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Overview

1. Elliptic curves, mod p Galois representations, Weil pairing.
2. Congruences between curves, symplectic types. The

isogeny criterion.
3. The Frey–Mazur Conjecture over Q.
4. Finding all congruences in the LMFDB database.
5. Determining the symplectic type using modular curves.
6. Congruences between twists.

http://www.lmfdb.org/EllipticCurve/Q


Elliptic Curves

In this talk we consider elliptic curves over a number field K, for
example K = Q.
If we need explicit equations we’ll use short Weierstrass models

Ea,b : Y2 = X3 + aX + b

with a, b ∈ K such that 4a3 + 27b2 6= 0.

The set of K-rational points E(K) forms an abelian group.
For m ≥ 2 we denote by E[m] the m-torsion subgroup:

E[m] = {P ∈ E(K) | mP = 0}.

We have E[m] ∼= (Z/mZ)2 as abelian groups.

But E[m] carries additional structure. . . .
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Mod p Galois representations

Let GK = Gal(K/K), the absolute Galois group of K. This acts
on E(K) by acting on coordinates:

P = (x, y) ∈ E(K), σ ∈ GK : σ(P) = (σ(x), σ(y)) ∈ E(K).

The Galois action preserves the group structure:

σ(P + Q) = σ(P) + σ(Q).

Hence each E[m] is a GK-module.

Taking m = p prime, E[p] is a 2-dimensional vector space
over Fp. Fixing a basis of E[p] we obtain the mod p Galois
representation

ρE,p : GK → GL2(Fp).
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The Weil pairing

As well as being a vector space, E[p] admits a symplectic
structure: there is a non-degenerate alternating bilinear pairing,
the Weil pairing

ep = eE,p : E[p]× E[p]→ µp

where µp denotes the group of pth roots of unity in Q∗.

The Weil pairing is Galois equivariant:

ep(σ(P), σ(Q)) = σ(ep(P,Q)) = ep(P,Q)χp(σ)

where χp : GK → F∗p is the cyclotomic character.

This Galois-equivariant symplectic structure on E[p] is what we
are interested in.
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Congruences and their symplectic types

We are interested in the situation where two different curves
have isomorphic p-torsion modules.

E1 and E2 are said to satisfy a mod p congruence if there is a
bijective map

φ : E1[p]→ E2[p]

which is both Fp-linear and GK-equivariant, i.e., is an
isomorphism of GK-modules.

To each such φ there is a constant dφ ∈ F∗p such that

eE2,p(φ(P), φ(Q)) = eE1,p(P,Q)dφ .

We say that φ is symplectic if dφ is a square mod p and
anti-symplectic otherwise.
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Isogenies
Isogenies between curves provide one source of congruences.

Let φ : E1 → E2 be an isogeny/K of degree deg(φ) coprime to p,
defined over K. Then φ induces an FpGK-isomorphism
E1[p]→ E2[p]. The isogeny criterion says that φ is symplectic if
and only if the Legendre symbol (deg(φ)/p) = +1.

Proof.
Using Weil reciprocity, for P,Q ∈ E1[p],

eE2,p(φ(P), φ(Q)) = eE1,p(P, φ̂φ(Q))

= eE1,p(P,deg(φ)(Q))

= eE1,p(P,Q)deg(φ),

where φ̂ denotes the dual isogeny, since φ̂φ = deg(φ).

Do any other mod p congruences exist?
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The Frey-Mazur conjecture
The Uniform Frey–Mazur conjecture (over Q) states:

There is a constant C = CQ such that, if E1/Q and E2/Q
satisfy E1[p] ' E2[p] as GQ-modules for some prime
p > C, then E1 and E2 are Q-isogenous.

Theorem (C. & Freitas)
If E1/Q and E2/Q both have conductor ≤ 400 000 are not
isogenous, and satisfy E1[p] ' E2[p] as GQ-modules for some
prime p, then p ≤ 17.

I A stronger version of the Frey–Mazur conjecture states
that it is holds with C = 23.

I Congruences for small p are common; for p = 17 there is
essentially only one known, between 47775be1 and 3675b1.

http://www.lmfdb.org/EllipticCurve/Q/47775be1
http://www.lmfdb.org/EllipticCurve/Q/3675b1
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Finding congruences in the LMFDB database

The LMFDB database contains all elliptic curves defined over Q
of conductor up to 400 000: that is 2 483 649 curves in 1 741 002
isogeny classes.
What congruences are there between (non-isogenous) curves,
and how do we find them?
Two representations have isomorphic semisimplifications if and
only if they have the same traces. We can test this condition by
testing whether

a`(E1) ≡ a`(E2) (mod p) for all primes ` - pN1N2,

where N1 and N2 are the conductors of E1 and E2.
But there are infinitely many primes `. And for each curve we
need to ignore a different bad set!

http://www.lmfdb.org/EllipticCurve/Q


Sieving
To get around these issues we use a sieve with a hash function,
and only test ` > 400 000.
Let LB = {`0, . . . , `B−1} be the set of the B smallest primes
greater than 400 000. For each p we define the hash of E to be

B−1∑
i=0

a`i(E)pi ∈ Z.

Any two p-congruent curves (up to semisimplification) have the
same hash value. If B is not too small then we will get few (if
any) “false positive” clashes.
We can also parallelise this with respect to p, so that we only
need to compute each a`(E) once. Against each hash value,
we store lists of curves which have that p-hash (processing the
curves one at a time, one from each isogeny class). At the end
we extract the lists of size at least 2, to give us sets of curves
which are likely to all be p-congruent.



Sieving in practice

This works well in practice with B = 40. Not quite with B = 35!

The curves with labels 25921a1 and 78400gw1 have traces a`
which are equal for all ` ∈ L35, that is, for all ` with
400000 ≤ ` < 400457 (though not for the 36th ` = 400457).

Note on reducibility: here we are testing for p-congruence only
up to semisimplification. For curves with E[p] reducible (i.e.,
which have a rational p-isogeny) this is a weaker condition than
p-congruence, and we need to carry out further tests.

We also need to test whether curves which appear to be
p-congruent after sieving actually are. With B = 40 this is
always the case.

http://www.lmfdb.org/EllipticCurve/Q/25921a1
http://www.lmfdb.org/EllipticCurve/Q/78400gw1
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Sieving results

For 5 ≤ p ≤ 97 we find the following number of sets of more
than one mutually p-congruent curves (up to semisimplification,
ignoring isogenies):

p #sets # irred. max.irred. # red. max. red.
5 102043 101717 18 326 430
7 20138 19883 5 255 76
11 635 635 2 0 -
13 150 150 2 0 -
17 8 8 2 0 -

19≤ p ≤ 97 0 0 - 0 -

After eliminating reducibles which are not isomorphic, for p = 7
we find 337 non-trivial sets, of size up to 4.



Distinguishing symplectic from anti-symplectic

Freitas and Kraus have a long paper (to appear) which gives
many different local criteria for determining whether a
congruence E1[p] ∼= E2[p] is symplectic or anti-symplectic.
These criteria are not guaranteed to apply in all cases, but
usually do, and are usually fast. They depend on knowing in
advance that a congruence does hold.

There are several tests involving the structure of E[p] at primes
of bad reduction; these are all fast. Then there are two tests
involving primes of good reduction, one of which is slow.

This test suite has now been implemented, and the tests are
powerful enough to handle all the congruences in the database.
There are congruences (outside the database) for which none
of the local criteria apply; we developed some new global
methods to handle these.
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Using modular curves

For p = 7 we use a method based on modular curves to
establish congruences and their symplectic type.

For each prime p there is a modular curve X(p) defined over Q
which parametrises elliptic curves together with a level p
structure (essentially, a marked basis for E[p]).
For p ≤ 5, this curve has genus 0, and p-congruences are very
common.
X(7) has genus 3, and the Klein quartic is one model for it.
X(11) has genus 26.

Fix one elliptic curve E over Q. Then there exists a curve X+
E (p)

(or simply XE(p)), which is a twist of X(p), whose (non-cuspidal)
points correspond to curves E′ with E[p] ∼= E′[p] symplectically.
(Strictly, to pairs (E′, α) where α : E[p]→ E′[p] is a symplectic
isomorphism, up to scaling.)
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The modular curves X±E (p)

As well as X+
E (p), there is another twist X−E (p) parametrizing

curves E′ which are anti-symplectically isomorphic to E.

An explicit model for X+
E (7) was found by Kraus and Halberstadt

(2003) together with the degree 168 map j : X+
E (7)→ X(1) = P1

(giving the j-invariant of the congruent curve E′), and
incomplete formulas for the coefficients of E′. A model for X−E (7)
was given by Poonen and Stoll.

More complete formulas were provided by Fisher (2014), who
also gave all the formulas for X−E (7) parametrizing
anti-symplectic congruences, and X±E (11) (which has genus 26).

For p = 7 we implemented these formulas and apply them as
follows.
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incomplete formulas for the coefficients of E′. A model for X−E (7)
was given by Poonen and Stoll.

More complete formulas were provided by Fisher (2014), who
also gave all the formulas for X−E (7) parametrizing
anti-symplectic congruences, and X±E (11) (which has genus 26).

For p = 7 we implemented these formulas and apply them as
follows.



Using X±E (7): the algorithm

1. Given two elliptic curves E, E′ defined over a field K of
characteristic 0. We do not need to assume anything about
them. Compute j(E′), and the curves X±E (7).

2. Use the explicit map j : X+
E (7)→ P1 to find the preimages

(if any) of j(E′) in X+
E (7)(K). If none then E,E′ are not

symplectically p-congruent over K.
3. For any P ∈ X+

E (7)(K) use Fisher’s formulas to find a model
for the associated congruent curve E′′.

4. If E′ ∼= E′′ for any of these, then E,E′ are symplectically
p-congruent over K, otherwise not.

5. repeat steps 3–5 with X−E (7).

It would be possible to implement a similar algorithm for p = 11
using Fisher’s formulas.



Using X±E (7): the algorithm

1. Given two elliptic curves E, E′ defined over a field K of
characteristic 0. We do not need to assume anything about
them. Compute j(E′), and the curves X±E (7).

2. Use the explicit map j : X+
E (7)→ P1 to find the preimages

(if any) of j(E′) in X+
E (7)(K). If none then E,E′ are not

symplectically p-congruent over K.
3. For any P ∈ X+

E (7)(K) use Fisher’s formulas to find a model
for the associated congruent curve E′′.

4. If E′ ∼= E′′ for any of these, then E,E′ are symplectically
p-congruent over K, otherwise not.

5. repeat steps 3–5 with X−E (7).

It would be possible to implement a similar algorithm for p = 11
using Fisher’s formulas.



Using X±E (7): results

Of the 19 883 non-trivial sets of isogeny classes with mutually
isomorphic irreducible mod 7 representations, we find that in
12 394 cases all the isomorphisms are symplectic, while in the
remaining 7 489 cases anti-symplectic isomorphisms occur.

We successfully checked that in all these cases, the results of
applying the local criteria are consistent. At the same time we
found that for all pairs of 7-congruent curves in the database, at
least one of the local criteria are able to decide whether the
congruence was symplectic or not.
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Results for p > 7

For p ≥ 11 we used the local criteria only to test congruences.
It would be possible to implement Fisher’s formulas for X±E (11),
but we have not yet done so.
For 11 ≤ p ≤ 17 we only find congruences with E[p] irreducible
and we never find sets of more than two congruent curves
(excluding isogenies).

p # congruent pairs # symplectic # anti-symplectic
11 635 446 189
13 150 88 62
17 8 0 8



The Frey–Mazur conjecture
For 17 < p < 100 we found no congruences in the database.
We also proved that there are no congruences (in the
database) for p > 100.
This would be possible, though time-consuming, by considering
all pairs of curves (one from each isogeny class). Instead:

First: compare non-isogenous curves of the same conductor,
by computing gcd`≤B,`-N(a`(E1)− a`(E2)) for increasing B.

Lemma
If E1 and E2 have different conductors N1 and N2 and are
p-congruent for some p ≥ 5, then for i = 1 or i = 2 there exists a
prime q || Ni such that p | ordq(∆i), where ∆i is the minimal
discriminant of Ei.

Lemma
If NE ≤ 400000 and q || NE and p | ordq(∆E) then p ≤ 97.
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Twists

As well as computational results, we also have some results of
a more theoretical nature. Many of these involve twists.

First, it is easy to show that when we have a congruence
E1[p] ∼= E2[p] then for any quadratic twist (associated to a
quadratic extension K(

√
d)/K), the twisted curves also satisfy a

p-congruence: Ed
1 [p] ∼= Ed

2 [p]. Moreover the symplectic type is
preserved.

So the previous tables could have only shown the number of
congruences “up to twist”. (But twisting changes the conductor
in general.) However, we can count the total number of curves,
up to twist, appearing in any of the congruences we found.
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Congruences up to twist

For p = 7 there are 10 348 distinct j-invariants of curves with
irreducible mod 7 representations which are congruent to at
least one non-isogenous curve, and 358 distinct j-invariants in
the reducible case.

(There are 1 012 376 different j in all.)

For p = 11 there are 191 distinct j-invariants.
For p = 13 there are 39.
For p = 17 there are just 2: all eight 17-congruent isogeny
classes consist of single curves, the eight pairs are quadratic
twists, and the j-invariants of the curves in each pair are
48412981936758748562855/77853743274432041397 and
−46585/243. One such pair of 17-congruent curves consists of
47775b1 and 3675b1.

http://www.lmfdb.org/EllipticCurve/Q/47775b1
http://www.lmfdb.org/EllipticCurve/Q/3675b1
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Congruences between twists I

With some mild conditions to exclude very small images we
have a correspondence between the following situations, for
odd p over any number field K:
I the projective image in PGL2(Fp) being dihedral;
I the image being contained in the normaliser N of a Cartan

subgroup C, but not contained in C;
I a p-congruence between quadratic twists: E[p] ∼= Ed[p].

- in the second situation, C cuts out a quadratic extension
K(
√

d)/K and ρE,p(σ) ≡ 0 (mod p) whenever σ(
√

d) = −
√

d.
Hence ρE,p and ρEd,p have the same traces, so are equivalent (if
irreducible).

- the converse is similar.
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Congruences between twists II

In this situation we can easily determine whether the
congruence is symplectic:

Proposition
If φ : E[p] ∼= Ed[p] with image contained in N ⊇ C a Cartan
normaliser, then

1. φ is symplectic if C is split and p ≡ 1 (mod 4) or if C is
nonsplit and p ≡ 3 (mod 4);

2. φ is anti-symplectic if C is split and p ≡ 3 (mod 4) or if C is
nonsplit and p ≡ 1 (mod 4).
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Congruences between twists III
Normally there can be no more than one congruence between
E and a quadratic twist. The exception is when the projective
image is C2 × C2.

Proposition
Suppose that ρE,p has projective image C2 × C2. Then there are
three quadratic twists Edi which are p-congruent to E.
I If

√
p∗ ∈ K then all three congruences are symplectic;

I Otherwise one is the symplectic congruence E[p] ∼= Ep∗ [p],
and the other two are anti-symplectic.

p∗ = ±p ≡ 1 (mod 4), and
√

p∗ ∈ K iff PρE,p(GK) ⊆ PSL2(Fp).

Example
E = 6534a1, of conductor 6534 = 2 · 33 · 112 is symplectically
3-congruent to E−3 = 6534v1, and anti-symplectically to
E−11 = 6534p1 and E33 = 6534h1.

http://www.lmfdb.org/EllipticCurve/Q/6534a1
http://www.lmfdb.org/EllipticCurve/Q/6534v1
http://www.lmfdb.org/EllipticCurve/Q/6534p1
http://www.lmfdb.org/EllipticCurve/Q/6534h1
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Quartic twists

Curves of the form Ea : Y2 = X3 + aX have j(Ea) = 1728 and
CM by

√
−1, and admit quartic twists Ea ∼ Eta, parametrized by

t ∈ K∗/(K∗)4.

Proposition
The only p-congruence between these curves is the one
induced by the 2-isogeny: Ea[p] ∼= E−4a[p].

This is only non-trivial when
√
−1 /∈ K, as otherwise the curves

themselves are isomorphic (since −4 = (1 +
√
−1)4).
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Sextic twists
Curves of the form Eb : Y2 = X3 + b have j(Eb) = 0 and CM
by
√
−3, and admit sextic twists Eb ∼ Etb, parametrized by

t ∈ K∗/(K∗)6.

During our computations with p = 7 we noticed something
which led to the following.

Proposition
Assume

√
−3 /∈ K. The only 7-congruences between these are:

I Eb[7] ∼= E−27b[7], anti-symplectic (induced by a 3-isogeny);
I Eb[7] ∼= E−28/b[7], symplectic;
I Eb[7] ∼= E27·28/b[7], anti-symplectic (composite of previous).

We hope to generalise this to other primes p.
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