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Setting

I Let (Ω,K,P) be a probability space.
I Let T , S : Ω→ Ω be two commuting, invertible, measure preserving

transformations.
I Let F0,0 be a sub-sigma algebra of K. For (i , j) ∈ Z2, define :

Fi,j = S−jT−iF0,0, (1)

Assume that F0,0 ⊂ F0,1 and F0,0 ⊂ F1,0.
I Define random field

Xi,j (ω) = f (T iS j (ω)) (2)

where f : Ω→ R is F0,0measurable.
I Pω(·) = P(·|F0,0)(ω),∀ω ∈ Ω, also denote by Eω the expectation

corresponding to Pω.
I We are interested in the quenched asymptotics of partial sums

Sk,j =
∑k,j

u,v=1
Xu,v
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Orthomartingale approximation for random fields
Definition (Quenched CLT)
We say that (Xi,j )i,j∈Z satisfies the quenched CLT if for almost all ω ∈ Ω,

1√
nm

Sn,m ⇒ N (µ, σ2) under Pω when n ∧m→∞.

Definition (Orthomartingale approximation)
We say that a random field (Xn,m)n,m∈Z admits a martingale approximation if
there is a field of martingale differences (Dn,m)n,m∈Z such that

lim
n∧m→∞

1
nmEω(Sn,m −Mn,m)2 = 0 for almost all ω ∈ Ω, (3)

where Mk,j =
∑k,j

u,v=1 Du,v .

I Peligrad and Volný (2018) established a quenched CLT for
orthomartingales: for a field of stationary orthomartingale differences
(Xi,j )i,j∈Z with EX 2

0,0 log(1 + |X0,0|) <∞, assume (Fi,j )i,j∈Z is commuting
and S (or T ) is ergodic, then for almost all ω ∈ Ω,

1√
nm

Sn,m ⇒ N (0, σ2) under Pω when n ∧m→∞

where EX 2
0,0 = σ2.
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Quenched CLT-summation over squares
I Projection operators: For an integrable random variable X , we introduce

the projection operators defined by (Notation E(X |Fa,b) = Ea,b(X))

Pũ,v (X) := (Eu,v − Eu−1,v )(X)

Pu,ṽ (X) := (Eu,v − Eu,v−1)(X).
By using property of commuting filtrations, we have

Pu,v (·) := Pũ,v ◦ Pu,ṽ = (Eu,v − Eu,v−1 − Eu−1,v + Eu−1,v−1)(·)

Theorem (Quenched CLT-summation over square)
Assume that (Xn,m)n,m∈Z is defined by Xi,j = f (T iS j (ω)) and the filtrations
are commuting. Also assume that T (or S ) is ergodic and in addition∑

u,v>0

||P0,0(Xu,v )||2 <∞. (4)

Then, for almost all ω ∈ Ω,

1
n (Sn,n − Rn,n)⇒ N(0, σ2) under Pω when n→∞.

where Rn,n = En,0(Sn,n) + E0,n(Sn,n)− E0,0(Sn,n).
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Quenched CLT-summation over rectangles
I Young function: a convex, even function φ : R→ [0,∞) satisfying

lim
x→0

φ(x)
x = 0 and lim

x→∞

φ(x)
x =∞.

I For any measurable function f : Ω→ R, the Luxemburg norm of f is
define by

||f ||φ = inf{k ∈ (0,∞) : Eφ(|f |/k) 6 1}. (5)

Theorem (Summation over rectangles)
Assume now that || · ||2 in the first theorem is reinforced to the Luxemburg
norm, that is ∑

u,v>0

||P0,0(Xu,v )||φ <∞, (6)

where φ(x) = x2 log(1 + |x |) and || · ||φ is the Luxemburg norm. Then, for
almost all ω ∈ Ω,

1
(nm)1/2 (Sn,m − Rn,m)⇒ N(0, σ2) under Pω when n ∧m→∞, (7)

where Rn,m = En,0(Sn,m) + E0,m(Sn,m)− E0,0(Sn,m).
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Quenched CLT for random fields

Corollary
Assume that the conditions of the second theorem hold. If

lim
n∧m→∞

E0,0
(
E 2

0,m(Sn,m)
)

nm → 0 and lim
n∧m→∞

E0,0
(
E 2

n,0(Sn,m)
)

nm → 0 a.s. , (8)

then for almost all ω ∈ Ω
1

(nm)1/2 Sn,m ⇒ N(0, σ2) under Pω when n ∧m→∞. (9)

If the conditions of the first Theorem hold and (8) holds with m = n , then for
almost all ω ∈ Ω,

1
nSn,n ⇒ N(0, σ2) under Pω when n→∞. (10)

Sketch of Proof: limn∧m→∞
1

nmE0,0(R2
n,m) = 0 a.s. by the regularity conditions

together with

E0,0(R2
n,m) = E0,0

(
E 2

n,0(Sn,m)
)

+ E0,0
(
E 2

0,m(Sn,m)
)
− E 2

0,0(Sn,m)
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A sufficient condition for quenched CLT
For the sake of applications, we provide a sufficient condition which will take
care of both the generalized Hannan condition and the regularity assumptions.

Corollary
Assume that the filtrations are commuting. Also assume that T (or S) is
ergodic and in addition for δ > 0∑

u,v>1

||E1,1(Xu,v )||2+δ

(uv)1/(2+δ) <∞. (11)

(a) If δ = 0, then a quenched CLT holds for Sn,n/n holds.
(b) If δ > 0 , then the quenched convergence Sn,m/

√
nm holds.

Sketch of proof:
I Step 1. Condition (11) implies

lim
n∧m→∞

1
nmE0,0(R2

n,m) = 0 a.s.

I Step 2. Condition (11) implies∑
u,v>0

||P0,0(Xu,v )||2+δ <∞. (12)
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Main tools for proving these results

The tools used in the proofs are
I martingale approximation
I multi-dimensional ergodic theorem
I Hölder inequlity
I Rosenthal inequalities for martingales
I Decompling inequlities for U-statistics of independent random variables.
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Idea of the proofs
Proof of the main theorem:

I Construction of martingales
limn∧m→∞ P1,1(Sn,m) =

∑
u,v>1 P1,1(Xu,v ) := D1,1 a.s. and in L2.

For each i , j ∈ Z,

Mn,m =
n∑

i=1

m∑
j=1

Di,j where Di,j =
∑

(u,v)>(i,j)

Pi,j (Xu,v )

I The martingale approximation:
limn∧m→∞

1
nmE0,0 (Sn,m − Rn,m −Mn,m)2 = 0. a.s.

To validate this approximation, we first look at the decomposition of Sn,m:

Sn,m − Rn,m =
n∑

i=1

m∑
j=1

Pi,j (
n∑

u=i

m∑
v=j

Xu,v )

where
Rn,m = En,0(Sn,m) + E0,m(Sn,m)− E0,0(Sn,m).

Using the orthogonality of the martingale differences field (Pi,j − Di,j )i,j∈Z,

1
nmE0,0 (Sn,m − Rn,m −Mn,m)2 = 1

nm

n∑
i=1

m∑
j=1

E0,0

(
Pi,j (

n∑
u=i

m∑
v=j

Xu,v )− Di,j

)2

.
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Define the operators

Q1(f ) = E0,∞(T̂ f ); Q2(f ) = E∞,0(Ŝf ) where T̂ f = f ◦ T , Ŝf = f ◦ S.

Then we can write

E0,0 (Pi,j (Xu,v ))2 = Q i
1Qj

2(P0,0(Xu−i,v−j ))2.

E0,0

(
Pi,j (

n∑
u=i

m∑
v=j

Xu,v )− Di,j

)2

= E0,0

( ∞∑
u=n+1

m∑
v=j

Pi,j (Xu,v ) +
∞∑
u=i

∞∑
v=m+1

Pi,j (Xu,v )
)2

So, we have

1
nmE0,0 (Sn,m − Rn,m −Mn,m)2 6 2(In,m + IIn,m)

where

In,m = 1
nm

n∑
i=1

m∑
j=1

Q i
1Qj

2

( ∞∑
u=n+1−i

∞∑
v=0

|P0,0(Xu,v )|
)2

and

IIn,m = 1
nm

n∑
i=1

m∑
j=1

Q i
1Qj

2

( ∞∑
u=0

∞∑
v=m+1−j

|P0,0(Xu,v )|
)2

.
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Let c be a fixed integer satisfying c < n. We decompose In,m into two parts

1
nm

n−c∑
i=1

m∑
j=1

Q i
1Qj

2

( ∞∑
u=n+1−i

∞∑
v=0

|P0,0(Xu,v )|
)2

:= An,m(c)

and
1
nm

n∑
i=n−c+1

m∑
j=1

Q i
1Qj

2

( ∞∑
u=n+1−i

∞∑
v=0

|P0,0(Xu,v )|
)2

:= Bn,m(c)

By the ergodic theorem for Dunford-Schwartz operators (Krengel (1985),
Theorem 1.1, ch.6), for each c fixed

lim
c→∞

lim
n∧m→∞

An,m(c) = 0 = lim
n∧m→∞

Bn,m(c) a.s.

Thus
lim

n∧m→∞

1
nmE0,0 (Sn,m − Rn,m −Mn,m)2 = 0.
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A preparatory lemma to prove the corollary
Lemma∑

u,v>1
||E1,1(Xu,v )||2+δ

(uv)1/(2+δ) <∞ implies∑
u>1

1
u1/(2+δ)

∑
v>0

∥∥P0,0̃(Xu,v )
∥∥

2+δ
<∞, (13)

and for any u > 0
∞∑

v=1

||P0,0̃(Xu,v )||2+δ <∞. (14)

Proof of Lemma: By the Hölder’s inequality and the Rosenthal inequality for
martingales , we have ( Cδ > 0 denotes a generic constant depending on δ)

∑
v>1

‖P−u,−ṽ (X0,0)‖2+δ 6
∑
n>0

(2n)
1+δ
2+δ

(2n+1−1∑
v=2n

‖P−u,−ṽ (X0,0)‖2+δ
2+δ

) 1
2+δ

6 Cδ
∑
n>0

(2n)
1+δ
2+δ

∥∥∥∥∥∥
2n+1−1∑

v=2n

P−u,−ṽ (X0,0)

∥∥∥∥∥∥
2+δ

6 2Cδ
∑
n>0

(2n)
1+δ
2+δ ‖E−u,−2n (X0,0)‖2+δ .
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Examples
Let |n| = n1 · · · nd .

Example (Linear field)
Let (ξn)n∈Zd be a random field of independent, identically distributed random
variables which are centered and E

(
|ξ0|2+δ) <∞. For k > 0 define

Xk =
∑
j>0

ajξk−j .

Assume that ∑
k>1

1
|k|1/(2+δ)

(∑
j>k−1

a2
j

) 1
2

<∞.

(a) If δ = 0, then the quenched CLT holds for Sn,··· ,n/nd/2.
(b) Ifδ > 0, the quenched CLT holds for Sn/

√
|n| .

Sketch of Proof: (Using independence of ξn and the Rosenthal inequality)

E1(Xk) =
∑

j>k−1

ajξk−j
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Examples
Example (Volterra field)
Let (ξn)n∈Zd be a random field of independent random variables identically
distributed centered and E

(
|ξ0|2+δ) <∞. For k > 0, define

Xk =
∑

(u,v)>(0,0)

au,vξk−uξk−v.

where au,v are real coefficients with au,u = 0 and
∑

u,v>0 a
2
u,v <∞. In addition,

assume that

∑
k>1

1
|k|1/(2+δ)

( ∑
(u,v)>(k−1,k−1)

u6=v

a2
u,v

)1/2

<∞. (15)

(a) If δ = 0, then the quenched CLT holds for Sn,··· ,n/nd/2.
(b) If δ > 0, the quenched CLT holds for Sn/

√
|n| .

Sketch of Proof: (Using decoupling inequality for U-statistics)

E1(Xk) =
∑

(u,v)>(k−1,k−1)

au,vξk−uξk−v
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Rothsenthal’s inequality

For convenience, we mention one classical inequality for martingales, see
Theorem 2.11, p. 23, Hall and Heyde (1980) and also Theorem 6.6.7 ch. 6, p.
322, de la Peña and Giné (1999).

Theorem (Rothsenthal’s Inequality)
Let p > 2. Let Mn =

∑n
k=1 Xk where {Mn,Fn} is a martingale with martingale

differences Xi , then there are constants 0 < cp,Cp <∞ such that

cp

{ n∑
k=1

E |Xk |p + E
[( n∑

k=1

E(X 2
k |Fk−1)

)p/2]}

6 ‖Mn‖p
p 6 Cp

{
E
[( n∑

k=1

E(X 2
k |Fk−1)

)p/2]
+

n∑
k=1

E |Xk |p
}
.
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Decoupling Inequality

The following is a decoupling result for U-statistics, which can be found on p.
99, Theorem 3.1.1, de la Peña and Giné (1999).

Theorem (Decompling inequlity)
Let (Xi )16i6n be n independent random variables and let (X k

i )16i6n,
k = 1, · · · ,m, be m independent copies of this sequences. For each
(i1, i2, · · · , im) ∈ Im

n , let hi1,··· ,im : Rm → R be a measurable function such
E |hi1,··· ,im (Xi1 , · · · ,Xim )| <∞. Let f : [0,∞)→ [0,∞) be a convex
non-decreasing function such that Ef (|hi1,··· ,im (Xi1 , · · · ,Xim )|) <∞ for all
(i1, i2, · · · , im) ∈ Im

n , where
Im
n = {(i1, · · · , im) : ij ∈ N, 1 6 ij 6 n, ij 6= ik , if j 6= k}. Then there exists
Cm > 0 such that

Ef (|
∑

Im
n

hi1,··· ,im (Xi1 , · · · ,Xim )|) 6 Ef (Cm|
∑

Im
n

hi1,··· ,im (X 1
i1 , · · · ,X

m
im )|).

17 / 17


	General setting
	Construction of stationary filtrations
	Definition of random fields adapted to stationary filtrations

	Orthomartingale approximations (in the quenched sense)
	Quenched CLT under generalized Hannan condition 
	Quenched CLT-summation over squares
	Quenched CLT-summation over rectangles
	A sufficient condition 

	Applications
	Linear field
	Volterra field


