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Local limit theorem (LLT) for iid random variables

Let Xi , i ≥ 1 be random variables E (X1) = 0 Var(X1) <∞,
Sn =

∑n
i=1 Xi .

1. continuous case If the range of X1 is not supported on a
lattice, then

P(Sn − v
√
n ∈ [A,B]) ∼ 1√

n
gσ(v)(B − A),

where gσ is the centered Gaussian density with variance σ2.

2. lattice case If ∃a ∈ R, b ∈ R+ such that P(X1 ∈ a + bZ) = 1
and b is the biggest such number, then

P(Sn − vn ∈ [A,B]) ∼ 1√
n
gσ(v)u([A,B]),

where vn ∈ na + bZ and vn ∼ v
√
n, A,B /∈ bZ and u is the b

times the counting measure on bZ.
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Mixing and LLT (MLLT) for dynamical systems

Setup:

I (X , d) metric space

I ν a Borel probability measure

I T : X → X preserves ν

I f : X → Rd observable, Sn(f ) =
∑n−1

i=0 f ◦ T i

We say that (T , f ) satisfies the LLT, if there is a closed subgroup
M = M(f ) of Rd and a translation r ∈ Rd/M such that for every
continuous and compactly supported z for every vn ∈ M + nr ,
vn ∼ v

√
n ∫

X
z(Sn(f , x)− nν(f )− vn)dν(x)

∼ n−d/2gσ(v)uM(z),

where uM is the normalized Haar measure on M.
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Setup:

I (X , d) metric space

I ν a Borel probability measure

I T : X → X preserves ν

I f : X → Rd observable, Sn(f ) =
∑n−1

i=0 f ◦ T i

We say that (T , f ) satisfies the MLLT, if there is a closed subgroup
M = M(f ) of Rd and a translation r ∈ Rd/M such that for every
continuous and compactly supported z for every vn ∈ M + nr ,
vn ∼ v

√
n and for every bounded and continuous x and y∫

X
x(x)y(T nx)z(Sn(f , x)− nν(f )− vn)dν(x)

∼ n−d/2gσ(v)ν(x)ν(y)uM(z),

where uM is the normalized Haar measure on M.



coboundary terms
If g : X → Z and

g = f + h − h ◦ T ,

then
Sn(g) = Sn(f ) + h − h ◦ T n

If (T , g) satisfies the MLLT, then (T , f ) satisfies a more general
version of MLLT, where the right hand side is convolved by
dist(h)∗dist(−h)
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Suspension (semi)flows

(X , ν,T ) as before. τ : X → [c ,∞),c > 0 and τ ∈ L2(ν).

x

t
τ

Ω

x T (x)

G t suspension (semi)flow on Ω, preserves µ = 1
ν(τ)ν ⊗ Leb
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Mixing

Theorem 1(Dolgopyat, N. ’18 ETDS) Assume (T , τ) satisfies
MLLT and certain moderate deviation estimates. Then

G t is mixing iff G t is weakly mixing iff < M(τ), r(τ) > = R

Question: MLLT for G t?
Let α : Ω→ R
MLLT for (G t , α): replace n by t, Sn(f ) by

∫ t
0 α(G s(y))ds. Let

M̂, r̂ be the group and the translation
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MLLT for suspension flows
Theorem 2(Dolgopyat, N. ’18 ETDS) Assume

(T , (
∫ τ(x)
0 α(x , s)ds, τ)) satisfies the MLLT with group M and

translation r and certain moderate deviation estimates.

Assume
furthermore that G t is mixing and α is bounded and a.e.
continuous. Then (G t , α) satisfies the MLLT iff

< M, r > = R2 or or

Remarks

I In case 1 M̂ = R, no coboundary term is needed

I In case 2 M̂ = cZ, r̂ = 0, coboundary term is needed
(generalized MLLT)

I In case 3, M̂ = cZ,r̂ = 1/c , coboundary term is needed

I In case < M, r > is a lattice, we have convergence along
subsequences.
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Counterexample for MLLT: a renewal reward process

(Xi , τi ) iid uniform on
{z1 = (−1, 2−

√
2), z2 = (0, 1), z3 = (1,

√
2)}

z1

z2

z3
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Counterexample for MLLT: a renewal reward process



(M)LLT for hyperbolic systems

I Guivarc’h, Hardy ’88: Anosov diffeomorphisms

I Aaronson, Denker ’99: Stable MLLT for Gibbs Markov maps

I Szász, Varjú ’04: some Young towers (exponential tails)

I Gouëzel ’05: general Young towers d = 1

I ...

Theorem 3(Dolgopyat, N., ’18 ETDS) For suspensions over
Young towers and Hölder observables, the conditions of Theorem 2
are satisfied. In some cases, the MLLT holds for systems possessing
a Young tower representation.

Examples: Sinai billiard flows, Axiom A flows, suspensions over
LSV maps, geometric Lorenz attractor.
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I Gouëzel ’05: general Young towers d = 1

I ...

Theorem 3(Dolgopyat, N., ’18 ETDS) For suspensions over
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Krickeberg-Hopf mixing I

(X , ν,T ) as before. τ : X → [c ,∞),c > 0 and ν(τ) =∞.
G t suspension flow on Ω, µ = ν ⊗ Leb σ-finite invariant measure.

Theorem 4(Dolgopyat, N.’ 18+ BLMS) Assume ν(τ > t) ∼ t−α

with α ∈ (0, 1). Assume furthermore that (T , τ) satisfies a stable
version of the MLLT and some moderate deviation estimates. Then

µ(fg ◦ G t) ∼ ctα−1µ(f )µ(g)

for f , g a.e. continuous and compactly supported on the fiber iff
< M(τ), r(τ) > = R.
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Krickeberg-Hopf mixing II

Remarks:

I If α ∈ (0, 1/2), then t−α � tα−1. Only assuming
ν(τ > t) ∼ t−α, no reasonable system satisfies the conditions,
not even iid (Garsia, Lamperti ’62).

I Caravenna, Doney ’18: Necessary and sufficient conditions for
iid case α ∈ (0, 1/2).

I Similar results by Melbourne Terhesiu ’18.

Example: T̃ : [0, 1]→ [0, 1], LSV map with infinite invariant
measure (r > 1), τ̃ piecewise Hölder roof function. If τ̃ is not
cohomologous to a function supported on bZ, then Krickeberg
mixing holds for f , g with suppf , suppg ⊂ [ε, 1].
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Global mixing (Marco Lenci)

Informal Definitions Let T : X → X preserve an infinite measure
ν. Fix a set G ⊂ L∞(X ) so that

Φ̄ = lim
µ(V )→∞

1

ν(V )

∫
V

Φdν exists ∀Φ ∈ G

T is local global (l-g) mixing if ∀φ ∈ L1(X ),∀Φ ∈ G

lim
n→∞

∫
φ(x)Φ(T nx)dν =

(∫
φdν

)
Φ̄.

T is global global (g-g) mixing if ∀Φ1,Φ2 ∈ G

lim
n→∞

lim inf
ν(V )→∞

(
lim sup
ν(V )→∞

)
1

ν(V )

∫
V

Φ1(x)Φ2(T nx)dν = Φ̄1Φ̄2.
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Zd -extensions

I X = M × Zd , M is a locally compact metric space

I x = (y , z) ∈ X and T (y , z) = (F (y), z + κ(y)), F preserves a
probability measure ν0.

I ν = ν0× counting measure

I Remark: MLLT for (F , κ) implies that T is Krickeberg-Hopf
mixing

I G0 set of bounded uniformly continuous functions whose
averages over boxes containing z = 0 converge

I GU set of bounded uniformly continuous functions whose
averages over arbitrary boxes converge



MLLT implies global mixing

Theorem 5(Dolgopyat, N.’ 18+) If (F , κ) satisfies the MLLT,
then l-g and g-g mixing holds for both G0,GU .

E.g.: Lorentz gas (map & flow)

Theorem 6(Dolgopyat, N.’ 18+) If T̃ is very well (well)
approximated by T at infinity and T is g-g (l-g) mixing with
respect to GU , then so is T̃ .



Examples

g-g mixing l-g mixing

Locally perturbed
Lorentz gas (Dolgopyat,
Szász, Varjú ’08)

map:G0

flow:G0

map:G0

flow:G0

Lorentz gas in potential
fields (Chernov ’11)

asymp. vanishing
potential
map:G0 flow:G0

small potential
map:GU flow:GU

Galton board (Chernov,
Dolgopyat ’09)

map:G0

flow:G0

large energy
map:GU flow:GU

Fermi-Ulam pingpong
(De Simoi, Dolgopyat
’12)

map:GU

flow:GU

?

Bouncing ball in gravity
field (Zhou ’18+)

map:GU

flow: NOT
?
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