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Basic Formulation of Nonlinear Major-Minor MFG Systems

Notation: Subscript 0 for the major agent Ao and an integer valued
subscript for minor agents {4; : 1 <i < N}.

The states of Ay and A; are R™ valued and denoted z' (t) and z/ (t).

a8 (6) = 3+ 3 folt 2 (0 ud (1), 2 )t
- Z o(t, 28 (8), 2 (B)dwo(), 2 (0) = 20(0), 0<t<T,

a () = 7 D F6 2 @), (0,0 (0, 7 ()
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MFG Nonlinear Major-Minor Agent Formulation

T Wl uy) = E/ ZLo[t (), ud (b), zjv(t)}>dt,

JN ( T _E/ ZLt 2N (OF ,uﬁv(t),zjv(t)])dt.

The major agent has non-negligible influence on the mean field (mass)
behaviour of the minor agents. (A consequence will be that the system
mean field is no longer a deterministic function of time.)

(Q,F, {ft}i\]zo,P): a complete filtered probability space
FY = 0{2(0),w;(s) : 0 < j < N,0< s <t} Mtlly. Ind. ICs, Ind. BMs.
F° = 0{z0(0),wo(s) : 0 < s <t}



Basic Formulation of Nonlinear MFG Systems

Infinite population limit dynamics:
dey = flze, ue, pe]dt + odwy
fle,u, ] = /f(w,u,y)ut(dy)
R

Given ICs, a solution to the MKV SDE is a

Infinite population limit cost:

ar
. A .
nf J(u,p) = ;ng/E/O Llze, ue, pedt

where p: (1) = of the population state distribution
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Information Patterns and Nash Equilibria

: F éa(l‘i(r);T <t), 1<i<N
Ujoc,i: Fi adapted control + system parameters

FN 2 g(zj(t);r <t,1<j < N)
U: FN adapted control + system parameters

The set of controls U® = {uj; uj adapted to Ujpei, 1 <i < N}
generates a w.r.t. the performance functions
{Ji;1 <1 < N} if, for each i,
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Saddle Point Nash Equilibrium

Agent y is a maximizer

Agent z is a minimizer

~
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e-Nash Equilibrium

Given € > 0, the set of controls «° = {u?; 1 <i < N} generates
an w.r.t. the performance functions
{Ji;1 <1 < N} if, for each i,

Ji(ud,u?;) —e < ulréa Ji(uisu®;) < Ji(ud, u?,)
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Fundamental Mean Field Game MV HJB-FPK Theory

Assuming that for any given strategy (i.e. control law) the infinite
population limits exist for the population dynamics and performance
functions, then:

(i) the generic agent best response (BR) is generated by an MKV-HJB
equation and

(ii) the corresponding generic agent state distribution is generated by an
MV-FPK equation (equivalently MKV SDE):

)% . oV
- E = inf {f[a“v/uﬂut}% +L[Q§,U,Mt]} +

uelU

> 9*V
2 Ox?

V(T,z) =0, (t,z) €[0,T) xR

op(t,@) _ _O{flww plp(t, @)} | o Op(t )

A
ot ox 2  0z?

( dze = flze, p(¢, z|pe), peldt + odwe)

ue = @(t, x|pe), (t,z) €[0,T] xR
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Basic Mean Field Game MV HJB-FPK Theory

Subject to technical conditions (i.e. uniform cty.+ boundedness on all
functions + their derivatives + Lipschitz cty. wrt. controls):

(i) the MKV MFG Equations have a unique solution with the best response
control generating a unique Nash equilibrium given by

Furthermore,
(i) Ye > 0 AN (e) s.t. VN > N(e)

where u; € U is adapted to FV := {o(z;(7);7 < t,1<j < N)}.
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Outline of Proof of Basic Result

Restrict Lipschitz constants so that a Banach contraction argument
gives existence and uniqueness via an iterated closed loop from
mean field measure to control (from HJB) to measure (from FPK).

: Mojtaba Nourian, PEC, SICON,
2013.
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The Three Key ldeas of Mean Field Game Theory

Non-Cooperative Game Theoretic
Equilibrium given by the solution to a **stochastic control
problem** (wrt the distribution of the mass of agents)

of Equilibrium: Generic Agent
Mean Field Equilbrium is **regenerated** when all agents
use the MFG BR strategies)

of Dynamic Games: Infinite
Population Control Strategies Yield **simple**
Approximate Nash Equilbria for Large Finite Populations

12 /55



Major-Minor Agent State Estimation and MFG Equilibria

Graphon Control Systems
Graphon Mean Field Games
LQG-MFG Example
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Separated and Linked Populations
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Convertified by iSquint - http://www.isquint.org
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Motivation for Application of Graphon Theory in Systems
and Control

Networks are ubiguitous, and are often growing in size and
complexity: Online Social Networks, Brain Networks, Grid
Networks, Transportation Networks, loT, etc.
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Motivation for a Graphon Theory of Systems and Control

A Common Feature of Networks of Dynamical Systems: Local
nodes possess intrinsic states which evolve due to interactions with
other nodes.

Power grids (loads, generators and energy storage units)
Epidemic networks

Brain networks

Social networks (opinions) and Fish Schooling
Networks of computational devices

Crowds?

Range of System Networks Behaviours: freely evolving, or locally
controlled, and (or) globally controlled.
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Motivation for Application of Graphon Theory in Systems
and Control

Shall consider a class of complex networks characterized by:

Large number of nodes (in principle millions/billions of nodes)

Complex connections which are asymptotically dense at each
node (but sparse case is important)

Intrinsically capable of growth in size

The recently developed mathematical theory of graphons provides
a methodology for analyzing arbitrarily complex networks. (Sparse
theory is developing.)
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Introduction to Graphons
Graphs, Adjacency Matrices and Pixel Pictures

Graph Adjacency Matrix Pixel Picture

. 10

*—o Lo

o_o 101 -
1 10

Graph, Adjacency Matrix, Pixel Picture

The whole pixel picture is presented in a unit square [0, 1] x [0, 1],

: 1 :
so the square elements have sides of length e where N is the

number of nodes.
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Introduction to Graphons
Graph Sequence Converging to Graphon

Graph Sequence Converging to its Limit

Graphons: bounded symmetric Lebesgue measurable functions
W :[0,1)2 = [0, 1]
interpreted as weighted graphs on the vertex set [0, 1].

G :={W:[0,1]> = [0,1]} G :={W:[0,1]* - [-1,1]}
G¥ ={W:[0,1> - R}

19 /55



Introduction to Graphons
Metric in Graphon Space

Cut norm
[Wlg:= sup | W (z,y)dzdy| (1)
M,TcCl0,1] JMxT
Cut metric
do(W,V) = igf IW? - V|io (2)
L? metric
dr2(W,V) := n;f IW? — V|| (3)

where W‘f’(z:, y) = W(o(z), 6(y)).

Since [|[W{|g < ||[W||z2 for any graphon W, convergence in dj2
implies convergence in dg.
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Introduction to Graphons

Compactness of Graphon Spaces

Theorem

The graphon spaces (G¢”,dn), and hence the closed subsets of
any (Gg,dn), are compact.
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Introduction to Graphons

Graphons as Operators

Graphon W € GP as an operator:
W : L2[0,1] — L?[0,1]
Operation on v € L?[0,1] :
1
[Wv|(z) = / W (z, a)v(a)da
0
Operator product :
1
UW)(2.9) = [ Ula2)W(z.p)ds
0

where U, W € GIP



Introduction to Graphons
Graphon Differential Equations

A € GTP is the infinitesimal generator of the uniformly continuous
semigroup

.tk Ak
Sa(t)i=eA =Y —— (6)
k=0 )

The initial value problem of the graphon differential equation
Ve = Ayt, yo€ L?*[0,1], 0<t<T (7)

has a solution given by

ye = eAlyo, yi € L?[0,1], 0<t<T. 6)
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Networks of Linear Systems and Their Limits
Linear Network System with Node Averaging Dynamics

The dynamics of the i'" agent in the network

1L 1.
j=1 j=1

zi € R': state
ul € R : control

Neighborhood

Consider the scalar case for simplicity.



Networks of Linear Systems and Their Limits
Linear Network Systems Described by Graphons

ay x(1) by biy u (1)
Vectors
i HE Rl I - i i and
e x(N) bt » ban "I(M Matrices

ﬁ{ ﬁ

|

L3, [0, 1] functlons

Step Functlons

L2[0, 1] functions
and
Graphons

Compactness of graphon space ensures subsequence limits exists.

26
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Networks of Linear Systems and Their Limits

Infinite Dimensional Network Systems Described by Graphons

Infinite dimensional linear systems

}'(t:AXt—l-But, OStST

LS™ : 5 s
xo € L*[0,1], A €GP, Bec Gy

x¢ € L?[0,1] : system state; ug € L?[0,1] : control input

(i) A generates a uniformly continuous
(H1) semigroup e on L?[0,1],
(i) B e L(L*0,1]; L*[0,1]),
Subject to H1 there exists a unique solution
x € C([0,T); L*[0,1]) to LS> for any x¢ € L*[0,1] and any
u € L([0,T); L*[0, 1]).
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Networks of Linear Systems and Their Limits

Controllability of Infinite Dimensional Network Systems

An infinite dimensional linear system (A;B) is exactly
controllable if on any time interval [0, t] (0 < t < c0) any initial
state in the state space X can be steered to any target state in X.

Note: In the present case, a state © € X is an equivalence class of
L?[0,1] functions.
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Networks of Linear Systems and Their Limits

Criteria for Controllability of Infinite Dimensional Network Systems

Controllability Gramian Wy : L2[0,1] — L?[0, 1]

t
W; ::/ eA(t_S)BBTeAT(t_S)ds, t > 0.
0

A necessary and sufficient condition for exact controllability on
[0,T7] is the uniform positive definiteness of Wr:

(Wrh, h) > cr|h|?

for all h € L?[0,1], where cr > 0 and || - || is the L?[0, 1] norm
(Bensoussan et al., 2007, Curtain et al,1995)
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Methodology for Controlling Systems on Complex
Networks

~

’ \

Infinite Dimensional System

Converge

Synthesis

(Min-Energy and LQR)

Control Design Procedure for Network Systems via Graphon Limits



Methodology for Controlling Systems on Complex
Networks

Theorem (S.Gao, PEC 2017b)

Consider a sequence of graphon systems {(AIN); BN} converging to a
graphon system (A;B) in the L? operator norm as N — co: AN — A
and BN — B. Then

1. There exists a control viINI € 12[0,1] for (AN, BIN) approximating
the control v € L?[0,1] for (A;B) € L?|0, 1]such that

ar
xr(v) =3 (vIN)|2 <||AX HzHBllz/ (T = 1) - ||vrll2dr
0
- ©)
[N]
+IBY 2 [ eTIANE v ar,
0
where AN = A — AN ang BY = B — BN

2. Furthermore, lim ||xp(v) — xi (v )||2 =0
N—o00
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Methodology for Controlling Systems on Complex

Networks
Limit Control for Network Systems with the Identity Input Mapping

Lemma (S.Gao, PEC 2017b)

Suppose ANl — A in the L2]0,1])? operator norm as N — oc.
Then for any v € L?[0,1] there exists a control ul¥! € L2[0, 1] for
(AN 1) approximating the control u for (A; 1) such that

T
e () — % (™) 2 §||AX||2/O T~ (T = 7)ur |l2dr
T
N
T T YT d 5
+||/0 [, — u]dr 2
where AN = A — AN,
u () :N/ ue(8)dB, Vac P, (11)
P;

with the uniform partition P" .
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Minimum Energy Graphon Control

infuJ(u)
s.t. Inital state xy — Target state zp,

where the control energy is given by

T T 1
J(w) ::/ |uT||§dT:/ / wr (a)2dadr
0 0 0
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Minimum Energy Graphon Control

Optimal Control Law for Infinite Dimensional System

W, : L?[0,1] — L?[0,1]
t
W; ::/ eA(t_S)BBTeAT(t_S)ds, t > 0.
(0]

: (A;B) exactly controllable < W uniformly positive
definite.

If (A;B) exactly controllable the Optimal control law:

ul = BTeAT(t*T)Wt*l(x»E —eMxg), TE0,4]  (12)

BByA5h!



Minimum Energy Graphon Control

Generating Convergent Network Examples

A method for generating a class of generic dynamic network
examples with finite graphs converging to a given graphon U:

To obtain a network system (An; Iy):

N
1
:ti:NZANijxj—i—ui, z;,u; € Ryi€ {1,...,N} ¢%))
j=1

where Ap;; is randomly generated from the

graphon limit U (bounded and almost ev-

erywhere continuous).

Sample independently and uniformly N
: N

points {p;};=; from [0, 1]
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Minimum Energy Graphon Control

Example |

Uniform Attachment Graphon: U(z,y) = 1 — max(z, y),
x,y € [0, 1].

Weighted Graph Generated from U, its Stepfunction and Graphon Limit
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Minimum Energy Graphon Control

Example |

Uniform Attachment Graphon: U(z,y) = 1 — max(z, y),
z,y € [0,1].

1
Ty = NANLL} + U, X € RN,ut € RN

Simulation: Control generated *analytically* from graphon limit
and sampled for input to 50 node network system.

‘Target Terminal State (50 Nodes) Achieved Terminal State (50 Nodes) 5 10 Terminal State Error (50 Nodes)

State Evolution (50 Nodes)

State Value

40 05
30 40 50 Agents Time (3)

Agents

Minimum Energy Target State Control on Network with 50 Nodes
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Graphon Linear Quadratic Regulation

For a graphon system (A; B) find the infimum of the performance
function

T
ocp: J(u):/ [1Cx. 2 + [[ur 2] dr + (Poxr, x7)
0]

over all controls u € L?(0,T; L?(0,1)) where C and Py satisfy:

(i) P € L(L?[0,1]) is hermitian and
(H2) non-negative,
(iv) C e L(L?0,1];L%[0,1])
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Graphon Linear Quadratic Regulation

Let P solve the following Riccati equation:

P=ATP+PA-PBB'P+C’C, P(0)=Py;. (14
Applying (Bensoussan et al, 2007) and specializing the Hilbert
space there to be L?[0,1] space, we have:

Theorem
Assume that (H2) is verified. Then the Riccati Equation (14) has a
unique (mild) solution P € Cy([0,T); £ (L?[0,1])) and the closed
loop system under LQR optimal control over [0,T) is given by

Xt = AXt — BB*P(T — t)Xt,

t € [0,T),xg € L?[0,1]. (15)
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Graphon Linear Quadratic Regulation

Example Il

Sinusoidal Graphon:  U(z,y) = cos(m(z —y)), x,y € [0, 1].
Control generated *analytically* from graphon limit; sampled for
input at 160 nodes.

State under Graphon Approximated Control

Control Signal under Graphon Approximated Control

State Evolution under Control Input of Network of 160 Nodes
Graphon Control Graphon Control

State under Optimal LOR

State Evolution under Control Input of Graphon Limit
Ontimal | OR Ontimal | OR

41
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Graphon Mean Field Games

TRANSPORTATION
CLUSTERS

3.200 airports
60.000 routes

GEOGRAPHICAL LAYOUT

Color = Longitude
Size = Number of routes

NORTH
AMERICA

GG-BY martingrandjean.ch 2016
Data: openfights.org




Graphon Mean Field Games - Motivation




0 Vot z) . ~ OV, (t,x)
FUBle) P = inf oo 2
~ 02 02V, (t, x)
+Z[CL',’LL, /’LG;ga] + ? 61’2 5
Vo (T, z) =0, (t,xz) € [0, T] xR", «€]0,1],
Ipa(t, @) Oz, u® (T, 63 ga)Pa(t, )}
FP -
[FPK](a) 5t 5
n 02 0%pa(t, x)

2 922
BRI(a)  u(za, i ga) = arginf H (zq, u, 463 ga);

=: p(t, z¢| 1G5 9o
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Graphon Mean Field Games : GMFG

The e, the corresponding set of all the
local mean fields j1 = {p15;0 < 5 < 1}, and

Jo = {9(a, B8);0 < B < 1} are inter-related by the FPK
and the defining integral relation

flTa, tas ha; 9a) = /[O 1}/Rf(xa,ua,xﬁ)g(&vﬁ)ﬂﬂ(dﬁﬂﬁ)dﬁ

which gives the via the sum

F o e, 165 Ga) = fo(Tas Ua) + fTas Ua, 1G5 Ga)-

The l[x,u, ug; go| are defined
similarly.
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Graphon Mean Field Games : GMFG

We retrieve the when the agents'’
dynamics and costs are uniform, and, further, the network is totally
connected with giving

{9(a, ) = 150 < o, 5 < 1}. Since then the FPK equations and
integral equations have a solution where all the local graphon
mean fields are equal, i.e. ;o =: 4, for all a.

Image of a non-uniform graphon
with function

g(a, B) = 1 — max(a, §),
o, B €0,1]
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Graphon Mean Field Games : GMFG

Theorem 1: Existence and Uniqueness of Solutions to the
GMFG Equation Systems (PEC, Huang, 2017)

Subject to technical conditions, there exists a unique solution to
the graphon dynamical GMFG equations, which (i) gives the
feedback control best response (BR) strategy ¢(t, x¢|1G; o)
depending only upon the agent’s state and the graphon local mean
fields (i.e. (x¢, uc; 9a)), and (ii) generates a Nash equilibrium.
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Graphon Mean Field Games : GMFG 2

Theorem 2: e-Nash Equilibria for GMFG System (PEC,
Huang, 2018)

Let the conditions of Theorem 1 hold together with the continuity
of the graphon function G = {g(«, 3),0 < o, 8 < 1}. Then the
joint strategy {uf(t) = ¢(t, x¢|uc; go) yields an e-Nash equilibrium
for all ¢, i.e. for all € > 0, there exists N (¢) such that for all

N > N(e).

Namely, Ve > 0 3N (e) s.t. VN > N(e)

TN W, u ) —e< 1ni;{JN(ul, D <IN, WLy,
(AS

where u; € U is adapted to F := {o(z;(1);7 < t,1 < j < N)}.
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LQG-GMFG Example - Finite Population (1)

dl’i = (A.Tz a4 Bui)dt T Edwi, 1 <1< N.

x;: state of the ith agent

u;: control

wj: disturbance (standard Wiener process)
Vi: set of vertices: index set {1, ..., Ni}
Cy: set of agents in the (th cluster

For z; € Cy and symmetric adjacency matrix M = [my] :

1 1
2= — E Mgy —— E T;
Y T1C| &=
J€C,

LEV),
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LQG-GMFG Example - Finite Population (2)

where Q, Q7 > 0,R > 0, and v; = y(2; +n) is the process tracked
by agent .

Main features:

Agents may be linearly coupled via (i) their dynamics (omitted

in this example) and (ii) running costs over a finite
bidirectional of clusters

Tracked process v;:
stochastic
depends on other agents’ control laws
depends on the location in the graph of z;'s cluster
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LQG-GMFG Example - Infinite Population (1)

: The Uniform Attachement Graph (LL2012)

Za = /[0’1} [M (e, B) /Rn zaug(deg)lds,  a,B€(0,1]

58YABE!



LQG-GMFG Example - Infinite Population (2)

dzq = (Ao + Bug)dt + Xdw,, « € [0,1].

T
(o, 1) 2 E [ [[(2 = 1)@ = v2) + v Rt

+(@a(T) - ’/a(T))TQT (xa(T) —va(T))

where Q,Q7 > 0,R > 0 and v, = Y(za + 7).

o= | [1-max(@8) [ ooma(dug)]ds,  ape 1)
0,1] Rr
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LQG-GMFG Example - Infinite Population (3)

Ua(t) = —R'BT[ILza(t) + sa(t)] (16)
—II, = AT, + IL,A — ILBR 'B™I, + Q, Iy =Qr (17)

—5a(t) = (A= BRT'B'IL,) "sa(t) — Qua(t), $a(T) = Qrva(T)
(18)

ta = / M(c, B)ZdB, Va2 (20 +1), a€[0,1]
[0,1]

(19)

T T T (dzp) 20
/3 |C[3\—)oo |Cﬂ| Z J / /3#,3 5 ( )

j€Cp
=(A- BR™'B'lI})Z, — BR™'B"s,, ac|0,1]. (21)

55)ABb!
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