
Khalil Ghorbal 
 
Simulating and Verifying Dynamical and Hybrid Systems 
 
The presentation will highlight two specific challenges when it comes to simulating and 
verifying dynamical and hybrid systems. 
The first is the automated generation and verification of invariant properties, that are those 
quantities that do not vary with respect to time. 
To some extent, this first challenge can be thought of as a generalization of the perhaps more 
familiar notion of fixed-points in the standard settings of imperative programs. 
The second challenge concerns the operational semantics of component-based modeling 
languages. Those languages are well suited to model multi-physics systems as they combine 
algebraic constraints, resulting from the laws of physics, in interaction with the non-smooth 
behavior like impact laws. Yet, the correct simulation of such hybrid models poses several 
subtle problems such as solving under and over-determined systems. 
 
---- 
 
Eric Goubault 
 
A Topological Method for Finding Invariant Sets of Switched Systems 
 
We revisit the problem of finding controlled invariants sets (viability), for a class of differential 
inclusions, using topological methods based on Wazewski property. In many ways, this 
generalizes the Viability Theorem approach, which is itself a generalization of the Lyapunov 
function approach for systems described by ordinary differential equations. We give a 
computable criterion based on SoS methods for a class of differential inclusions to have a non-
empty viability kernel within some given region. We use this method to prove the existence of 
(controlled) invariant sets of switched systems inside a region described by a polynomial 
template, both with time-dependent switching and with state-based switching through a finite 
set of hypersurfaces. 
 
---- 
 
Nicolas Halbwachs 
 
Disjunction of polyhedra 
 
Program analysis by abstract interpretation using relational abstract domains --- like polyhedra 
or octagons --- easily extends from state analysis (construction of reachable states) to relational 
analysis (construction of input-output relations). In this paper, we exploit this extension to 
enable interprocedural program analysis, by constructing relational summaries of procedures. 
In order to improve the accuracy of procedure summaries, we propose a method to refine them 
into disjunctions of relations, these disjunctions being directed by preconditions on input 
parameters. 
 
 
 
 
 



Maxime Jacquemin 
 
Relative error-bound estimation 
 
Rigorous estimation of bounds on errors in finite precision computation has become a key point 
of many formal verification tools. The primary interest of the use of such tools is generally to 
obtain worst-case bounds on the absolute errors. However, the natural bound on the elementary 
error committed by each floating-point arithmetic operation is a bound on the relative error, 
which suggests that relative error bounds could also play a role in the process of computing 
tight error estimations. 
In this work, we introduce a very simple interval-based abstraction, combining absolute and 
relative error propagations. We demonstrate with a prototype implementation how this simple 
product allows us in many cases to improve absolute error bounds, and even to often favorably 
compare with state-of-the art tools, that rely on much more costly relational abstraction or 
optimization-based estimations. 
 
---- 
 
Valentin Montmirail 
 
REGAR / CEGAR with Sat Solvers 
 
Counter-Example-Guided Abstraction Refinement (CEGAR) has been very successful in 
model checking. Since then, it has been applied to many different problems. It is especially 
proved to be a highly successful practical approach for solving the PSPACE complete QBF 
problem. In this paper, we propose a new CEGAR-like approach for tackling PSPACE 
complete problems that we call RECAR (Recursive Explore and Check Abstraction 
Refinement). We show that this generic approach is sound and complete. 
 
---- 
 
Marie Pelleau \& Ghiles Ziat 
 
AbSolute (demo) 
 
AbSolute is a constraint solver based on abstract domains. The source code is available on 
GitHub. This solver can solve continuous problems, discrete problems, but also mixed problems 
(containing both discrete and continuous variables). AbSolute uses Apron, an Ocaml library for 
abstract domains, one can thus solve problems using abstract domains other than intervals. Note 
that, abstract domains can also correspond to a product of abstract domains. 
 
---- 
 
 
 
 
 
 
 
 



Christian Schulte 
 
Unison 101 
 
This talk and demo show how Unison improves code generation in compilers by using 
constraint programming (CP) as a method for solving combinatorial optimization problems. It 
presents how register allocation (assigning program variables to processor registers) and 
instruction scheduling (reordering processor instructions to increase throughput) can be 
modeled and solved using CP. Unison is significant as its addresses the same aspects as 
traditional code generation algorithms, yet is based on simple models and can robustly generate 
better code. 
 
---- 
 
Christian Schulte 
 
Efficient constraint propagation engines 
 
How idempotence reasoning and events help track fixpoints more accurately? 
Blackboard presentation of the key idea in the paper Efficient constraint propagation engines, 
Christian Schulte, Peter J. Stuckey, ACM Trans. Program. Lang. Syst. 31(1): 2:1-2:43 (2008). 
 
---- 
 
Pierre Talbot 
 
Lattice framework for Constraints solving 
 
Constraint solvers are highly hierarchical as the notions of domain, constraint and search tree 
depend on each other.We formulate a lattice theory of constraint programming that defines a 
hierarchy of lattices where each level is built on the powerset of the previous level. 
As far as we know, our theory is the first attempt to formalize the structures underlying the 
inference and search components in a unified framework.Then, we attempt to situate abstract 
domain in this hierarchy in order to draw links between constraint programming and abstract 
interpretation. 
 
---- 
 
Ghiles Ziat 
 
Finding solutions by finding non-solutions 
 
In continuous constraint programming, the solving process alternates propagation steps, which 
reduce the search space according to the constraints, and branching steps. In practice, the 
solvers spend a lot of computation time in propagation to separate feasible and infeasible parts 
of the search space. The constraint propagators cut the search space into two subspaces: the 
inconsistent one, which can be discarded, and the consistent one, which may contain solutions 
and where the search continues. The status of all this consistent subspace is thus indeterminate. 
In this article, we introduce a new step called elimination. It refines the analysis of the consistent 
subspace by dividing it into an indeterminate one, where the search must continue, and a 



satisfied one, where the constraints are always satisfied. The latter can be stored and removed 
from the search process. Elimination relies on the propagation of the negation of the constraints, 
and a new difference operator to efficiently compute the obtained set as an union of boxes, thus 
it uses the same representations and algorithms as those already existing in the solvers. 
Combined with propagation, elimination allows the solver to focus on the frontiers of the 
constraints, which is the core difficult part of the problem. We have implemented our method 
in the AbSolute solver, and present experimental results on classic benchmarks with good 
performances. 
 
 


