiency.

Application to a mean field limit.

Open problems.

The upper bound relies on a structure condition : Is this necessary?

Obtain quantitatives properties independent of the regularity of the system.

Efficiency for MFG in which the interaction is also through the distribution of the controls.

Thank you !
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