# Mixing and the local central limit theorem for hyperbolic dynamical systems

#### Péter Nándori University of Maryland based on joint work with Dmitry Dolgopyat

Probabilistic limit theorem for dynamical systems, CIRM November 1, 2018

Partially supported by NSF DMS 1800811

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Mixing and the local limit theorem

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Mixing of infinite measures

#### Mixing and the local limit theorem

Mixing of infinite measures



Let  $X_i, i \ge 1$  be random variables  $E(X_1) = 0$   $Var(X_1) < \infty$ ,  $S_n = \sum_{i=1}^n X_i$ .

- Let  $X_i, i \ge 1$  be random variables  $E(X_1) = 0$   $Var(X_1) < \infty$ ,  $S_n = \sum_{i=1}^n X_i$ .
  - 1. **continuous case** If the range of  $X_1$  is not supported on a lattice, then

$$\mathbb{P}(S_n - v\sqrt{n} \in [A, B]) \sim \frac{1}{\sqrt{n}}\mathfrak{g}_{\sigma}(v)(B - A),$$

where  $\mathfrak{g}_{\sigma}$  is the centered Gaussian density with variance  $\sigma^2$ .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- Let  $X_i, i \ge 1$  be random variables  $E(X_1) = 0$   $Var(X_1) < \infty$ ,  $S_n = \sum_{i=1}^n X_i$ .
  - 1. **continuous case** If the range of  $X_1$  is not supported on a lattice, then

$$\mathbb{P}(S_n - v\sqrt{n} \in [A, B]) \sim rac{1}{\sqrt{n}} \mathfrak{g}_\sigma(v)(B - A),$$

where  $\mathfrak{g}_{\sigma}$  is the centered Gaussian density with variance  $\sigma^2$ .

2. lattice case If  $\exists a \in \mathbb{R}, b \in \mathbb{R}_+$  such that  $P(X_1 \in a + b\mathbb{Z}) = 1$ and b is the biggest such number, then

$$\mathbb{P}(S_n - v_n \in [A, B]) \sim \frac{1}{\sqrt{n}} \mathfrak{g}_{\sigma}(v) u([A, B]),$$

- Let  $X_i, i \ge 1$  be random variables  $E(X_1) = 0$   $Var(X_1) < \infty$ ,  $S_n = \sum_{i=1}^n X_i$ .
  - 1. **continuous case** If the range of  $X_1$  is not supported on a lattice, then

$$\mathbb{P}(S_n - v\sqrt{n} \in [A, B]) \sim rac{1}{\sqrt{n}} \mathfrak{g}_\sigma(v)(B - A),$$

where  $\mathfrak{g}_{\sigma}$  is the centered Gaussian density with variance  $\sigma^2$ .

2. lattice case If  $\exists a \in \mathbb{R}, b \in \mathbb{R}_+$  such that  $P(X_1 \in a + b\mathbb{Z}) = 1$ and b is the biggest such number, then

$$\mathbb{P}(S_n - v_n \in [A, B]) \sim \frac{1}{\sqrt{n}} \mathfrak{g}_{\sigma}(v) u([A, B]),$$

where  $v_n \in na + b\mathbb{Z}$  and  $v_n \sim v\sqrt{n}$ ,  $A, B \notin b\mathbb{Z}$  and u is the b times the counting measure on  $b\mathbb{Z}$ .

Setup:

- ▶ (X, d) metric space
- $\nu$  a Borel probability measure
- $T: X \to X$  preserves  $\nu$
- $f: X \to \mathbb{R}^d$  observable,  $S_n(f) = \sum_{i=0}^{n-1} f \circ T^i$

Setup:

- ▶ (X, d) metric space
- $\nu$  a Borel probability measure
- $T: X \to X$  preserves  $\nu$
- $f: X o \mathbb{R}^d$  observable,  $S_n(f) = \sum_{i=0}^{n-1} f \circ T^i$

We say that (T, f) satisfies the LLT, if there is a closed subgroup M = M(f) of  $\mathbb{R}^d$  and a translation  $r \in \mathbb{R}^d/M$ 

Setup:

- ▶ (X, d) metric space
- $\nu$  a Borel probability measure
- $T: X \to X$  preserves  $\nu$

• 
$$f: X o \mathbb{R}^d$$
 observable,  $S_n(f) = \sum_{i=0}^{n-1} f \circ T^i$ 

We say that (T, f) satisfies the LLT, if there is a closed subgroup M = M(f) of  $\mathbb{R}^d$  and a translation  $r \in \mathbb{R}^d/M$  such that for every continuous and compactly supported  $\mathfrak{z}$  for every  $v_n \in M + nr$ ,  $v_n \sim v\sqrt{n}$ 

$$\int_X \mathfrak{z}(S_n(f,x) - n\nu(f) - v_n)d\nu(x)$$
$$\sim n^{-d/2}\mathfrak{g}_{\sigma}(v)u_M(\mathfrak{z}),$$

・ロト ・ 戸 ・ モ ト ・ モ ・ うへぐ

where  $u_M$  is the normalized Haar measure on M.

Setup:

- ▶ (X, d) metric space
- $\nu$  a Borel probability measure
- $T: X \to X$  preserves  $\nu$
- $f: X o \mathbb{R}^d$  observable,  $S_n(f) = \sum_{i=0}^{n-1} f \circ T^i$

We say that (T, f) satisfies the MLLT, if there is a closed subgroup M = M(f) of  $\mathbb{R}^d$  and a translation  $r \in \mathbb{R}^d/M$  such that for every continuous and compactly supported  $\mathfrak{z}$  for every  $v_n \in M + nr$ ,  $v_n \sim v\sqrt{n}$  and for every bounded and continuous  $\mathfrak{x}$  and  $\mathfrak{y}$ 

$$\int_X \mathfrak{x}(x)\mathfrak{y}(T^n x)\mathfrak{z}(S_n(f, x) - n\nu(f) - v_n)d\nu(x)$$
  
  $\sim n^{-d/2}\mathfrak{g}_{\sigma}(v)\nu(\mathfrak{x})\nu(\mathfrak{y})u_M(\mathfrak{z}),$ 

where  $u_M$  is the normalized Haar measure on M.

# coboundary terms

If  $g: X \to \mathbb{Z}$  and

$$g=f+h-h\circ T,$$

then

$$S_n(g) = S_n(f) + h - h \circ T^n$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

# **coboundary terms** If $g: X \to \mathbb{Z}$ and

$$g=f+h-h\circ T,$$

then

$$S_n(g) = S_n(f) + h - h \circ T^n$$

If (T, g) satisfies the MLLT, then (T, f) satisfies a more general version of MLLT, where the right hand side is convolved by  $dist(h)^*dist(-h)$ 

# **coboundary terms** If $g: X \to \mathbb{Z}$ and

$$g=f+h-h\circ T,$$

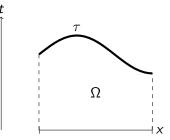
then

$$S_n(g) = S_n(f) + h - h \circ T^n$$

If (T, g) satisfies the MLLT, then (T, f) satisfies a more general version of MLLT, where the right hand side is convolved by  $dist(h)^*dist(-h)$ 

#### Suspension (semi)flows

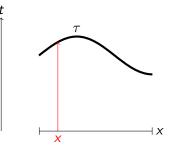
 $(X, \nu, T)$  as before.  $\tau : X \to [c, \infty), c > 0$  and  $\tau \in L^2(\nu)$ .



 $G^t$  suspension (semi)flow on  $\Omega$ , preserves  $\mu = \frac{1}{\nu(\tau)}\nu \otimes Leb$ 

#### Suspension (semi)flows

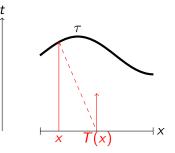
 $(X, \nu, T)$  as before.  $\tau : X \to [c, \infty), c > 0$  and  $\tau \in L^2(\nu)$ .



 $G^t$  suspension (semi)flow on  $\Omega$ , preserves  $\mu = \frac{1}{\nu(\tau)}\nu \otimes Leb$ 

#### Suspension (semi)flows

 $(X, \nu, T)$  as before.  $\tau : X \to [c, \infty), c > 0$  and  $\tau \in L^2(\nu)$ .



◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

 $G^t$  suspension (semi)flow on  $\Omega$ , preserves  $\mu = \frac{1}{\nu(\tau)}\nu \otimes Leb$ 



**Theorem 1**(Dolgopyat, N. '18 ETDS) Assume  $(T, \tau)$  satisfies MLLT and certain moderate deviation estimates. Then

 $G^t$  is mixing iff  $G^t$  is weakly mixing iff  $\overline{\langle M(\tau), r(\tau) \rangle} = \mathbb{R}$ 

# Mixing

**Theorem 1**(Dolgopyat, N. '18 ETDS) Assume  $(T, \tau)$  satisfies MLLT and certain moderate deviation estimates. Then

 $G^t$  is mixing iff  $G^t$  is weakly mixing iff  $\overline{\langle M(\tau), r(\tau) \rangle} = \mathbb{R}$ 

**Question**: MLLT for  $G^t$ ? Let  $\alpha : \Omega \to \mathbb{R}$ MLLT for  $(G^t, \alpha)$ : replace *n* by *t*,  $S_n(f)$  by  $\int_0^t \alpha(G^s(y)) ds$ . Let  $\hat{M}, \hat{r}$  be the group and the translation

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

### MLLT for suspension flows

Theorem 2(Dolgopyat, N. '18 ETDS) Assume

 $(T, (\int_0^{\tau(x)} \alpha(x, s) ds, \tau))$  satisfies the MLLT with group M and translation r and certain moderate deviation estimates.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

#### MLLT for suspension flows

**Theorem 2**(Dolgopyat, N. '18 ETDS) Assume  $(T, (\int_0^{\tau(x)} \alpha(x, s)ds, \tau))$  satisfies the MLLT with group M and translation r and certain moderate deviation estimates. Assume furthermore that  $G^t$  is mixing and  $\alpha$  is bounded and a.e. continuous. Then  $(G^t, \alpha)$  satisfies the MLLT iff

$$\frac{1}{\langle M, r \rangle} = \mathbb{R}^2 \text{ or } \left| \left| \left| \right| \right|_{or} \right| \left| \left| \right| \right|$$

#### MLLT for suspension flows

**Theorem 2**(Dolgopyat, N. '18 ETDS) Assume  $(T, (\int_0^{\tau(x)} \alpha(x, s)ds, \tau))$  satisfies the MLLT with group M and translation r and certain moderate deviation estimates. Assume furthermore that  $G^t$  is mixing and  $\alpha$  is bounded and a.e. continuous. Then  $(G^t, \alpha)$  satisfies the MLLT iff

#### Remarks

- In case 1  $\hat{M} = \mathbb{R}$ , no coboundary term is needed
- In case 2 M̂ = cZ, r̂ = 0, coboundary term is needed (generalized MLLT)

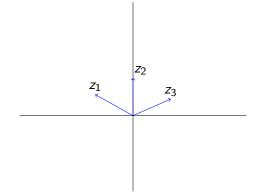
► In case 3,  $\hat{M} = c\mathbb{Z}, \hat{r} = 1/c$ , coboundary term is needed

In case < M, r > is a lattice, we have convergence along subsequences.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

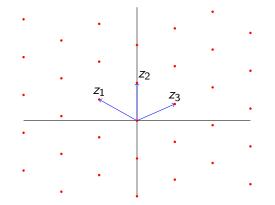
$$(X_i, \tau_i)$$
 iid uniform on  $\{z_1 = (-1, 2 - \sqrt{2}), z_2 = (0, 1), z_3 = (1, \sqrt{2})\}$ 

$$(X_i, \tau_i)$$
 iid uniform on  $\{z_1 = (-1, 2 - \sqrt{2}), z_2 = (0, 1), z_3 = (1, \sqrt{2})\}$ 



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - のへで

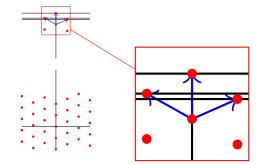
$$(X_i, \tau_i)$$
 iid uniform on  $\{z_1 = (-1, 2 - \sqrt{2}), z_2 = (0, 1), z_3 = (1, \sqrt{2})\}$ 



(ロト (個) (主) (主) (主) のへの



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

# (M)LLT for hyperbolic systems

- Guivarc'h, Hardy '88: Anosov diffeomorphisms
- Aaronson, Denker '99: Stable MLLT for Gibbs Markov maps

- Szász, Varjú '04: some Young towers (exponential tails)
- Gouëzel '05: general Young towers d = 1
- ...

# (M)LLT for hyperbolic systems

...

- Guivarc'h, Hardy '88: Anosov diffeomorphisms
- Aaronson, Denker '99: Stable MLLT for Gibbs Markov maps
- Szász, Varjú '04: some Young towers (exponential tails)
- Gouëzel '05: general Young towers d = 1

**Theorem 3**(Dolgopyat, N., '18 ETDS) For suspensions over Young towers and Hölder observables, the conditions of Theorem 2 are satisfied. In some cases, the MLLT holds for systems possessing a Young tower representation.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

# (M)LLT for hyperbolic systems

...

- Guivarc'h, Hardy '88: Anosov diffeomorphisms
- Aaronson, Denker '99: Stable MLLT for Gibbs Markov maps
- Szász, Varjú '04: some Young towers (exponential tails)
- Gouëzel '05: general Young towers d = 1

**Theorem 3**(Dolgopyat, N., '18 ETDS) For suspensions over Young towers and Hölder observables, the conditions of Theorem 2 are satisfied. In some cases, the MLLT holds for systems possessing a Young tower representation.

**Examples**: Sinai billiard flows, Axiom A flows, suspensions over LSV maps, geometric Lorenz attractor.

Mixing and the local limit theorem

Mixing of infinite measures

# Krickeberg-Hopf mixing I

 $(X, \nu, T)$  as before.  $\tau : X \to [c, \infty), c > 0$  and  $\nu(\tau) = \infty$ .  $G^t$  suspension flow on  $\Omega$ ,  $\mu = \nu \otimes Leb \sigma$ -finite invariant measure.

# Krickeberg-Hopf mixing I

 $(X, \nu, T)$  as before.  $\tau : X \to [c, \infty), c > 0$  and  $\nu(\tau) = \infty$ .  $G^t$  suspension flow on  $\Omega$ ,  $\mu = \nu \otimes Leb \sigma$ -finite invariant measure.

**Theorem 4**(Dolgopyat, N.' 18+ BLMS) Assume  $\nu(\tau > t) \sim t^{-\alpha}$ with  $\alpha \in (0, 1)$ . Assume furthermore that  $(T, \tau)$  satisfies a stable version of the MLLT and some moderate deviation estimates. Then

$$\mu(fg \circ G^t) \sim ct^{\alpha-1}\mu(f)\mu(g)$$

 $\frac{\text{for } f, g \text{ a.e. continuous and compactly supported on the fiber iff}}{\langle M(\tau), r(\tau) \rangle} = \mathbb{R}.$ 

# Krickeberg-Hopf mixing II

#### Remarks:

- If α ∈ (0, 1/2), then t<sup>-α</sup> ≫ t<sup>α-1</sup>. Only assuming ν(τ > t) ~ t<sup>-α</sup>, no reasonable system satisfies the conditions, not even iid (Garsia, Lamperti '62).
- Caravenna, Doney '18: Necessary and sufficient conditions for iid case α ∈ (0, 1/2).

Similar results by Melbourne Terhesiu '18.

# Krickeberg-Hopf mixing II

#### Remarks:

- If α ∈ (0, 1/2), then t<sup>-α</sup> ≫ t<sup>α-1</sup>. Only assuming ν(τ > t) ~ t<sup>-α</sup>, no reasonable system satisfies the conditions, not even iid (Garsia, Lamperti '62).
- Caravenna, Doney '18: Necessary and sufficient conditions for iid case α ∈ (0, 1/2).

Similar results by Melbourne Terhesiu '18.

**Example**:  $\tilde{T} : [0,1] \to [0,1]$ , LSV map with infinite invariant measure (r > 1),  $\tilde{\tau}$  piecewise Hölder roof function. If  $\tilde{\tau}$  is not cohomologous to a function supported on  $b\mathbb{Z}$ , then Krickeberg mixing holds for f, g with  $suppf, suppg \subset [\varepsilon, 1]$ .

## Global mixing (Marco Lenci)

**Informal Definitions** Let  $T : X \to X$  preserve an infinite measure  $\nu$ . Fix a set  $\mathbf{G} \subset L^{\infty}(X)$  so that

$$ar{\Phi} = \lim_{\mu(V) o \infty} rac{1}{
u(V)} \int_V \Phi d
u ext{ exists } orall \Phi \in \mathbf{G}$$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

# Global mixing (Marco Lenci)

**Informal Definitions** Let  $T : X \to X$  preserve an infinite measure  $\nu$ . Fix a set  $\mathbf{G} \subset L^{\infty}(X)$  so that

$$ar{\Phi} = \lim_{\mu(V) o \infty} rac{1}{
u(V)} \int_V \Phi d
u$$
 exists  $orall \Phi \in {f G}$ 

T is local global (l-g) mixing if  $\forall \phi \in L^1(X), \forall \Phi \in \mathbf{G}$ 

$$\lim_{n\to\infty}\int\phi(x)\Phi(T^nx)d\nu=\left(\int\phi d\nu\right)\,\bar{\Phi}.$$

T is global global (g-g) mixing if  $\forall \Phi_1, \Phi_2 \in \mathbf{G}$ 

$$\lim_{n\to\infty}\liminf_{\nu(V)\to\infty}\left(\limsup_{\nu(V)\to\infty}\right)\frac{1}{\nu(V)}\int_V\Phi_1(x)\Phi_2(T^nx)d\nu=\bar{\Phi}_1\bar{\Phi}_2.$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - わへで

# $\mathbb{Z}^d$ -extensions

- $X = M \times \mathbb{Z}^d$ , M is a locally compact metric space
- x = (y, z) ∈ X and T(y, z) = (F(y), z + κ(y)), F preserves a probability measure ν₀.
- $\nu = \nu_0 \times$  counting measure
- Remark: MLLT for (F, κ) implies that T is Krickeberg-Hopf mixing
- ► G<sub>0</sub> set of bounded uniformly continuous functions whose averages over boxes containing z = 0 converge
- ► G<sub>U</sub> set of bounded uniformly continuous functions whose averages over arbitrary boxes converge

**Theorem 5**(Dolgopyat, N.' 18+) If  $(F, \kappa)$  satisfies the MLLT, then *l*-g and g-g mixing holds for both  $\mathbf{G}_0, \mathbf{G}_U$ .

**E.g.**: Lorentz gas (map & flow)

**Theorem 6**(Dolgopyat, N.' 18+) If  $\tilde{T}$  is very well (well) approximated by T at infinity and T is g-g (l-g) mixing with respect to  $G_U$ , then so is  $\tilde{T}$ .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

# Examples

|                          | g-g mixing                               | I-g mixing                               |
|--------------------------|------------------------------------------|------------------------------------------|
| Locally perturbed        | map: <b>G</b> 0                          | map: <b>G</b> 0                          |
| Lorentz gas (Dolgopyat,  | flow: <b>G</b> 0                         | flow: <b>G</b> <sub>0</sub>              |
| Szász, Varjú '08)        |                                          |                                          |
| Lorentz gas in potential | asymp. vanishing                         | small potential                          |
| fields (Chernov '11)     | potential                                | map: $\mathbf{G}_U$ flow: $\mathbf{G}_U$ |
|                          | map: $\mathbf{G}_0$ flow: $\mathbf{G}_0$ |                                          |
| Galton board (Chernov,   | map: <b>G</b> 0                          | large energy                             |
| Dolgopyat '09)           | flow: <b>G</b> 0                         | map: $\mathbf{G}_U$ flow: $\mathbf{G}_U$ |
| Fermi-Ulam pingpong      | map: $\mathbf{G}_U$                      | ?                                        |
| (De Simoi, Dolgopyat     | flow: $\mathbf{G}_U$                     |                                          |
| '12)                     |                                          |                                          |
| Bouncing ball in gravity | map: $\mathbf{G}_U$                      | ?                                        |
| field (Zhou '18+)        | flow: NOT                                |                                          |