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Extreme Value Theory

Consider a stationary stochastic process X0,X1,X2, . . . with marginal
d.f. F and let F̄ = 1− F .

In the Extreme Value Theory (EVT) we study the distributional
properties of the maximum

Mn = max{X0, . . . ,Xn−1} (1)

as n→∞.
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Extreme Value Laws

Definition
We say that we have an Extreme value law (EVL) for Mn if there is a
non-degenerate d.f. H : R→ [0,1] (with H(0) = 0) and for all τ > 0,
there exists a sequence of levels un = un(τ) such that

nP(X0 > un)→ τ as n→∞, (2)

and for which the following holds:

P(Mn ≤ un)→ H̄(τ) as n→∞. (3)

.
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The independent case

In the case X0,X1,X2, . . . are i.i.d. r.v. then since

P(Mn ≤ un) = (F (un))n

we have that if (2) holds, then (3) holds with H̄(τ) = e−τ :

P(Mn ≤ un) = (1− P(X0 > un))n ∼
(

1− τ

n

)n
→ e−τ as n→∞,

and vice-versa.

When the random variables X0,X1,X2, . . . are not independent but
satisfy some mixing condition D(un) introduced by Leadbetter then
something can still be said about H.
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Condition D(un) from Leadbetter

Let Fi1,...,indenote the joint d.f. of Xi1 , . . . ,Xin , and set
Fi1,...,in (u) = Fi1,...,in (u, . . . ,u).

Condition (D(un))

We say that D(un) holds for the sequence X0,X1, . . . if for any integers
i1 < . . . < ip and j1 < . . . < jk for which j1 − ip > t , and any large n ∈ N,∣∣Fi1,...,ip,j1,...,jk (un)− Fi1,...,ip (un)Fj1,...,jk (un)

∣∣ ≤ γ(n, t),

where γ(n, tn) −−−→
n→∞

0, for some sequence tn = o(n).
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Extremal Index

Theorem ([C81], see also [LLR83])
If D(un) holds for X0,X1, . . . and the limit (3) exists for some τ > 0 then
there exists 0 ≤ θ ≤ 1 such that H̄(τ) = e−θτ for all τ > 0.

Definition
We say that X0,X1, . . . has an Extremal Index (EI) 0 ≤ θ ≤ 1 if we have
an EVL for Mn with H̄(τ) = e−θτ for all τ > 0.
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Stationary stochastic processes arising from chaotic dynamics

Consider a discrete dynamical system

(X ,B,P, f ),

where

X is a topological space,

B is the Borel σ-algebra,

f : X → X is a measurable map,

P is an f -invariant probability measure.
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In this context, we consider the stochastic process X0,X1, . . . given by

Xn = ϕ ◦ f n, for each n ∈ N, (4)

where ϕ : X → R ∪ {±∞} is an observable (achieving a global
maximum at ζ ∈ X ), of the form

ϕ(x) = g (dist(x , ζ)) , (5)

where ζ ∈ X , “dist” denotes a Riemannian metric in X and the function
g : [0,+∞)→ R ∪ {+∞} has a global maximum at 0 and is a strictly
decreasing bijection for a neighborhood V of 0.

.
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So, if at time j ∈ N we have an exceedance of the level u sufficiently
large, i.e. Xj(x) > u, then we have an entrance of the orbit of x in the
ball Bg−1(u)(ζ) at time j , i.e. f j(x) ∈ Bg−1(u)(ζ).

The behaviour of 1− F (u), as u → uF , depends on the form of g−1.
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Assuming D(un) holds, let (kn)n∈N be a sequence of integers such that

kn →∞ and kntn = o(n). (6)

Condition (D′(un))

We say that D′(un) holds for the sequence X0,X1, . . . if there exists a
sequence {kn}n∈N satisfying (6) and such that

lim sup
n→∞

n
[n/kn]∑
j=1

P{X0 > un and Xj > un} = 0. (7)

Theorem (Leadbetter)

Let {un} be such that n(1− F (un))→ τ , as n→∞, for some τ ≥ 0.
Assume that conditions D(un) and D′(un) hold. Then

P(Mn ≤ un)→ e−τ as n→∞.
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Motivated by the work of Collet [C01] we considered:

Condition (D2(un))

We say that D2(un) holds for the sequence X0,X1, . . . if for any integers
`, t and n

|P {X0 > un ∩max{Xt , . . . ,Xt+`−1 ≤ un}}−
P{X0 > un}P{M` ≤ un}| ≤ γ(n, t),

where γ(n, t) is nonincreasing in t for each n and nγ(n, tn)→ 0 as
n→∞ for some sequence tn = o(n).

Theorem ([FF08a])

Let {un} be such that n(1− F (un))→ τ , as n→∞, for some τ ≥ 0.
Assume that conditions D2(un) and D′(un) hold. Then

P(Mn ≤ un)→ e−τ as n→∞.
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Periodic points

Now, we assume that:

(R) ζ ∈ X is a repelling periodic point of period p ∈ N. The periodicity
of ζ implies that for all u sufficiently large, {X0 > u}∩{Xp > u} 6= ∅
and {X0 > u} ∩ {Xj > u} = ∅ for all j = 1, . . . ,p − 1.
We also suppose that we have backward contraction implying that
there exists 0 < θ < 1 so that {X0 > u} ∩ {Xp > u} is another ball
of smaller radius around ζ with

P ({X0 > u} ∩ {Xp > u}) ∼ (1− θ)P(X0 > u),

for all u sufficiently large.

Under this assumption, D′(un) does not hold since

n
[n/kn]∑
j=1

P(X0 > un,Xj > un) ≥ nP(X0 > un,Xp > un)→ (1− θ)τ
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Define the events

U(u) = {X0 > u} and Ap,0(u) := {X0 > u,Xp ≤ u}.

Observe that for u sufficiently large, Ap,0(u) corresponds to an annulus
centred at ζ.

Define the events: Ap,i(u) := {Xi > u,Xi+p ≤ u}, and

Qp,s,`(u) =
⋂s+`−1

i=s Ac
p,i(u).
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Theorem (F, Freitas, Todd - [FFT12])

Let (un)n∈N be such that nP(X0 > un)→ τ , for some τ ≥ 0. Suppose
X0,X1, . . . is as in (4). Then

lim
n→∞

P(Mn ≤ un) = lim
n→∞

P(Qp,0,n(un)) (8)

First observe that {Mn ≤ un} ⊂ Qp,0,n(un).

It follows by stationarity that

P(Qp,0,n(un) \ {Mn ≤ un}) ≤ pP (X0 > un) = p
τ

n
−−−→
n→∞

0.

.
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Condition (Дp(un))

We say that Дp(un) holds forX0,X1, . . . if for any `, t and n∣∣P (Ap,0(un) ∩Qp,t ,`(un)
)
− P(Ap,0(un))P(Qp,0,`(un))

∣∣ ≤ γ(n, t),

where γ(n, t) is nonincreasing in t for each n and nγ(n, tn)→ 0 as
n→∞ for some sequence tn = o(n).

Let (kn)n∈N be a sequence of integers such that kn →∞ and
kntn = o(n).

Condition (Д′p(un))

We say that Д′p(un) holds for the sequence X0,X1,X2, . . . if

lim
n→∞

n
[n/kn]∑
j=1

P(Ap,0(un) ∩ Ap,j(un)) = 0. (9)
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Theorem (F, Freitas, Todd - [FFT12])

Let (un)n∈N be such that nP(X0 > un)→ τ , for some τ ≥ 0. Suppose
X0,X1, . . . is as in (4) and (R) holds. Assume further that conditions
Дp(un) and Д′p(un) hold. Then

lim
n→∞

P(Mn ≤ un) = lim
n→∞

P(Qp,0,n(un)) = e−θτ , (10)

where θ = limn→∞
P(Ap,0(un))
P(U(un)) .
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Rare events point processes

Consider the Rare Event Point Process (REPP) by counting the
number of exceedances (or hits to U(un)) up to time nt :

Nn(t) :=

[nt]∑
j=0

1{Xj>un}. (11)
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Consider the events

U(0)(u) = U(u) and A(0)
p (u) = {X0 > u,X1 ≤ u, ...,Xp ≤ u}.

Now let

U(k)(u) = U(k−1)(u)− A(k−1)
p (u),

A(k)
p (u) := U(k)(u) ∩

p⋂
i=1

f−i
(

(U(k)(u))c
)
.
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Condition (Дp(un)∗)

We say that Дp(un)∗ holds for the sequence X0,X1,X2, . . . if for any
integers t , κ1, . . . , κς , n and any J = ∪ςi=2Ij ∈ R with inf{x : x ∈ J} ≥ t ,∣∣∣P (A(κ1)

p (un) ∩
(
∩ςj=2Nun (Ij) = κj

))
− P

(
A(κ1)

p (un)
)

P
(
∩ςj=2Nun (Ij) = κj

)∣∣∣ ≤ γ(n, t),
where Nun (Ij) =

∑
i∈N∩Ij 1{Xj>un}. for each n we have that γ(n, t) is

nonincreasing in t and nγ(n, tn)→ 0 as n→∞, for some sequence
tn = o(n).

Assuming Дp(un)∗ holds, let (kn)n∈N be a sequence of integers such
that kn →∞ and kntn = o(n).

Condition (Д′p(un)∗)

We say that Д′p(un)∗ holds for the sequence X0,X1,X2, . . . if

lim
n→∞

n
[n/kn ]∑

j=1

P(A(0)
p (un) ∩ {Xj > un}) = 0. (12)
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Theorem (F, Freitas, Todd - [FFT13])

Let (un)n∈N be such that nP(X0 > un)→ τ , for some τ ≥ 0. Suppose
X0,X1, . . . is as in (4) and (R) holds. Assume that conditions Дp(un)∗, Д′p(un)∗

hold.
Then, the REPP Nn converges in distribution to a compound Poisson process
N with intensity θτ and multiplicity d.f. π given by π(κ) = θ(1− θ)κ−1, for

every κ ∈ N, where the extremal index θ is given by θ = limn→∞
P(A(0)

p (un))

P(U(0)(un))
.

If p = 0, we obtain the result of [FFT10]: under a condition D3(un) and D′(un),
the REPP Nn converges in distribution to a (simple) Poisson process.
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Systems to which we can apply directly the above result are:

- uniformly expanding maps on the circle/interval;
- piecewise expanding maps, like Rychlik maps;
- higher dimensional expanding maps studied by Saussol (2000)
([S00]).

For these type of systems, we then have the following:

- if the point ζ is non periodic, then the REPP Nn converges in
distribution to a Poisson process.

- if the point ζ is periodic, then the REPP Nn converges in distribution
to a compound Poisson process.
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In [FFTV16] we studied the limiting process for the REPP Nn in the
case of a simple non-uniformly hyperbolic dynamical system, the
Manneville-Pomeau (MP) map equipped with an absolutely continuous
invariant probability measure.

The form for such map that we studied is the one considered in
[LSV99], and given by

f = fα(x) =

{
x(1 + 2αxα) for x ∈ [0,1/2)

2x − 1 for x ∈ [1/2,1]

for α ∈ (0,1).
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In [FFTV16] we have proved that for this map and for ζ ∈ (0,1]:

- if the point ζ is non periodic, then the REPP Nn converges in
distribution to a Poisson process.

- if the point ζ is periodic, then the REPP Nn converges in distribution
to a compound Poisson process with intensity θτ for
θ = 1− |D(f−p)(ζ)| and multiplicity distribution function π given by
πκ = θ(1− θ)κ−1, for every κ ∈ N.

We recall that if a r.v. D ∼ Ge(θ) then E(D) = 1/θ and so θ = 1/E(D).

Even in more general cases, typically, the extremal index coincides
with the inverse of the mean of the limiting cluster size distribution.
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In a very recent paper ([AFF18]) we built a counterexample for that.

The idea was to make a balanced mixture of a behaviour associated
with an extremal index equal to 0 with the behaviour of an extremal
index different from 0.

For that, we considered the LSV map and assumed that the
observable ϕ was maximized at two points. One of them was ζ1 = 0
and for the other one we considered two cases:

1) ζ2 ∈]1/2,1] such that f j(ζ2) /∈ {ζ1, ζ2},∀j ∈ N,

2) ζ2 ∈]1/2,1] such that for some p ∈ N, f j(ζ2) = ζ2 and
f j(ζ2) 6= ζ2,∀j ∈ {1, . . . ,p − 1}.
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Study of case 1)

We start by noting that if the observable was maximized at the single
point ζ1 = 0, then the extremal index would be equal to 0.

And if the observable was maximized at a single non periodic point ζ2,
then the extremal index would be equal to 1.

Here we consider the case where the chosen observable is maximized
at the two points ζ1 and ζ2.
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Study of case 1)

Theorem (Abadi, F, Freitas - 2018)

Consider the LSV map for some 0 < α <
√

5− 2. Let (un)n∈N be such
that nP(X0 > un)→ τ , for some τ ≥ 0. Suppose X0,X1, . . . is as in (4)
for an observable ϕ conveniently chosen and maximized at the points
ζ1 and ζ2.
Then, this process admits an EI θ = 1/2. Moreover the REPP Nn
converges in distribution to a Poisson process N with intensity θτ .

So, in this case, θ = 1/2.

The multiplicity distribution is given by π(1) = 1 and π(κ) = 0 for κ ≥ 2
and so the corresponding mean is equal to 1.

Then, this is an example for which θ does not coincide with the inverse
of the mean of the limiting cluster size distribution.
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Study of case 2)

In this case, if the observable was maximized at the single point
ζ1 = 0, then the extremal index would be equal to 0.

If the observable was maximized at a single periodic point ζ2 of period
p, then the extremal index would be equal to a certain 0 < θ2 < 1.

Here we consider the case where the chosen observable is maximized
at the two points ζ1 and ζ2.

27 / 42



Study of case 2)

Theorem (Abadi, F, Freitas - 2018)

Consider the LSV map for some 0 < α <
√

5− 2. Let (un)n∈N be such
that nP(X0 > un)→ τ , for some τ ≥ 0. Suppose X0,X1, . . . is as in (4)
for an observable ϕ conveniently chosen and maximized at the points
ζ1 and ζ2.
Then, this process admits an EI θ = 1

2(1− γ−1), where γ = Df p(ζ2).
Moreover the REPP Nn converges in distribution to a compound
Poisson process N with intensity θτ and multiplicity distribution given
by π(κ) = (1− γ−1)(γ−1)κ−1, ∀κ ∈ N.

So, in this case, θ = 1
2(1− γ−1) and the multiplicity follows a geometric

distribution with parameter 1− γ−1 (that is, with mean (1− γ−1)−1)

Then, the extremal index does not coincide with the inverse of the
mean of the limiting cluster size distribution is the parameter.
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Decay of correlations implies D2(un)

Suppose that there exists a nonincreasing function γ : N→ R such
that for all φ : X → R with bounded variation and ψ : X → R ∈ L∞,
there is C > 0 independent of φ, ψ and n such that∣∣∣∣∫ φ · (ψ ◦ f t )dµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ CVar(φ)‖ψ‖∞γ(t), ∀t ≥ 0,

(13)
where Var(φ) denotes the total variation of φ and nγ(tn)→ 0, as
n→∞ for some sequence tn = o(n).

Taking φ = 1{X>un} and ψ = 1{M`≤un}, then

(13)⇒ D2(un),

(with γ(n, t) = CVar(1{X>un})‖1{M`≤un}‖∞γ(t) ≤ C′γ(t) and for the
sequence {tn} such that tn/n→ 0 and nγ(tn)→ 0 as n→∞).
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Decay of correlations against L1 implies Д′p(un)

Suppose that there exists a nonincreasing function γ : N→ R such that for all
φ : X → R with bounded variation and ψ : X → R ∈ L1, there is C > 0
independent of φ, ψ and n such that∣∣∣∣∫ φ · (ψ ◦ f t )dµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ CVar(φ)‖ψ‖1γ(t), ∀t ≥ 0, (14)

where Var(φ) denotes the total variation of φ and nγ(tn)→ 0, as n→∞ for
some sequence tn = o(n).

Taking φ = 1Ap(un) and ψ = 1Ap(un), then

(14)⇒ Д′p(un),

P(Ap,0(un) ∩ Ap,j(un)) ≤ P(Ap,0(un))
2 + C′P(Ap,0(un))γ(j) . (τ/n)2 + C′(τ/n)γ(j).

So, n
∑n/kn

j=Rn
P(Ap,0(un) ∩ Ap,j(un)) . n2

kn
(τ/n)2 + n

∑∞
j=Rn

C′(τ/n)γ(j) =
τ 2/kn + C′τ

∑∞
j=Rn

γ(j)→n→∞ 0 if we check that limn→∞ Rn = +∞ (for non-periodic
points this is true if for example the map f is continuous at every point of the orbit of ζ;
for periodic points it is enough to be a repelling periodic point which implies the
existence of the derivative ...) - Rn is the first return time of the set to itself.
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Proof of the extreme value law
This proof is for the case of no clustering. In the case of clustering we just have to replace balls by annulli.
Let k be the number of big blocks, let ` = `n = [ n

k ] be the approximate size of each block where [ n
k ] is the integer part of n

k and
let t be the size of the small blocks. We begin by replacing P(Mn ≤ un) by P(Mk(`+t) ≤ un) for some t > 1. We have∣∣∣P(Mn ≤ un)− P(Mk(`+t) ≤ un)

∣∣∣ ≤ ktP(X > un). (15)

We now estimate recursively P(Mi(`+t) ≤ un) for i = 0, . . . , k . Using a Lemma and stationarity, we have for any 1 ≤ i ≤ k∣∣∣P(Mi(`+t) ≤ un)−
(
1− `P(X > un)

)
P(M(i−1)(`+t) ≤ un)

∣∣∣ ≤ Γn,i ,

where

Γn,i =

∣∣∣∣∣∣`P(X > un)P(M(i−1)(`+t) ≤ un)−
`−1∑
j=0

P
(
{Xj > un} ∩ {M`+t,(i−1)(`+t) ≤ un}

)∣∣∣∣∣∣
+ tP(X > un) + 2`

`−1∑
j=1

P
(
{X > un} ∩ {Xj > un}

)
.

Using stationarity, D(un) and, in particular, that γ(n, t) is nonincreasing in t for each n we conclude

Γn,i ≤
`−1∑
j=0

∣∣∣P(X0 > un)P(M(i−1)(`+t) ≤ un)− P
(
{X0 > un} ∩ {M`+t−j,(i−1)(`+t) ≤ un}

)∣∣∣
+ tP(X > un) + 2`

`−1∑
j=1

P
(
{X > un} ∩ {Xj > un}

)

≤ `γ(n, t) + tP(X > un) + 2`
`−1∑
j=1

P
(
{X > un} ∩ {Xj > un}

)
.
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Define Υn = `γ(n, t) + tP(X > un) + 2`
∑`−1

j=1 P
(
{X > un} ∩ {Xj > un}

)
. Then for every 1 < i ≤ k we have∣∣∣P(Mi(`+t) ≤ un)−

(
1− `P(X > un)

)
P(M(i−1)(`+t) ≤ un)

∣∣∣ ≤ Υn

and for i = 1 ∣∣∣P(M(`+t) ≤ un)−
(
1− `P(X > un)

)∣∣∣ ≤ Υn.

Assume that k and n are large enough in order to have `P(X > un) < 2, which implies that
∣∣1− `P(X > un)

∣∣ < 1. A simple
inductive argument allows to conclude∣∣∣P(Mk(`+t) ≤ un)−

(
1− `P(X > un)

)k
∣∣∣ ≤ kΥn.

Then we have ∣∣∣P(Mn ≤ un)−
(
1− `P(X > un)

)k
∣∣∣ ≤ ktP(X > un) + kΥn. (16)

Since nP(X > un) = n(1− F (un))→ τ , as n →∞, for some τ ≥ 0, we have

lim
k→∞

lim
n→∞

(
1− [ n

k ]P(X > un)
)k = lim

k→∞
(1− τ

k )k = e−τ .

Now, observe that nP(X > un) = n(1− F (un))→ τ is equivalent to P(M̂n ≤ un) = (F (un))n → e−τ , where the limits are
taken when n →∞ and τ ≥ 0 (see [LLR83], Theorem 1.5.1] for a proof of this fact). Hence,

lim
k→∞

lim
n→∞

(1− [ n
k ]P(X > un))k = lim

n→∞
P(M̂n ≤ un). (17)

It is now clear that, according to (16) and (17), Mn and M̂n share the same limiting distribution if

lim
k→∞

lim
n→∞

(ktP(X > un) + kΥn = 0,

that is

lim
k→∞

lim
n→∞

2ktP(X > un) + nγ(n, t) + 2n
∑̀
j=1

P
(
{X > un} ∩ {Xj > un}

)
= 0. (18)

Assume that t = tn where tn = o(n) is given by Condition D(un). Then, for every k ∈ N, we have limn→∞ ktnP(X > un) = 0,
since nP(X > un)→ τ ≥ 0. Finally, we use D(un) and D′(un) to obtain that the two remaining terms in (18) also go to 0.
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Convergence in distribution of a point process

A point process Nn converges in distribution to a point process N if and
only if for any s disjoint intervals I1, . . . , Is (Ij = [aj ,bj)), the joint
distribution of Nn over these intervals converge to the joint distribution
of N over the same intervals, i.e.

(Nn(I1), . . . ,Nn(Is))→D (N(I1), . . . ,N(Is))

that is,

P(Nn(I1) = k1, . . . ,Nn(Is) = ks)→ P(N(I1) = k1, . . . ,N(Is) = ks).

This is equivalent to show that the joint moment function of
Nn(I1), . . . ,Nn(Is) converge to the joint moment generating function of
N(I1), . . . ,N(Is).

33 / 42



Definition of a compound Poisson process

Definition
We say that {N(t)}t≥0 is a compound Poisson process of intensity θ
and multiplicity d.f. π if we may write

N(t) =

M(t)∑
i=1

Di

where {M(t)}t≥0 is a Poisson process of intensity θ and D1,D2, . . . is a
sequence of i.i.d. r.v.’s with d.f. π, which are independent of M(t).

In our case, Di corresponds to the size of the cluster i and M(t) to the
number of clusters observed up to time t .
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Theorem

Let X0,X1, . . . satisfy conditions Дq(un)∗ and Д′q(un)∗, where (un)n∈N is
such that nP(X0 > un)→ τ , for some τ > 0. Assume that the limit

θ = limn→∞ θn exists, where θn =
P(A(0)

q (un))

P(U(un)) , and moreover that for each
κ ∈ N, the following limit also exists

lim
n→∞

πn(κ) = lim
n→∞

P(A(κ−1)
q (un))− (A(κ)

q (un))

P(A(0)
q (un))

. (19)

Then the REPP Nn converges in distribution to a compound Poisson
process with intensity θτ and multiplicity distribution π given by (19).
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Convergence of the REPP for the intermittent map

The method was to use inducing techniques, extending a result of
[HWZ14] (for hitting times).

We proved that if for the first return time induced map the REPP
converges to a certain limiting point process, then for the original
system the REPP converges Nn to the same limiting point process.
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Hitting Time Statistics and Return Time Statistics

Definition

Given a sequence of sets (Un)n∈N so that P(Un)→ 0, the system has
RTS G̃ for (Un)n∈N if for all t ≥ 0

PUn

(
rUn ≤

t
P(Un)

)
→ G̃(t) as n→∞. (20)

and the system has HTS G for (Un)n∈N if for all t ≥ 0

P
(

rUn ≤
t

P(Un)

)
→ G(t) as n→∞, (21)

We say that the system has HTS G for balls centred at ζ if we have
HTS G for (Un)n = (Bδn (ζ))n, for any sequence (δn)n∈N ⊂ R+ such that
δn → 0 as n→∞.
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Theorem
Consider an unperturbed map Tβ(x) = βx mod 1 for β > 1 + c, with
c > 0, with invariant absolutely continuous probability µ = µβ with
respect to Lebesgue measure m. Consider a sequential system acting
on the unit circle and given by Tn = Tn ◦ · · · ◦ T1, where Ti = Tβi−1 , for
all i = 1, . . . ,n and |βn − β| ≤ n−ξ holds for some ξ > 1. Let X1,X2, . . .
be as before, where the observable function ϕ, given by (5), achieves
a global maximum at a chosen ζ ∈ [0,1]. Let (un)n∈N be such that
nµ(X0 > un)→ τ , as n→∞ for some τ ≥ 0. Then, there exists
0 < θ ≤ 1 such that

lim
n→∞

m(X0 ≤ un,X1 ≤ un, . . . ,Xn−1 ≤ un) = e−θτ .

The value of θ is determined by the behaviour of ζ under the original
dynamics Tβ, namely,

If the orbit of ζ by Tβ never hits 0 ∼ 1 and ζ is periodic of prime
period p then θ = 1− β−p;
If the orbit of ζ by Tβ never hits 0 ∼ 1 and ζ is not periodic then
θ = 1.
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Doubling map
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Rychlik map
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Intermittent map
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Benedicks-Carleson maps
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