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Introduction: classical model

1 An object born at time 0 has a random life-length.

2 At the end of its life it is replaced by some number of similar
objects

3 The time of birth of a child coincides with the time of death
of the parent.
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Introduction: classical model

The process continue.

Nt : the number of objects present at time t.

(Nt)t≥0: age-dependent branching process.
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Age-dependent branching processes

Age-dependent branching processes are mathematical models for

1 Cell division: mitosis

2 Microbiology (growth of bacteria): Certain phases of the
multiplication of colonies of bacteria

3 Models for the reproduction
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Purpose: asymptotic behavior of the process (Nt)t≥0

We summarize the model, as follows,

(A) to each cell v , is associated a parameter xv ∈ X, called its
characteristics, (with (X,X ) a measurable space) which
determines its lifetime ξ(xv ) and the number of new cells
κ(xv ) in which the cell splits at the end of its lifetime (where
ξ and κ are two measurable functions with values in [0,+∞)
and in Z+ respectively);

(B) there exists a process (Xn)n with values in X such that, for
each line (vn)n≥0 of cells, the characteristics along this line is
given by a copy of (Xn)n≥0 (these copies are not assumed to
be mutually independent);

(C) κ(x) ≥ 2 for any x , i.e. each cell gives birth to more than two
children.
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Classical assumptions and results about (Nt)

- Classical assumptions: Bellman and Harris(1952). when
the lifetimes are modeled by a sequence of i.i.d. random
variables independent of the random numbers of the
news cells which are also assumed to be i.i.d.

- Results: Nt is a.s. asymptotically exponential:

Nt ∼ Ceν0tW as t tends to infinity.

ν0 which determines the exponential rate of growth called
Malthusian parameter.
Thomas Robert Malthus (1766-1834): a British economist. In 1798

published the ”Essay on the Principle of Population,” which argued

that population multiplies exponentially or geometrically and food

arithmetically. Therefore, the population will outstrip the food

supply. Contributions : Malthusian growth model
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The growth rate ν0 (the Malthusian parameter) was defined,
in this context, as the positive root of the equation,

E[κ(X1)]E
[
e−ν0ξ(X1)

]
= 1, (1)

as soon as the distribution of ξ(X1) is not lattice.

The constant C equals to

C =
E[κ(X1)]− 1

ν0 (E[κ(X1)])2 E
[
ξ(X1)e−ν0ξ(X1)

]
W is a positive random variable with finite second moment
and E(W ) = 1. (Harris (1963))
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Explicit calculations for the Malthusian parameter in the
iid case

- if κ(x) = 2 for any x , then

E (e−ν0ξ(X1)) =
1

2
, C =

1

4ν0E (ξ(X1)e−ν0ξ(X1))
.

- if κ(x) = 2 for any x and in the exponential case:
ξ(X1) ∼ E(λ), then

ν0 = λ, C = 1
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Extension of Harris’s results.

Louhichi and Ycart (2015) extend some results of Harris to the
case where the lifetimes are a sequence of dependent random
variables and when each cell is divided, after a random lifetime,
into two cells: (Xn)n is a stationary process and κ(x) = 2 for any
x : ν1 is expressed in terms of the Laplace transform of Sn

Sn :=
n∑

k=0

ξ(Xk) (2)

which models the birth date of the (n + 1)-th individual of a same
line. More precisely,

ν1 = inf

γ > 0,
∑
n≥0

2nE
[
e−γSn

]
<∞

 . (3)

lim
γ→0

γ

γ + ν1

∞∑
n=1

2n−1E(e−(γ+ν1)Sn) =: Cν1 <∞.
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Extension to random dependent variables (κ(Xn))n
(I)- Calculation of E(Nt) in a general setting

We suppose κ(x) ≥ 2 for any x and only the stationary
assumption: for each line of cells (0, v1, · · · , vn−1) (n-sequence of
the form parent-child),

(X0,Xv1 , · · · ,Xvn−1) ∼ (X0,X1, · · · ,Xn−1)

Proposition (Hervé, Louhichi & Pène (2017))

Let t > 0 be fixed. If
∑

n≥0 E
[(∏n

j=0 κ(Xj)
)
1{Sn≤t}

]
<∞, then

E[Nt ] <∞ and

E[Nt ] = 1 +
∑
n≥0

E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1) 1{Sn≤t}

 (4)

(with the usual convention
∏−1

j=0 κ(Xj) = 1).
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we obtain the following exponential behavior in mean of E[Nt ] in a
very general setting of dependence with the use of the function G
given by

G (γ) :=
∑
n≥0

gn(γ), (5)

gn(γ) = E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1)e−γSn

 .

ν = inf {γ > 0, G(γ) <∞}.

Cν := lim
γ→0

γ

γ + ν
G(ν + γ).
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Corollary

Assume the stationary assumption and that ν <∞ and that the
following limit exists

Cν := lim
γ→0

γ

γ + ν
G (ν + γ) . (6)

Then, lim
t→∞

1

t

∫ t

0
e−νsE[Ns ]ds = Cν . (7)

Proof. Let Ãν be the Laplace transform of Aν . As a particular
case of Feller (1971):

lim
γ↘0

γÃν(γ) = C ⇐⇒ lim
t→+∞

1

t

∫ t

0
Aν(s)ds = C .

Here Aν(s) = e−νsE[Ns ].
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Outline of the proof of the calculation on E(Nt)

Harris’s approach in the iid case. The result follows from the
renewal equation, denoting by m(t) = E(Nt),

m(t) = P(ξ(X0) > t) + E(κ(X0))

∫ t

0
m(t − u)dFξ(X0)(u)

Proof. Based on a control of the generating function
F (s, t) = E(sNt ), T0 = ξ(X0),

NtIT0<t =

κ(X0)∑
i=1

Ni (t)IT0<t , (Ni (t)IT0<t)i iid ∼ Nt−T0 .

E(sNt IT0<t) = E
[(

E(sNt−T0 IT0<t)
)κ(X0)

]
.

F (s, t) = sP(T0 > t)+

∫ t

0
E[(F (s, t−u))κ(X0)]dFT0(u), |s| ≤ 1, t ≥ 0.
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Outline of the proof of the calculation on E(Nt)

Direct calculations. For every n ≥ 0, we write Σn(t) for the
number of cells of generation n alive at time t. Observe that
E[Σ0(t)] = P(ξ(X0) > t) and that, for every n ≥ 1 (with the
convention k0 = 0),

E[Σn(t)] = E

 D0∑
k1=1

D0,k1∑
k2=1

..

D0,k1,··· ,kn−1∑
kn=1

1{T0+T0,k1
+···+T0,k1,··· ,kn−1

≤t<T0+T0,k1
+···+T0,k1,··· ,kn}

]
= E

[
D0D0,1 · · ·D0,1n−11{T0+T0,1+···+T0,1n−1≤t<T0+T0,1+···+T0,1n}

]
= E

n−1∏
j=0

κ(Xj)

(1{Sn−1≤t} − 1{Sn≤t}
) .
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Multiplicative ergodicity, application to Markov chains

In order to study the function G (·), and so ν and Cν , we adapt the
notion of ”multiplicative ergodicity”, as introduced in Kontoyiannis
& Meyn (2003-2005) to our context.

Definition

Let γ1 > 0. We say that (Sn, κ(Xn))n is multiplicatively ergodic
on J = [0, γ1) if there exist two continuous maps A and ρ from J
to (0,+∞) such that, for every compact subset K of (0, γ1), there
exist MK > 0 and θK ∈ (0, 1) such that, for every n ≥ 1,

∀γ ∈ K , |gn(γ)− A(γ)(ρ(γ))n| ≤ MK (ρ(γ)θK )n. (8)

When κ(·) is constant, we will simply say that (Sn)n is
multiplicatively ergodic on J.
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Remark

Assume that (Sn, κ(Xn))n is multiplicatively ergodic on J = [0, γ1).
Then

For every γ ∈ J we have:
G (γ) =

∑
n≥0 gn(γ) <∞ ⇐⇒ ρ(γ) < 1.

For every compact subset K of J, we obtain that

∀γ ∈ K ∩ (ν,+∞),

∣∣∣∣G (γ)− A(γ)

1− ρ(γ)

∣∣∣∣ ≤ MK

1− ρ(γ)θK
.
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ν < γ1 means that

ν = inf{γ ∈ J : ρ(γ) < 1} < γ1.

If moreover ρ is differentiable at ν with ρ(ν) = 1 and
ρ′(ν) 6= 0, then (6) follows with

Cν = − A(ν)

νρ′(ν)
.
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Multiplicative ergodicity property and additive functional
of Markov chains

The multiplicative ergodicity property is specially adapted for
additive functional of Markov chains, that is: X = (Xn)n is a
Markov chain on (X,X ) with Markov kernel P(x , dy), invariant
probability π, and initial distribution µ (i.e. µ is the distribution of
X0).
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• The Laplace kernel associated with (P, ξ, κ). We assume that,
for every n ≥ 1, the random variable

∏n
j=0 κ(Xj) is integrable. We

set hκ,γ :=
(
κ− 1

)
e−γξ. Let γ ∈ (0,+∞). For n ≥ 1,

gn(γ) = E

n−1∏
j=0

κ(Xj)e
−γξ(Xj )

 hκ,γ(Xn)


= E

n−1∏
j=0

κ(Xj)e
−γξ(Xj )

 (Phκ,γ)(Xn−1)

 ,
with (Ph)(x) :=

∫
X h(y)P(x , dy).
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If n ≥ 2, we continue and obtain

gn(γ) = E

n−2∏
j=0

κ(Xj)e
−γξ(Xj )

 (Pγ(Phκ,γ))(Xn−2)

 ,
with Pγh := P(hκe−γξ). An easy induction gives

∀n ≥ 1, gn(γ) = µ
(
κ e−γξ Pn−1

γ (Phκ,γ)
)
. (9)
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The multiplicative ergodicity property can be proved in the case
when the Laplace kernels Pγ satisfy some nice spectral properties
on a suitable Banach space B:∥∥Pn

γ f − r(γ)nΠγf
∥∥
B ≤ MK

(
θK r(γ)

)n‖f ‖B.

Then ν is proved to be finite and given by

ν = inf{γ > 0, r(γ) < 1},

where r(γ) denotes the spectral radius of Pγ on B.
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More precisely, the following assertions hold:

(i) If the functions γ 7→ r(γ) and
γ 7→ B(γ) := µ

(
κ e−γξΠγ(Phκ,γ)

)
are continuous from J0 to

(0,+∞), then (Sn, κ(Xn))n is multiplicatively ergodic on J0
with A(γ) := B(γ)

r(γ) and ρ(γ) = r(γ).

(ii) If moreover inf
γ∈J0

r(γ) < 1 < sup
γ∈J0

r(γ), then ν is finite and

ν = inf{γ > 0 : r(γ) < 1}. (10)

(iii) If furthermore the functions r(·) and B(·) are C 1-smooth on
J0, and if r ′(ν) 6= 0, then the constant Cν is well defined and
finite.
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Theorem (Linear autoregressive model)

Let X := R and Xn = αXn−1 + ϑn for n ≥ 1, where X0 is a
real-valued random variable, α ∈ (−1, 1), and (ϑn)n≥1 is a
sequence of i.i.d. real-valued random variables independent of X0.
Let r0 > 0. We assume that ϑ1 has a continuous Lebesgue
probability density function p > 0 on X satisfying the following
condition: for all x0 ∈ R, there exist a neighbourhood Vx0 of x0
and a non-negative function qx0(·) such that y 7→ (1 + |y |)r0 qx0(y)
is Lebesgue-integrable and such that

∀y ∈ R, ∀v ∈ Vx0 , p(y + v) ≤ qx0(y). (11)

Assume that the initial distribution µ is either the stationary
probability measure π or δx for some x ∈ R. Let N0 be a positive
integer. Assume that κ is bounded, that lim|x |→+∞ ξ(x) = +∞,
that the Lebesgue measure of the set [ξ = 0] is zero, and that

supx∈R
ξ(x)

(1+|x |)r0 <∞.
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Then (Sn, κ(Xn))n is multiplicatively ergodic on J = [0,+∞) with
limγ ρ(γ) ≥ 2 and limγ→+∞ ρ(γ) = 0.

Thus ν is well defined (and is independent of the choice of the
initial distribution µ).

If moreover there exists τ > 0 such that supx∈R
ξ(x)1+τ

(1+|x |)r0 <∞ ,

then the constant Cν is well defined in (0,+∞).
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(II) Second moment: behaviour of E[NtNt+τ ] and the a.s.
convergence of (e−νtNt)t≥0

we need an additional assumption involving the characteristics for
lines of cells coinciding up to the k-th generation.

Hypothesis (Second assumption of stationarity)

The first stationary assymption holds true. Moreover, for each

k ∈ N, there exists a process X (k) = (X
(k)
n )n≥0 such that{

(X
(k)
n )0≤n≤k = (Xn)0≤n≤k a.s.

(X
(k)
n )n≥0 = (Xn)n≥0 in law,

(12)

and such that, for every couple of sequences of positive integers
(mi )i≥1 and (`i )i≥1 such that m1 = `1, ...,mk = `k and
`k+1 6= mk+1, ((X0,m1,...,mn)n, (X0,`1,...,`n)n) has the same
distribution as (X ,X (k)).
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Now define, for any integers n ≥ 1,m ≥ 1 and
min(n,m)− 1 ≥ k ≥ 0 the random variables An,m,k as follows:

An,m,k =

(
n−2∏
i=0

κ(Xi )

) m−2∏
j=min(k+1,n−1)

κ(X
(k)
j )


 ∏

j∈{k}\{n−1,m−1}

(κ(Xj)− 1)

 (κ(Xn−1)− 1)
(
κ(X

(k)
m−1)− 1

)
,

with the usual convention
∏`

i=k+1 · · · = 1 if ` ≤ k . Define also

S
(k)
n :=

∑n
j=0 ξ(X

(k)
j ). The main result of this section is the

following proposition.
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Proposition (2)

Assume that the second assumption of stationarity holds. Let
t > 0 and τ ≥ 0 be fixed. If∑

n≥0 E
[(∏n

j=0 κ(Xj)
)
1{Sn≤t+τ}

]
<∞, then

E[NtNt+τ ] = E[Nt ] + E[Nt+τ ]− 1

+
∞∑
n=1

∞∑
m=1

min(n,m)−1∑
k=0

E
[
An,m,k1{Sn−1≤t,S(k)

m−1≤t+τ}

]
.
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Convergence a.s of e−νtNt

Corollary

Assume that the assumptions of Proposition 2 are satisfied, that
ν <∞, that lim supt→∞ e−νtE[Nt ] <∞ and that there exists
K > 0 such that

lim
t→∞

sup
τ≥0∣∣∣∣∣∣e−ν(2t+τ)

∞∑
n=1

∞∑
m=1

min(n,m)−1∑
k=0

E
[
An,m,k1{Sn−1≤t,S(k)

m−1≤t+τ}

]
− K

∣∣∣∣∣∣ = 0

Then there exists a square integrable random variable W such that
e−νtNt converges in quadratic mean to W as t tends to infinity.

If
moreover the above convergence is exponentially fast and if W > 0
then e−νtNt converges almost surely to W as t tends to infinity.
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Proof of Corollary 2.

E
[(

e−νtNt − e−ν(t+τ)Nt+τ

)2]
= e−2νtE

[
N2
t

]
+ e−2ν(t+τ)E

[
N2
t+τ

]
− 2e−2νt−ντE [NtNt+τ ] .

Now Proposition 2 gives,

e−2νt−ντE[NtNt+τ ]

= e−2νt−ντE[Nt ] + e−2νt−ντ (E[Nt+τ ]− 1)

+e−2νt−ντ
∞∑
n=1

∞∑
m=1

min(n,m)−1∑
k=0

E
[
An,m,k1{Sn−1≤t,S(k)

m−1≤t+τ}

]
.

Thanks to the assumptions of Corollary 2, the two first terms of
the right hand side of the last equality tends to 0 as t tends to
infinity. While the third term tends to K . Those three limits hold
for any τ ≥ 0 and uniformly in τ .

Sana Louhichi Marseille 2018



lim
t→∞

E
[(

e−νtNt − e−ν(t+τ)Nt+τ

)2]
= K + K − 2K = 0,

for any τ ≥ 0, uniformly in τ . The Cauchy criterion ensures then
the convergence in quadratic mean of e−νtNt as t tends to infinity
to a random variable W with finite second moment.

For the last
point, we deduce from Proposition 2 that∫∞
0 E

[
(e−νtNt −W )

2
]
dt <∞. This yields (arguing as for the

proof of Theorem 21.1 in [2]) the almost sure convergence, as t
tends to infinity, of e−νtNt to W .
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(III)-Some extensions of Harris’ results

For further results, we will make the following stronger assumption
involving some independence assumptions.

Hypothesis

The sequence of ”Children number” is a sequence of i.i.d. square
integrable random variables of expectation κ1, and is independent
of the sequence of life-time length. Moreover, for all k ∈ N,

(X
(k)
n )n≥k+1 and (Xn)n≥k+1 are independent given Xk . Finally the

number ν satisfies

∀x ∈ X, ν = inf

γ > 0,
∑
n≥0

κn1E
[
e−γSn+1 |X0 = x

]
<∞

 <∞ .

(13)
We set κ2 := E[κ(X1)(κ(X1)− 1)].
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Remark

Observe that under this Hypothesis,

E

 n∏
j=0

κ(Xj)

 1{Sn≤t}|X0

 =

κn1κ(X0)E
[
1{Sn≤t}|X0

]
≤ κn+1

1 κ(X0)E
[
e−γ(Sn−t))|X0

]
.

Hence, Proposition 1 applies and (4) can be rewritten

E[Nt] = 1 +
∑
n≥0

κn1(κ1 − 1)P (Sn ≤ t) .
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Technical lemma (Harris, 1963)

Let f be a function and f̃ its Laplace transform. Suppose that
there exist two positive reals δ and ε such that:

1 f̃ is analytic in {z = x + iy , |x | < δ + ε} \ {0},
2 f̃ has a simple pole at 0, with residue C ,
3 ∫ ∞

−∞
|f̃ (δ + iy)| dy <∞ ,

4

lim
y→±∞

f̃ (x + iy) = 0 ,

uniformly in x ∈ [−δ, δ],
5

ψ :=

∫ ∞
−∞
|f̃ (−δ + iy)| dy <∞ .

Then, for all t > 0,

|f(t)− C| 6 ψ

2π
e−δt .
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Define fx ,0(t) = (κ1 − 1)e−νt
∑

n≥0 κ
n
1P (Sn+1 − S0 ≤ t|X0 = x) .

We will make the following assumption involving the Laplace
transform f̃x ,0 of fx ,0: ∀γ > 0,

f̃x ,0(γ) =

∫ ∞
0

e−γt fx ,0(t)dt

=
κ1 − 1

γ + ν

∑
n≥0

κn1E
[
e−(γ+ν)(Sn+1−S0)|X0 = x

]
.

Hypothesis

Suppose that there exist two positive reals δ < ν and ε such that,
for any x , the Laplace transform f̃x ,0, extended on the complex
plane, satisfies the following conditions:

1 f̃x ,0 has a simple pole at 0, with residue C̃0(x),

2 Ψ0(x) :=
∫ +∞
−∞ |f̃x ,0(−δ + iy)|dy <∞ .
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Lemma

Assume Hypothesis of the technical lemma. Then, for any t > 0,∣∣∣∣∣∣e−νt
∑
n≥0

κn1(κ1 − 1)P(S1,n+1 ≤ t|X0 = x)− C̃0(x)

∣∣∣∣∣∣
≤ Ψ0(x)

2π
e−δt .
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Proposition

If, moreover, E[e−νξ(X0)C̃0(X0)] <∞ and if
E(e−(ν−δ)ξ(X0)Ψ0(X0)) <∞, then E[Nt ] <∞ and there exists
ε1 > 0 such that

E[Nt ] = eνtκ1E[e−νξ(X0)C̃0(X0)](1 + O(e−ε1t)), as t →∞ .

Proposition

Suppose, moreover, that (Xn)n a Markov process and also that∑∞
k=0 κ

k
1E[C̃ 2

0 (Xk)e−2νSk ] <∞, then, for any t > 0, τ ≥ 0, ,
E[NtNt+τ ] <∞ and as t →∞

E[NtNt+τ ] = eν(2t+τ)κ2

∞∑
k=0

κk1E
[
C̃ 2
0 (Xk)e−2νSk

]
(1 + ae−ε1t),

where a and ε1 are positive constants independent of t and τ .
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Theorem

Assume Hypotheses of the two previous propositions (with (Xn)n a
Markov process) then there exists a square integrable random
variable W such that e−νtNt converges in quadratic mean to W
as t tends to infinity, with

E[W ] = κ1E
[
e−νξ(X0)C̃0(X0)

]
Var(W ) = κ2

∞∑
k=0

κk1E
[
C̃ 2
0 (Xk)e−2νSk

]
−κ21

(
E
[
e−νξ(X0)C̃0(X0)

])2
.

If, moreover, W > 0 almost surely then e−νtNt converges almost
surely to W .
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Remark.

Recall that, S1,n+1 =
∑n+1

i=1 ξ(Xi ). Suppose that

E
[
e−γS1,n+1 |X0 = x

]
= α(γ, x)Ln+1(γ) + rn+1(γ, x) (14)

for suitable non-negative functions α, L and (rn)n satisfying

(a) ∀ x ∈ X, α(·, x), L and rn(·, x) can be extended to analytic
functions in {z = u + iy , |u| ≤ δ + ε < ν, y ∈ R}

(b) L is positive and non-increasing on R∗+. The equation
κ1L(z) = 1, has a unique positive solution in C, denoted by ν.

(c) The series
∑

n>0 κ
n
1rn(γ, x) converges uniformly in γ in a

neighborhood of ν uniformly in x .

Lemma

The assumptions of the technical lemma are satisfied under
Conditions (a)-(b)-(c) with

C̃0(x) = − (κ1 − 1)

κ21νL
′(ν)

α(ν, x)
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