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Introduction and content

I (Extended) weight enumerator
I Projective systems and arrangements of hyperplanes
I (Extended) coset leader weight enumerator
I for codes on conic
I for codes on twisted cubic
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Error-correcting codes
and weight enumerators
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Weight and distance

Fq is the finite field with q elements

The weight of x in Fn
q is defined by

wt(x) = |{ j : xj 6= 0 }|

that is the number of nonzero entries of x

The Hamming distance between x and y is defined by

d (x, y) = |{ j : xj 6= yj }|

So
d (x, y) = wt(x− y)
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Error-correcting codes

C is called an [n , k , d ]q code if it is a
k dimensional Fq -linear subspace of Fn

q
of minimum distance d = d (C ) where

d (C ) = min{ d (x, y) : x, y ∈ C , x 6= y }

So
d (C ) = min{ wt(c) : 0 6= c ∈ C }

C is called degenerate
if for there is a position j such that cj = 0 for all c ∈ C
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Generator and parity check matrix

C an Fq -linear code of length n and dimension k

A k × n matrix G with entries in Fq

is called generator matrix of C if

C = {mG : m ∈ Fk
q }

A (n − k )× n matrix H with entries in Fq

is called a parity check matrix of C if

C = { c ∈ Fn
q : cH T = 0 }
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Inner product and dual code

The inner product on Fn
q is defined by

x · y = x1y1 + · · ·+ xnyn

For an [n , k ] code C we define the dual or orthogonal code C⊥ as

C⊥ = { x ∈ Fn
q : c · x = 0 for all c ∈ C }

G is generator matrix of C if and only if G is a parity check matrix of C⊥
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Weight enumerator

Let C be a code of length n
Define

Aw = |{ c ∈ C : wt(c) = w }|

So Aw denotes the number of codewords in C of weight w

The weight enumerator of C is:

WC (X , Y) =
n∑

w=0

AwXn−wYw .

Aw is divisible by q − 1 if w > 0
Define

Āw = Aw/(q − 1)
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PROPOSITION

Let WC (X , Y) be the weigh enumerator of the code C

Then the probability of undetected error on a q-ary symmetric channel
with cross-over probability p is given by

Pue(p) = WC

(
1− p ,

p
q − 1

)
− (1− p)n



11/53

Faculteit Wiskunde & Informatica

Decoding correctly, error and failure

c’

r

r
3

r
2

c

1

Figuur: r1: decoded correctly, r2: decoding error, r3: failure
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PROPOSITION

Consider the q-ary symmetric channel with cross-over probability p
Let C be a code of minimum distance d
Let 2t + 1 ≤ d

The probability of decoding error of a
strict t -bounded distance decoder is given by

Pde(p) =
n∑

w=0

(
p

q − 1

)w

(1− p)n−w
t∑

s=0

n∑
v=1

AvNq(n , v ,w , s)

where Nq(n , v ,w , s) be the number of vectors in Fn
q

of weight w that are at distance s from a given vector of weight v
(It does not depend on the chosen vector)
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Extended code by scalars

Let C be a linear [n , k ] code over Fq

Then C ⊗ Fqm is the extended code by scalars
that is the Fqm -linear code in Fn

qm that is generated by C

If G is a k × n generator matrix of C with entries in Fq

then G is also a generator matrix of C ⊗ Fqm
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Weight enumerator
via projective systems

and arrangements

Segre, finite geometers, Katsman-Tsfasman, Jurrius-P
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Projective systems and codes

A projective system (P1, . . . , Pn)
is an n-tuple of points in projective space Pr(Fq)
such that not all of them lie in a hyperplane

Let G = (gij ) be a generator matrix of a nondegenerate [n , k ] code C
So G has no zero columns

Let Pj be the point in Pk−1(Fq) with homogeneous coordinates

Pj = (g1j : · · · : gkj )

Let PG be the projective system (P1, . . . , Pn) associated with G



15/53

Faculteit Wiskunde & Informatica

Projective systems and codes

A projective system (P1, . . . , Pn)
is an n-tuple of points in projective space Pr(Fq)
such that not all of them lie in a hyperplane

Let G = (gij ) be a generator matrix of a nondegenerate [n , k ] code C
So G has no zero columns

Let Pj be the point in Pk−1(Fq) with homogeneous coordinates

Pj = (g1j : · · · : gkj )

Let PG be the projective system (P1, . . . , Pn) associated with G



15/53

Faculteit Wiskunde & Informatica

Projective systems and codes

A projective system (P1, . . . , Pn)
is an n-tuple of points in projective space Pr(Fq)
such that not all of them lie in a hyperplane

Let G = (gij ) be a generator matrix of a nondegenerate [n , k ] code C
So G has no zero columns

Let Pj be the point in Pk−1(Fq) with homogeneous coordinates

Pj = (g1j : · · · : gkj )

Let PG be the projective system (P1, . . . , Pn) associated with G



16/53

Faculteit Wiskunde & Informatica

Projective systems, codes and minimal weight

PROPOSITION
Let C be a nondegenerate [n , k ] code over Fq with generator matrix G
Let c be a nonzero codeword c = mG for the unique m ∈ Fk

q

Let H be the hyperplane in Pk−1(Fq) with equation

H : m1X1 + · · ·+ mkXk = 0

Then n − wt(c) is equal to the number of points of of PG in H

And Āw is the number of hyperplanes in the
projective space Pk−1(Fq)
with exactly n − w points of PP on it
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Points in general position - MDS codes

Let C be a nondegenerate [n , k ]q code

Then C is an MDS code, that is an [n , k , n − k + 1]q code
attaining the Singleton bound

if and only if

the points of the projective system PG in Pk−1(Fq) are in
general position that is to say that
there are at most k − 1 points of PG in a hyperplane
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Dually: arrangements and codes

An arrangement (H1, . . . ,Hn)
is an n-tuple of hyperplanes in Fk

q or Pr(Fq)
such that their intersection is {0} or empty, resp.

Let G = (gij ) be a generator matrix of a nondegenerate [n , k ] code C
So G has no zero columns

Let Hj be the linear hyperplane in Fk
q or Pk−1(Fq) with equation

g1jX1 + · · ·+ gkjXk = 0.

LetAG be the arrangement (H1, . . . ,Hn) associated with G
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Arrangements, codes and minimal weight

PROPOSITION
Let C be a nondegenerate [n , k ] code over Fq with generator matrix G
Let c be a codeword c = xG for the unique x ∈ Fk

q

Then n − wt(c) is equal to the number of hyperplanes ofAG

going through (x1 : · · · : xk )

And Āw is the number of points in Pk−1(Fq)
on exactly n − w hyperplanes ofAG
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Projective system versus arrangement of lines

Figuur: Projective system (L), Arrangement of lines (R) in P2(Fq) of [4,3,2] code
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Ān and complement of hyperplanes

In particular Ān is equal to the number of points that is
in the complement of the union of these hyperplanes in Pk−1(Fq)

This number can be computed by the principle of inclusion/exclusion

Ān =
qk − 1
q − 1

− |H1 ∪ · · · ∪ Hn | =

n∑
w=0

(−1)w
∑

i1<···<iw

|Hi1 ∩ · · · ∩ Hiw |
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REMARK

Define for a subset J of {1,2, . . . , n}

C (J) = {c ∈ C | cj = 0 for all j ∈ J}

The encoding map x 7→ xG = c from
vectors x ∈ Fk

q to codewords
gives the following isomorphism of vector spaces⋂

j∈J

Hj
∼= C (J)
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DEFINITION

Define following Katsman and Tsfasman

l (J) = dimC (J)

BJ = q l(J) − 1

Bt =
∑
|J |=t

BJ

Then BJ is equal to the number of nonzero codewords c
that are zero at all j in J and

This is equal to the number of nonzero elements of the intersection⋂
j∈J

Hj
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DEFINITION extended version

BJ (T) = T l(J) − 1

Bt (T) =
∑
|J |=t

BJ (T)
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PROPOSITION

The following relation between the Bt and Aw holds

Bt =
n−t∑
w=d

(
n − w

t

)
Aw

and for the extended version

Bt (T) =
n−t∑
w=d

(
n − w

t

)
Aw(T)
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THEOREM (Katsman-Tsfasman and Jurrius-P)

The homogeneous weight enumerator of C can be expressed
in terms of the Bt as follows

WC (X , Y) = Xn +
n∑

t=0

Bt (X − Y)tYn−t

and for the extended version

WC (X , Y , T) = Xn +
n∑

t=0

Bt (T)(X − Y)tYn−t

This motivic version works over any field of coefficients
The number of codewords in C ⊗ Fqm of weight w is Aw(qm) and

WC (X , Y , qm) = WC⊗Fqm
(X , Y)
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PROPOSITION

The weight distribution of an MDS code of
length n and dimension k is given for w ≥ d = n − k + 1 by

Aw =

(
n
w

) w−d∑
j=0

(−1)j
(
w
j

)(
qw−d+1−j − 1

)

and for the extend version

Aw(T) =

(
n
w

) w−d∑
j=0

(−1)j
(
w
j

)(
Tw−d+1−j − 1

)
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Arrangement of 4 lines of [4,3,2] code
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Connections

The following polynomials determine each other:

WC (X , Y , T) extended weight enumerator of C

{W (r)
C (X , Y) : r = 1, . . . , k} generalized weight enumerators of C

tC (X , Y) dichromatic Tutte polynomial of matroid MC by Greene

χC (S , T) coboundary or two variable char.pol. of geometric lattice LC

ζC (S , T) two variable zeta function of C by Duursma

But WC (X , Y) is weaker than WC (X , Y , T)
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Coset leader
weight enumerator

Helleseth, Jurrius-P, Utomo-P
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Coset leader weight enumerator

Let C be a linear [n , k , d ]q code
The weight of the coset y + C is defined by

wt(y + C ) = min{ wt(y + c) : c ∈ C }

A coset leader of r + C is a choice of an element
of minimal weight in the coset r + C
Let

αi = the number of cosets of C that are of weight i

The coset leader weight enumerator of C
is the polynomial defined by

αC (X , Y) =
n∑

i=0

αiX
n−iY i
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Coset leader decoding

The coset leader decoder D is defined by
- Preprocessing: make a list of all coset leaders
- Input: r a received word
- Let e be the chosen coset leader of r + C in the list
- Output: D(r) = c = r− e

Then
c ∈ C and d (r, c) = wt(e) = d (r,C )

HenceD is a nearest codeword decoder
Note that c is not necessarily the codeword sent
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PC ,dc for coset leader decoder

PROPOSITION

The probability of decoding correctly of the coset leader decoder
on a q-ary symmetric channel with cross-over probability p is given by

PC ,dc(p) = αC

(
1− p ,

p
q − 1

)
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Properties coset leader weight enumerator

Let C be a linear [n , k , d ]q code with covering radius ρ(C )
Then

αi =

(
n
i

)
(q − 1)i if i ≤ (d − 1)/2

Since every vector e of weight at most (d − 1)/2 is
the unique word of minimal weight in the coset e + C

αi = 0 if i > ρ(C )

Since by definition there is no word r such that d (r,C ) > ρ(C )

αC (1,1) =
n∑

i=0

αi = qn−k

Since the total number of cosets is qn−k
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Cn the dual repetition code

Let Cn be the dual code of the n-fold repetition code

So
(1,1, . . . ,1)

is a parity check matrix of Cn

And Cn is an [n , n − 1,2]q code and we can choose the (λ,0, . . . ,0)
for λ ∈ Fq as a complete collection of coset leaders

Hence the coset leader weight enumerator of Cn is given by

αCn (X , Y) = Xn + (q − 1)Xn−1Y1
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Cm ⊗ Cn product code

Let Cm ⊗ Cn be the product code of Cm and Cn
Its codewords are considered as m × n matrices with entries in Fq

such that every row sum is zero and every column sum is zero

Then Cm ⊗ Cn is an [mn , (m − 1)(n − 1),4]q code

Its coset leader weight enumerator is determined
for q = 2 and q = 3 by Utomo-P
But it is an open question for other q
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Extended coset leader weight enumerator

PROPOSITION (Helleseth, Jurrius-P)
Let C be a linear [n , k , d ]q code
Then there exist polynomials αi (T) such that

αi (q
m) = the number of cosets of C ⊗ Fqm that are of weight i

αi (T) is divisible by T − 1 for i > 0
Define ᾱi (T) = αi (T)/(T − 1)

The extended coset leader weight enumerator of C
is the polynomial defined by

αC (X , Y , T) =
n∑

i=0

αi (T)Xn−iY i



37/53

Faculteit Wiskunde & Informatica

Extended coset leader weight enumerator

PROPOSITION (Helleseth, Jurrius-P)
Let C be a linear [n , k , d ]q code
Then there exist polynomials αi (T) such that

αi (q
m) = the number of cosets of C ⊗ Fqm that are of weight i

αi (T) is divisible by T − 1 for i > 0
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Coset versus syndrome

Let C be a linear [n , k , d ]q code

let H be a parity check matrix of C and r ∈ Fn
q

Then
r1 + C = r2 + C if and only if H rT1 = H rT2

Then the column vector
s = H rT ∈ Fn−k

q

is called the syndrome of r with respect to H

Hence there is a one-one correspondence between
cosets of C and syndromes in Fn−k

q
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Syndrome weight

Let H be a parity check matrix of a linear [n , k ] code C over Fq

The weight of s with respect to H
also called the syndrome weight of s is defined by

wtH (s) = wt(r + C )

A syndrome s is a linear combination of the columns of H

The syndrome weight of of s is the minimal way to write s
as a linear combination of the columns of a parity check matrix

Hence αi is the number of vectors that are in the span of i columns of H
but not in the span of i − 1 columns of H
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Projective systems of H of [6,3,3] codes

Figuur: Two projective systems that induce the same geometric lattice, but
induce codes with different coset leader weight enumerators

Derived arrangement of projective system
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Derived arrangement of H of [4,1,4] code
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Normal Rational Curve

Segre, .... , Bruen-Hirschfeld, Blokhuis-P-Szőnyi
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Normal rational curve Cr

The normal rational curve of degree r is the curve Cr in Pr with
parametric representation

(s r : s r−1t : . . . : st r−1 : t r) with (s : t) ∈ P1

Alternatively given by the vanishing ideal I(Cr) that is
generated by the 2× 2 minors of the 2× r matrix(

X0 X1 . . . Xi . . . Xr−1

X1 X2 . . . Xi+1 . . . Xr

)
.

C2 is the irreducible conic in P2

C3 is the twisted conic in P3



43/53

Faculteit Wiskunde & Informatica

Normal rational curve Cr

The normal rational curve of degree r is the curve Cr in Pr with
parametric representation

(s r : s r−1t : . . . : st r−1 : t r) with (s : t) ∈ P1

Alternatively given by the vanishing ideal I(Cr) that is
generated by the 2× 2 minors of the 2× r matrix(

X0 X1 . . . Xi . . . Xr−1

X1 X2 . . . Xi+1 . . . Xr

)
.

C2 is the irreducible conic in P2

C3 is the twisted conic in P3



43/53

Faculteit Wiskunde & Informatica

Normal rational curve Cr

The normal rational curve of degree r is the curve Cr in Pr with
parametric representation

(s r : s r−1t : . . . : st r−1 : t r) with (s : t) ∈ P1

Alternatively given by the vanishing ideal I(Cr) that is
generated by the 2× 2 minors of the 2× r matrix(

X0 X1 . . . Xi . . . Xr−1

X1 X2 . . . Xi+1 . . . Xr

)
.

C2 is the irreducible conic in P2

C3 is the twisted conic in P3



43/53

Faculteit Wiskunde & Informatica

Normal rational curve Cr

The normal rational curve of degree r is the curve Cr in Pr with
parametric representation

(s r : s r−1t : . . . : st r−1 : t r) with (s : t) ∈ P1

Alternatively given by the vanishing ideal I(Cr) that is
generated by the 2× 2 minors of the 2× r matrix(

X0 X1 . . . Xi . . . Xr−1

X1 X2 . . . Xi+1 . . . Xr

)
.

C2 is the irreducible conic in P2

C3 is the twisted conic in P3



44/53

Faculteit Wiskunde & Informatica

NRC and generalized Reed-Solomon codes

Cr(Fq) has q + 1 points lying in general position in Pr(Fq)

The projective system of these q + 1 points in Pr(Fq)
comes from a generalized Reed-Solomon (GRS) code
with parameters [q + 1, r + 1, q + 1− r]

The dual code is again a generalized Reed-Solomon code
with parameters [q + 1, q − r , r + 2]
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Code on the conic C2

C2(Fq) has q + 1 points lying in general position in P2(Fq)

Lines intersect C2(Fq) in 0, 1 or 2 points and
are called exterior lines, tangents and secants, resp.

Consider the projective system PH of these points in P2(Fq)
coming from the 3× (q + 1) parity check matrix H
of the (GRS) code with parameters [q + 1, q − 2,4]



45/53

Faculteit Wiskunde & Informatica

Code on the conic C2

C2(Fq) has q + 1 points lying in general position in P2(Fq)

Lines intersect C2(Fq) in 0, 1 or 2 points and
are called exterior lines, tangents and secants, resp.

Consider the projective system PH of these points in P2(Fq)
coming from the 3× (q + 1) parity check matrix H
of the (GRS) code with parameters [q + 1, q − 2,4]



45/53

Faculteit Wiskunde & Informatica

Code on the conic C2

C2(Fq) has q + 1 points lying in general position in P2(Fq)

Lines intersect C2(Fq) in 0, 1 or 2 points and
are called exterior lines, tangents and secants, resp.

Consider the projective system PH of these points in P2(Fq)
coming from the 3× (q + 1) parity check matrix H
of the (GRS) code with parameters [q + 1, q − 2,4]



46/53

Faculteit Wiskunde & Informatica

Points in plane w.r.t. to C2(Fq) for q odd

I There are
(q+1

2

)
external points of P, through such a point are

2 tangents of P
1
2 (q − 1) secants of P and
1
2 (q − 1) exterior lines of P

I There are q + 1 points on P, through such a point there is
1 tangent of P and
q secants of P

I There are
(q

2

)
internal points of P, through such a point are

0 tangents of P
1
2 (q + 1) secants of P and
1
2 (q + 1) exterior lines of P
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Coset leader wt. enum. on conic for q odd

Suppose q is odd and PH consists of the q + 1 points of C2(Fq)

Then
I ᾱ1(T) = q + 1
I ᾱ2(T) = (q2 + q + 1− (q + 1)) +

(q+1
2

)
(T − q)

I ᾱ3(T) = remaining points

= T2 + (1−
(q+1

2

)
)T − q(q + 1) + q

(q+1
2

)
since

ᾱ1(T) + ᾱ2(T) + ᾱ3(T) = T2 + T + 1
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I ᾱ3(T) = remaining points

= T2 + (1−
(q+1

2

)
)T − q(q + 1) + q

(q+1
2

)
since
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I ᾱ2(T) = (q2 + q + 1− (q + 1)) +

(q+1
2

)
(T − q)

I ᾱ3(T) = remaining points

= T2 + (1−
(q+1

2

)
)T − q(q + 1) + q

(q+1
2

)
since

ᾱ1(T) + ᾱ2(T) + ᾱ3(T) = T2 + T + 1
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Code on the twisted cubic C3

C3(Fq) has q + 1 points lying in general position in P3(Fq)

Lines intersect C3(Fq) in 0, 1, 2 or 3 points
An i -plane, i = 0,1,2,3, is a plane containing exactly i points of C3(q)

Consider the projective system PH of these points in P2(Fq)
coming from the 4× (q + 1) parity check matrix H
of the (GRS) code with parameters [q + 1, q − 3,5]
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Coset leader wt. enum. on twisted cubic

The number of points on the twisted cubic
so

ᾱ1(T) = q + 1

There are 1
2q(q + 1) secants, each one of them contributes

(T + 1)− 2 = T − 1

Hence
ᾱ2(T) =

1
2
q(q + 1)(T − 1)
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Value of ᾱ3(q)

What is the number of points that are on a 3-plane
that is a plane containing three points of the twisted cubic C3(Fq)
not already counted under ᾱ1 or ᾱ2?

In P3(Fq) the answer is easy:
the rest, so 1

2q(q + 1)2

since a point that does not lie on the curve or on a secant or on a 3-plane
can be used to extend the arc
But it is well known that the arc is maximal (for q > 3)

Hence
ᾱ3(q) =

1
2
q(q + 1)2
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In P3(Fq) the answer is easy:
the rest, so 1

2q(q + 1)2

since a point that does not lie on the curve or on a secant or on a 3-plane
can be used to extend the arc
But it is well known that the arc is maximal (for q > 3)

Hence
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Value of ᾱ3(T )

Now outside P3(Fq) we argue as follows
If a point is on more than one 3-plane
then it must be on a line of P3(Fq)
so forgetting about these points for the moment
This means that each of the (q + 1)q(q − 1)/6 different 3-planes
contributes

T2 + T + 1− (q2 + q + 1)− (q2 + q + 1)(T − q)

points that are in this 3-plane only
So

ᾱ3(T) =
1
2
q(q + 1)2+

+
1
6

(q + 1)q(q − 1)
(
T2 + T + 1− (q2 + q + 1)(T − q + 1)

)
+

(T − q)µq
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ᾱ3(T) =
1
2
q(q + 1)2+

+
1
6

(q + 1)q(q − 1)
(
T2 + T + 1− (q2 + q + 1)(T − q + 1)

)
+

(T − q)µq



52/53

Faculteit Wiskunde & Informatica

Value of µq

µq =



q4 + 1
2q

3 − 3
2q

2 − q if q = 1 mod 6

q4 + q3 − 3
2q

2 − 1
2q if q = 2 mod 6

q4 + 1
2q

3 + 3
2q

2 − 1 if q = 3 mod 6

q4 − q3 + 1
2q

2 − 1
2q − 1 if q = 4 mod 6

q4 + 1
2q

3 + 1
2q

2 if q = 5 mod 6



53/53

Faculteit Wiskunde & Informatica

Conclusion

Computing the weight enumerator is hard

Computing the coset leader weight enumerator is very hard

Even the case of the twisted cubic is complicated

What about the normal rational curve of degree r > 3?

New ideas are needed!

Hopefully you will contribute

THANKS YOU!
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