MULTIPLICATIVE ERGODICITY OF LAPLACE TRANSFORMS FOR ADDITIVE FUNCTIONAL OF MARKOV CHAINS WITH APPLICATION TO AGE-DEPENDENT BRANCHING PROCESS.

Sana Louhichi

University Grenoble Alpes

Based on common works with *Bernard Ycart (2015)* and *Loïc Hervé & Françoise Pène (2017)*

October 30, 2018

Introduction: classical model

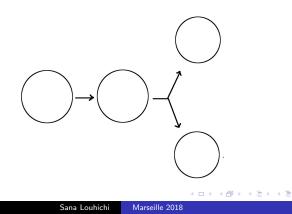
An object born at time 0 has a random life-length.

Introduction: classical model

- An object born at time 0 has a random life-length.
- At the end of its life it is replaced by some number of similar objects

Introduction: classical model

- An object born at time 0 has a random life-length.
- At the end of its life it is replaced by some number of similar objects
- The time of birth of a child coincides with the time of death of the parent.



The process continue.

 N_t : the number of objects present at time t.

 $(N_t)_{t\geq 0}$: age-dependent branching process.

Age-dependent branching processes are mathematical models for

- **O Cell division:** mitosis
- Microbiology (growth of bacteria): Certain phases of the multiplication of colonies of bacteria
- **OMOMES FOR THE REPRODUCTION**

We summarize the model, as follows,

- (A) to each cell v, is associated a parameter $x_v \in \mathbb{X}$, called its characteristics, (with $(\mathbb{X}, \mathcal{X})$ a measurable space) which determines its lifetime $\xi(x_v)$ and the number of new cells $\kappa(x_v)$ in which the cell splits at the end of its lifetime (where ξ and κ are two measurable functions with values in $[0, +\infty)$ and in \mathbb{Z}_+ respectively);
- (B) there exists a process $(X_n)_n$ with values in \mathbb{X} such that, for each line $(v_n)_{n\geq 0}$ of cells, the characteristics along this line is given by a copy of $(X_n)_{n\geq 0}$ (these copies are not assumed to be mutually independent);

(C) $\kappa(x) \ge 2$ for any x, i.e. each cell gives birth to more than two children.

Classical assumptions and results about (N_t)

- Classical assumptions: Bellman and Harris(1952). when the lifetimes are modeled by a sequence of i.i.d. random variables independent of the random numbers of the news cells which are also assumed to be i.i.d.
- **Results:** N_t is a.s. asymptotically exponential:

 $N_t \sim \mathbf{C} e^{\nu_0 t} \mathbf{W}$ as t tends to infinity.

 ν_0 which determines the exponential rate of growth called *Malthusian parameter*.

Thomas Robert **Malthus** (1766-1834): a British economist. *In 1798* published the "Essay on the Principle of Population," which argued that population multiplies exponentially or geometrically and food arithmetically. Therefore, the population will outstrip the food supply. Contributions : Malthusian growth model

• The growth rate ν_0 (the Malthusian parameter) was defined, in this context, as the positive root of the equation,

$$\mathbb{E}[\kappa(X_1)] \mathbb{E}\left[e^{-\nu_0 \xi(X_1)}\right] = 1, \qquad (1)$$

as soon as the distribution of $\xi(X_1)$ is not lattice.

• The constant C equals to

$$C = \frac{\mathbb{E}[\kappa(X_1)] - 1}{\nu_0 \left(\mathbb{E}[\kappa(X_1)]\right)^2 \mathbb{E}\left[\xi(X_1)e^{-\nu_0\xi(X_1)}\right]}$$

W is a positive random variable with finite second moment and 𝔼(*W*) = 1. (Harris (1963))

Explicit calculations for the Malthusian parameter in the iid case

- if
$$\kappa(x) = 2$$
 for any x , then

$$E(e^{-\nu_0\xi(X_1)}) = \frac{1}{2}, \ C = \frac{1}{4\nu_0 E(\xi(X_1)e^{-\nu_0\xi(X_1)})}.$$

- if $\kappa(x) = 2$ for any x and in the exponential case: $\xi(X_1) \sim \mathcal{E}(\lambda)$, then

$$\nu_0 = \lambda, \ C = 1$$

Extension of Harris's results.

Louhichi and Ycart (2015) extend some results of Harris to the case where the lifetimes are a sequence of dependent random variables and when each cell is divided, after a random lifetime, into two cells: $(X_n)_n$ is a stationary process and $\kappa(x) = 2$ for any x: ν_1 is expressed in terms of the Laplace transform of S_n

$$\mathbf{S}_{\mathbf{n}} := \sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}} \xi(\mathbf{X}_{\mathbf{k}}) \tag{2}$$

which models the birth date of the (n + 1)-th individual of a same line. More precisely,

$$\nu_{1} = \inf\left\{\gamma > 0, \sum_{n \ge 0} 2^{n} \mathbb{E}\left[e^{-\gamma S_{n}}\right] < \infty\right\}.$$

$$(3)$$

$$\lim_{\gamma \to 0} \frac{\gamma}{\gamma + \nu_{1}} \sum_{n=1}^{\infty} 2^{n-1} \mathbb{E}\left(e^{-(\gamma + \nu_{1})S_{n}}\right) =: \mathbf{C}_{\nu_{1}} < \infty.$$

Extension to random dependent variables $(\kappa(X_n))_n$ (I)- Calculation of $\mathbb{E}(N_t)$ in a general setting

We suppose $\kappa(x) \ge 2$ for any x and only the stationary assumption: for each line of cells $(0, v_1, \dots, v_{n-1})$ (*n*-sequence of the form parent-child),

$$(X_0, X_{v_1}, \cdots, X_{v_{n-1}}) \sim (X_0, X_1, \cdots, X_{n-1})$$

Extension to random dependent variables $(\kappa(X_n))_n$ (I)- Calculation of $\mathbb{E}(N_t)$ in a general setting

We suppose $\kappa(x) \ge 2$ for any x and only the stationary assumption: for each line of cells $(0, v_1, \dots, v_{n-1})$ (*n*-sequence of the form parent-child),

$$(X_0, X_{v_1}, \cdots, X_{v_{n-1}}) \sim (X_0, X_1, \cdots, X_{n-1})$$

Proposition (Hervé, Louhichi & Pène (2017))

Let t > 0 be fixed. If $\sum_{n \ge 0} \mathbb{E} \left[\left(\prod_{j=0}^{n} \kappa(X_j) \right) \mathbf{1}_{\{S_n \le t\}} \right] < \infty$, then $\mathbb{E}[N_t] < \infty$ and

$$\mathbb{E}[N_t] = 1 + \sum_{n \ge 0} \mathbb{E}\left[\left(\prod_{j=0}^{n-1} \kappa(X_j)\right) \left(\kappa(X_n) - 1\right) \mathbf{1}_{\{S_n \le t\}}\right]$$
(4)

(with the usual convention $\prod_{j=0}^{-1} \kappa(X_j) = 1$).

we obtain the following exponential behavior in mean of $\mathbb{E}[N_t]$ in a very general setting of dependence with the use of the function G given by

$$G(\gamma) := \sum_{n \ge 0} g_n(\gamma), \qquad (5)$$
$$g_n(\gamma) = \mathbb{E}\left[\left(\prod_{j=0}^{n-1} \kappa(X_j)\right) (\kappa(X_n) - 1) e^{-\gamma S_n}\right].$$

$$\nu = \inf \{ \gamma > \mathbf{0}, \ \mathbf{G}(\gamma) < \infty \}.$$
$$\mathbf{C}_{\nu} := \lim_{\gamma \to \mathbf{0}} \frac{\gamma}{\gamma + \nu} \mathbf{G}(\nu + \gamma).$$

Corollary

Assume the stationary assumption and that $\nu < \infty$ and that the following limit exists

$$C_{\nu} := \lim_{\gamma \to 0} \frac{\gamma}{\gamma + \nu} G(\nu + \gamma) \,. \tag{6}$$

Then,
$$\lim_{t\to\infty}\frac{1}{t}\int_0^t e^{-\nu s}\mathbb{E}[N_s]ds = C_{\nu}.$$
 (7)

Proof. Let \tilde{A}_{ν} be the Laplace transform of A_{ν} . As a particular case of Feller (1971):

$$\lim_{\gamma\searrow 0}\gamma \tilde{\mathcal{A}}_{\nu}(\gamma)= \mathcal{C} \iff \lim_{t\rightarrow +\infty} \frac{1}{t} \int_{0}^{t} \mathcal{A}_{\nu}(s) \,\mathrm{d}s = \mathcal{C} \;.$$

Here $A_{\nu}(s) = e^{-\nu s} \mathbb{E}[N_s]$.

Harris's approach in the iid case. The result follows from the renewal equation, denoting by $m(t) = \mathbb{E}(N_t)$,

$$m(t) = \mathbb{P}(\xi(X_0) > t) + \mathbb{E}(\kappa(X_0)) \int_0^t m(t-u) dF_{\xi(X_0)}(u)$$

Harris's approach in the iid case. The result follows from the renewal equation, denoting by $m(t) = \mathbb{E}(N_t)$,

$$m(t) = \mathbb{P}(\xi(X_0) > t) + \mathbb{E}(\kappa(X_0)) \int_0^t m(t-u) dF_{\xi(X_0)}(u)$$

Proof. Based on a control of the generating function $F(s,t) = \mathbb{E}(s^{N_t}), T_0 = \xi(X_0),$

$$N_t \mathbb{I}_{T_0 < t} = \sum_{i=1}^{\kappa(X_0)} N_i(t) \mathbb{I}_{T_0 < t}, \ (N_i(t) \mathbb{I}_{T_0 < t})_i \ iid \ \sim N_{t-T_0}.$$

Harris's approach in the iid case. The result follows from the renewal equation, denoting by $m(t) = \mathbb{E}(N_t)$,

$$m(t) = \mathbb{P}(\xi(X_0) > t) + \mathbb{E}(\kappa(X_0)) \int_0^t m(t-u) dF_{\xi(X_0)}(u)$$

Proof. Based on a control of the generating function $F(s, t) = \mathbb{E}(s^{N_t}), T_0 = \xi(X_0),$

$$N_t \mathbb{I}_{\tau_0 < t} = \sum_{i=1}^{\kappa(X_0)} N_i(t) \mathbb{I}_{\tau_0 < t}, \ (N_i(t) \mathbb{I}_{\tau_0 < t})_i \ \text{iid} \ \sim N_{t-\tau_0}.$$

$$\mathbb{E}(s^{N_t}\mathbb{I}_{T_0 < t}) = \mathbb{E}\left[\left(\mathbb{E}(s^{N_{t-T_0}}\mathbb{I}_{T_0 < t})\right)^{\kappa(X_0)}\right].$$

 $F(s,t) = s\mathbb{P}(T_0 > t) + \int_0^t \mathbb{E}[(F(s,t-u))^{\kappa(X_0)}] dF_{T_0}(u), \ |s| \le 1, \ t \ge 0.$

Direct calculations. For every $n \ge 0$, we write $\Sigma_n(t)$ for the number of cells of generation n alive at time t. Observe that $\mathbb{E}[\Sigma_0(t)] = \mathbb{P}(\xi(X_0) > t)$ and that, for every $n \ge 1$ (with the convention $k_0 = 0$),

$$\begin{split} \mathbb{E}[\Sigma_{n}(t)] &= \mathbb{E}\left[\sum_{k_{1}=1}^{D_{0}}\sum_{k_{2}=1}^{D_{0,k_{1}}}\dots\sum_{k_{n}=1}^{D_{0,k_{1},\dots,k_{n-1}}} \\ \mathbf{1}_{\{T_{0}+T_{0,k_{1}}+\dots+T_{0,k_{1},\dots,k_{n-1}}\leq t< T_{0}+T_{0,k_{1}}+\dots+T_{0,k_{1},\dots,k_{n}}\}}\right] \\ &= \mathbb{E}\left[D_{0}D_{0,1}\dots D_{0,1^{n-1}}\mathbf{1}_{\{T_{0}+T_{0,1}+\dots+T_{0,1^{n-1}}\leq t< T_{0}+T_{0,1}+\dots+T_{0,1^{n}}\}}\right] \\ &= \mathbb{E}\left[\left(\prod_{j=0}^{n-1}\kappa(X_{j})\right)\left(\mathbf{1}_{\{S_{n-1}\leq t\}}-\mathbf{1}_{\{S_{n}\leq t\}}\right)\right]. \end{split}$$

In order to study the function $G(\cdot)$, and so ν and C_{ν} , we adapt the notion of "multiplicative ergodicity", as introduced in Kontoyiannis & Meyn (2003-2005) to our context.

Definition

Let $\gamma_1 > 0$. We say that $(S_n, \kappa(X_n))_n$ is **multiplicatively ergodic** on $J = [0, \gamma_1)$ if there exist two continuous maps A and ρ from Jto $(0, +\infty)$ such that, for every compact subset K of $(0, \gamma_1)$, there exist $M_K > 0$ and $\theta_K \in (0, 1)$ such that, for every $n \ge 1$,

$$\forall \gamma \in \mathcal{K}, \quad |g_n(\gamma) - \mathcal{A}(\gamma)(\rho(\gamma))^n| \le M_{\mathcal{K}}(\rho(\gamma)\theta_{\mathcal{K}})^n.$$
(8)

When $\kappa(\cdot)$ is constant, we will simply say that $(S_n)_n$ is multiplicatively ergodic on J.

Remark

Assume that $(S_n, \kappa(X_n))_n$ is multiplicatively ergodic on $J = [0, \gamma_1)$. Then

For every γ ∈ J we have: G(γ) = ∑_{n≥0} g_n(γ) < ∞ ⇔ ρ(γ) < 1.
For every compact subset K of J, we obtain that

$$\forall \gamma \in K \cap (\nu, +\infty), \quad \left| G(\gamma) - \frac{A(\gamma)}{1 - \rho(\gamma)} \right| \leq \frac{M_K}{1 - \rho(\gamma) \theta_K}.$$

• $\nu < \gamma_1$ means that

$$\nu = \inf\{\gamma \in \mathbf{J} : \rho(\gamma) < \mathbf{1}\} < \gamma_{\mathbf{1}}.$$

• If moreover ρ is differentiable at ν with $\rho(\nu) = 1$ and $\rho'(\nu) \neq 0$, then (6) follows with

$$\mathbf{C}_{
u} = -rac{\mathbf{A}(
u)}{
u
ho'(
u)}.$$

The multiplicative ergodicity property is specially adapted for additive functional of Markov chains, that is: $X = (X_n)_n$ is a Markov chain on $(\mathbb{X}, \mathcal{X})$ with Markov kernel P(x, dy), invariant probability π , and initial distribution μ (i.e. μ is the distribution of X_0). • The Laplace kernel associated with (P, ξ, κ) . We assume that, for every $n \ge 1$, the random variable $\prod_{j=0}^{n} \kappa(X_j)$ is integrable. We set $h_{\kappa,\gamma} := (\kappa - 1) e^{-\gamma\xi}$. Let $\gamma \in (0, +\infty)$. For $n \ge 1$,

$$g_n(\gamma) = \mathbb{E}\left[\left(\prod_{j=0}^{n-1}\kappa(X_j)e^{-\gamma\xi(X_j)}\right)h_{\kappa,\gamma}(X_n)\right]$$
$$= \mathbb{E}\left[\left(\prod_{j=0}^{n-1}\kappa(X_j)e^{-\gamma\xi(X_j)}\right)(Ph_{\kappa,\gamma})(X_{n-1})\right],$$

with $(Ph)(x) := \int_{\mathbb{X}} h(y) P(x, dy)$.

If $n \ge 2$, we continue and obtain

$$g_n(\gamma) = \mathbb{E}\left[\left(\prod_{j=0}^{n-2}\kappa(X_j)e^{-\gamma\xi(X_j)}\right)(P_{\gamma}(Ph_{\kappa,\gamma}))(X_{n-2})\right],$$

with $P_{\gamma}h := P(h\kappa e^{-\gamma\xi})$. An easy induction gives

$$\forall n \geq 1, \quad g_n(\gamma) = \mu \left(\kappa \, e^{-\gamma \xi} \, P_{\gamma}^{n-1} \left(Ph_{\kappa,\gamma} \right) \right). \tag{9}$$

The multiplicative ergodicity property can be proved in the case when the Laplace kernels P_{γ} satisfy some nice spectral properties on a suitable Banach space \mathcal{B} :

$$\left\| P_{\gamma}^{n}f - r(\gamma)^{n} \Pi_{\gamma}f \right\|_{\mathcal{B}} \leq M_{\mathcal{K}} \left(\theta_{\mathcal{K}} r(\gamma) \right)^{n} \|f\|_{\mathcal{B}}.$$

The multiplicative ergodicity property can be proved in the case when the Laplace kernels P_{γ} satisfy some nice spectral properties on a suitable Banach space \mathcal{B} :

$$\left\| P_{\gamma}^{n}f - r(\gamma)^{n} \Pi_{\gamma}f \right\|_{\mathcal{B}} \leq M_{\mathcal{K}} \left(\theta_{\mathcal{K}} r(\gamma) \right)^{n} \|f\|_{\mathcal{B}}.$$

Then ν is proved to be finite and given by

 $\nu = \inf\{\gamma > \mathbf{0}, \ \mathbf{r}(\gamma) < \mathbf{1}\},\$

where $r(\gamma)$ denotes the spectral radius of P_{γ} on \mathcal{B} .

More precisely, the following assertions hold:

$$\nu = \inf\{\gamma > 0 : r(\gamma) < 1\}.$$
 (10)

(iii) If furthermore the functions $r(\cdot)$ and $B(\cdot)$ are C^1 -smooth on J_0 , and if $r'(\nu) \neq 0$, then the constant C_{ν} is well defined and finite.

Theorem (Linear autoregressive model)

Let $\mathbb{X} := \mathbb{R}$ and $X_n = \alpha X_{n-1} + \vartheta_n$ for $n \ge 1$, where X_0 is a real-valued random variable, $\alpha \in (-1, 1)$, and $(\vartheta_n)_{n\ge 1}$ is a sequence of i.i.d. real-valued random variables independent of X_0 . Let $r_0 > 0$. We assume that ϑ_1 has a continuous Lebesgue probability density function p > 0 on \mathbb{X} satisfying the following condition: for all $x_0 \in \mathbb{R}$, there exist a neighbourhood V_{x_0} of x_0 and a non-negative function $q_{x_0}(\cdot)$ such that $y \mapsto (1 + |y|)^{r_0} q_{x_0}(y)$ is Lebesgue-integrable and such that

$$\forall y \in \mathbb{R}, \ \forall v \in V_{x_0}, \ p(y+v) \le q_{x_0}(y). \tag{11}$$

Assume that the initial distribution μ is either the stationary probability measure π or δ_x for some $x \in \mathbb{R}$. Let N_0 be a positive integer. Assume that κ is bounded, that $\lim_{|x| \to +\infty} \xi(x) = +\infty$, that the Lebesgue measure of the set $[\xi = 0]$ is zero, and that $\sup_{x \in \mathbb{R}} \frac{\xi(x)}{(1+|x|)'^0} < \infty$.

Then $(S_n, \kappa(X_n))_n$ is multiplicatively ergodic on $J = [0, +\infty)$ with $\lim_{\gamma} \rho(\gamma) \ge 2$ and $\lim_{\gamma \to +\infty} \rho(\gamma) = 0$.

Thus ν is well defined (and is independent of the choice of the initial distribution μ).

If moreover there exists $\tau > 0$ such that $\sup_{x \in \mathbb{R}} \frac{\xi(x)^{1+\tau}}{(1+|x|)'^0} < \infty$, then the constant C_{ν} is well defined in $(0, +\infty)$.

(II) Second moment: behaviour of $\mathbb{E}[N_t N_{t+\tau}]$ and the a.s. convergence of $(e^{-\nu t} N_t)_{t\geq 0}$

we need an additional assumption involving the characteristics for lines of cells coinciding up to the k-th generation.

Hypothesis (Second assumption of stationarity)

The first stationary assymption holds true. Moreover, for each $k \in \mathbb{N}$, there exists a process $X^{(k)} = (X_n^{(k)})_{n \ge 0}$ such that

$$\begin{cases} (X_n^{(k)})_{0 \le n \le k} = (X_n)_{0 \le n \le k} & \text{a.s.} \\ (X_n^{(k)})_{n \ge 0} = (X_n)_{n \ge 0} & \text{in law,} \end{cases}$$
(12)

and such that, for every couple of sequences of positive integers $(m_i)_{i\geq 1}$ and $(\ell_i)_{i\geq 1}$ such that $m_1 = \ell_1, ..., m_k = \ell_k$ and $\ell_{k+1} \neq m_{k+1}$, $((X_{0,m_1,...,m_n})_n, (X_{0,\ell_1,...,\ell_n})_n)$ has the same distribution as $(X, X^{(k)})$.

Now define, for any integers $n \ge 1$, $m \ge 1$ and $\min(n, m) - 1 \ge k \ge 0$ the random variables $A_{n,m,k}$ as follows:

$$\begin{aligned} A_{n,m,k} &= \left(\prod_{i=0}^{n-2} \kappa(X_i)\right) \left(\prod_{j=\min(k+1,n-1)}^{m-2} \kappa(X_j^{(k)})\right) \\ &\left(\prod_{j\in\{k\}\setminus\{n-1,m-1\}} (\kappa(X_j)-1)\right) (\kappa(X_{n-1})-1) \left(\kappa(X_{m-1}^{(k)})-1\right), \end{aligned}$$

with the usual convention $\prod_{i=k+1}^{\ell} \cdots = 1$ if $\ell \leq k$. Define also $S_n^{(k)} := \sum_{j=0}^{n} \xi(X_j^{(k)})$. The main result of this section is the following proposition.

Proposition (2)

Assume that the second assumption of stationarity holds. Let t > 0 and $\tau \ge 0$ be fixed. If $\sum_{n\ge 0} \mathbb{E}\left[\left(\prod_{j=0}^{n} \kappa(X_j)\right) \mathbf{1}_{\{S_n \le t+\tau\}}\right] < \infty$, then $\mathbb{E}[N_t N_{t+\tau}] = \mathbb{E}[N_t] + \mathbb{E}[N_{t+\tau}] - 1$ $+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=0}^{\min(n,m)-1} \mathbb{E}\left[A_{n,m,k}\mathbf{1}_{\{S_{n-1} \le t, S_{m-1}^{(k)} \le t+\tau\}}\right].$

Corollary

Assume that the assumptions of Proposition 2 are satisfied, that $\nu < \infty$, that $\limsup_{t \to \infty} e^{-\nu t} \mathbb{E}[N_t] < \infty$ and that there exists K > 0 such that

 $\lim_{t\to\infty}\sup_{\tau\geq 0}$

$$e^{-\nu(2t+\tau)} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=0}^{\min(n,m)-1} \mathbb{E}\left[A_{n,m,k} \mathbf{1}_{\{S_{n-1} \le t, S_{m-1}^{(k)} \le t+\tau\}}\right] - K = 0$$

Then there exists a square integrable random variable W such that $e^{-\nu t}N_t$ converges in quadratic mean to W as t tends to infinity.

Corollary

Assume that the assumptions of Proposition 2 are satisfied, that $\nu < \infty$, that $\limsup_{t \to \infty} e^{-\nu t} \mathbb{E}[N_t] < \infty$ and that there exists K > 0 such that

 $\lim_{t\to\infty}\sup_{\tau\geq 0}$

$$e^{-\nu(2t+\tau)} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=0}^{\min(n,m)-1} \mathbb{E}\left[A_{n,m,k} \mathbf{1}_{\{S_{n-1} \le t, S_{m-1}^{(k)} \le t+\tau\}}\right] - K = 0$$

Then there exists a square integrable random variable W such that $e^{-\nu t}N_t$ converges in quadratic mean to W as t tends to infinity. If moreover the above convergence is exponentially fast and if W > 0 then $e^{-\nu t}N_t$ converges almost surely to W as t tends to infinity.

Proof of Corollary 2.

$$\mathbb{E}\left[\left(e^{-\nu t}N_t - e^{-\nu(t+\tau)}N_{t+\tau}\right)^2\right]$$

= $e^{-2\nu t}\mathbb{E}\left[N_t^2\right] + e^{-2\nu(t+\tau)}\mathbb{E}\left[N_{t+\tau}^2\right] - 2e^{-2\nu t - \nu \tau}\mathbb{E}\left[N_tN_{t+\tau}\right].$

Now Proposition 2 gives,

$$e^{-2\nu t - \nu\tau} \mathbb{E}[N_t N_{t+\tau}]$$

$$= e^{-2\nu t - \nu\tau} \mathbb{E}[N_t] + e^{-2\nu t - \nu\tau} \left(\mathbb{E}[N_{t+\tau}] - 1\right)$$

$$+ e^{-2\nu t - \nu\tau} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=0}^{\min(n,m)-1} \mathbb{E}\left[A_{n,m,k} \mathbf{1}_{\{S_{n-1} \le t, S_{m-1}^{(k)} \le t+\tau\}}\right]$$

Thanks to the assumptions of Corollary 2, the two first terms of the right hand side of the last equality tends to 0 as t tends to infinity. While the third term tends to K. Those three limits hold for any $\tau \ge 0$ and uniformly in τ .

$$\lim_{t\to\infty}\mathbb{E}\left[\left(e^{-\nu t}N_t-e^{-\nu(t+\tau)}N_{t+\tau}\right)^2\right]=K+K-2K=0,$$

for any $\tau \ge 0$, uniformly in τ . The Cauchy criterion ensures then the convergence in quadratic mean of $e^{-\nu t}N_t$ as t tends to infinity to a random variable W with finite second moment.

$$\lim_{t\to\infty} \mathbb{E}\left[\left(e^{-\nu t}N_t - e^{-\nu(t+\tau)}N_{t+\tau}\right)^2\right] = K + K - 2K = 0,$$

for any $\tau \ge 0$, uniformly in τ . The Cauchy criterion ensures then the convergence in quadratic mean of $e^{-\nu t}N_t$ as t tends to infinity to a random variable W with finite second moment. For the last point, we deduce from Proposition 2 that $\int_0^\infty \mathbb{E}\left[\left(e^{-\nu t}N_t - W\right)^2\right] dt < \infty$. This yields (arguing as for the proof of Theorem 21.1 in [2]) the almost sure convergence, as ttends to infinity, of $e^{-\nu t}N_t$ to W.

(III)-Some extensions of Harris' results

For further results, we will make the following stronger assumption involving some independence assumptions.

Hypothesis

The sequence of "Children number" is a sequence of i.i.d. square integrable random variables of expectation κ_1 , and is independent of the sequence of life-time length. Moreover, for all $k \in \mathbb{N}$, $(X_n^{(k)})_{n \ge k+1}$ and $(X_n)_{n \ge k+1}$ are independent given X_k . Finally the number ν satisfies

$$\forall x \in \mathbb{X}, \quad \nu = \inf\left\{\gamma > 0, \sum_{n \ge 0} \kappa_1^n \mathbb{E}\left[e^{-\gamma S_{n+1}} | X_0 = x\right] < \infty\right\} < \infty$$

$$(13)$$
We set $\kappa_2 := \mathbb{E}[\kappa(X_1)(\kappa(X_1) - 1)].$

Remark

Observe that under this Hypothesis,

$$\mathbb{E}\left[\left(\prod_{j=0}^{n}\kappa(X_{j})\right)\mathbf{1}_{\{S_{n}\leq t\}}|X_{0}\right] = \\ \kappa_{1}^{n}\kappa(X_{0})\mathbb{E}\left[\mathbf{1}_{\{S_{n}\leq t\}}|X_{0}\right] \leq \kappa_{1}^{n+1}\kappa(X_{0})\mathbb{E}\left[e^{-\gamma(S_{n}-t)}|X_{0}\right].$$

Hence, Proposition 1 applies and (4) can be rewritten

$$\mathbb{E}[\mathsf{N}_t] = 1 + \sum_{\mathsf{n} \ge \mathsf{0}} \kappa_1^\mathsf{n}(\kappa_1 - 1) \mathbb{P}\left(\mathsf{S}_\mathsf{n} \le \mathsf{t}\right).$$

Technical lemma (Harris, 1963)

Let f be a function and \tilde{f} its Laplace transform. Suppose that there exist two positive reals δ and ϵ such that:

f̃ is analytic in {z = x + iy, |x| < δ + ε} \ {0}, *f̃* has a simple pole at 0, with residue C,

$$\int_{-\infty}^{\infty} |\tilde{f}(\delta + \mathrm{i} y)| \,\mathrm{d} y < \infty \;,$$

$$\lim_{y\to\pm\infty}\tilde{f}(x+\mathrm{i}y)=0\;,$$

uniformly in $x \in [-\delta, \delta]$,

5

$$\psi := \int_{-\infty}^\infty | \widetilde{f}(-\delta + \mathrm{i} y) | \, \mathrm{d} y < \infty \; .$$

Technical lemma (Harris, 1963)

Let f be a function and \tilde{f} its Laplace transform. Suppose that there exist two positive reals δ and ϵ such that:

f̃ is analytic in {z = x + iy, |x| < δ + ε} \ {0}, *f̃* has a simple pole at 0, with residue C,

$$\int_{-\infty}^{\infty} |\tilde{f}(\delta + \mathrm{i} y)| \, \mathrm{d} y < \infty \; ,$$

$$\lim_{y\to\pm\infty}\tilde{f}(x+\mathrm{i}y)=0\;,$$

uniformly in $x \in [-\delta, \delta]$,

$$\psi := \int_{-\infty}^{\infty} |\widetilde{f}(-\delta + \mathrm{i} y)| \,\mathrm{d} y < \infty \;.$$

Then, for all t > 0,

5

$$|\mathbf{f}(\mathbf{t}) - \mathbf{C}| \leqslant rac{\psi}{2\pi} \, \mathrm{e}^{-\delta \mathbf{t}}$$

Define $f_{x,0}(t) = (\kappa_1 - 1)e^{-\nu t} \sum_{n\geq 0} \kappa_1^n \mathbb{P}(S_{n+1} - S_0 \leq t | X_0 = x)$. We will make the following assumption involving the Laplace transform $\tilde{f}_{x,0}$ of $f_{x,0}$: $\forall \gamma > 0$,

$$\begin{split} \tilde{f}_{x,0}(\gamma) &= \int_0^\infty e^{-\gamma t} f_{x,0}(t) dt \\ &= \frac{\kappa_1 - 1}{\gamma + \nu} \sum_{n \ge 0} \kappa_1^n \mathbb{E} \left[e^{-(\gamma + \nu)(S_{n+1} - S_0)} | X_0 = x \right]. \end{split}$$

Hypothesis

Suppose that there exist two positive reals $\delta < \nu$ and ϵ such that, for any x, the Laplace transform $\tilde{f}_{x,0}$, extended on the complex plane, satisfies the following conditions:

1
$$\tilde{f}_{x,0}$$
 has a simple pole at 0, with residue $\tilde{C}_0(x)$,

2 $\Psi_0(x) := \int_{-\infty}^{+\infty} |\tilde{f}_{x,0}(-\delta + iy)| dy < \infty$.

Lemma

Assume Hypothesis of the technical lemma. Then, for any t > 0,

$$egin{aligned} & \left| e^{-
u t} \sum_{n\geq 0} \kappa_1^n (\kappa_1-1) \mathbb{P}(S_{1,n+1}\leq t|X_0=x) - ilde{\mathcal{C}}_0(x)
ight| \ & \leq rac{\Psi_0(x)}{2\pi} e^{-\delta t}. \end{aligned}$$

э

Proposition

If, moreover, $\mathbb{E}[e^{-\nu\xi(X_0)}\tilde{C}_0(X_0)] < \infty$ and if $\mathbb{E}(e^{-(\nu-\delta)\xi(X_0)}\Psi_0(X_0)) < \infty$, then $\mathbb{E}[N_t] < \infty$ and there exists $\epsilon_1 > 0$ such that

 $\mathbb{E}[\mathcal{N}_t] = e^{\nu t} \kappa_1 \mathbb{E}[e^{-\nu \xi(X_0)} \tilde{C}_0(X_0)] (1 + O(e^{-\epsilon_1 t})), \text{ as } t \to \infty.$

Proposition

If, moreover, $\mathbb{E}[e^{-\nu\xi(X_0)}\tilde{C}_0(X_0)] < \infty$ and if $\mathbb{E}(e^{-(\nu-\delta)\xi(X_0)}\Psi_0(X_0)) < \infty$, then $\mathbb{E}[N_t] < \infty$ and there exists $\epsilon_1 > 0$ such that

$$\mathbb{E}[\mathsf{N}_t] = e^{
u t} \kappa_1 \mathbb{E}[e^{-
u \xi(X_0)} \widetilde{\mathcal{C}}_0(X_0)](1 + O(e^{-\epsilon_1 t})), \text{ as } t o \infty$$
 .

Proposition

Suppose, moreover, that $(X_n)_n$ a Markov process and also that $\sum_{k=0}^{\infty} \kappa_1^k \mathbb{E}[\tilde{C}_0^2(X_k)e^{-2\nu S_k}] < \infty$, then, for any $t > 0, \tau \ge 0$, , $\mathbb{E}[N_t N_{t+\tau}] < \infty$ and as $t \to \infty$

$$\mathbb{E}[N_t N_{t+\tau}] = e^{\nu(2t+\tau)} \kappa_2 \sum_{k=0}^{\infty} \kappa_1^k \mathbb{E}\left[\tilde{C}_0^2(X_k) e^{-2\nu S_k}\right] (1 + a e^{-\epsilon_1 t}),$$

where a and ϵ_1 are positive constants independent of t and τ .

- 4 同 6 4 日 6 4 日 6

Theorem

Assume Hypotheses of the two previous propositions (with $(X_n)_n$ a Markov process) then there exists a square integrable random variable W such that $e^{-\nu t}N_t$ converges in quadratic mean to W as t tends to infinity, with

$$\mathbb{E}[W] = \kappa_1 \mathbb{E}\left[e^{-\nu\xi(X_0)}\tilde{C}_0(X_0)\right]$$
$$\operatorname{Var}(W) = \kappa_2 \sum_{k=0}^{\infty} \kappa_1^k \mathbb{E}\left[\tilde{C}_0^2(X_k)e^{-2\nu S_k}\right]$$
$$-\kappa_1^2 \left(\mathbb{E}\left[e^{-\nu\xi(X_0)}\tilde{C}_0(X_0)\right]\right)^2.$$

If, moreover, W>0 almost surely then $e^{-\nu t}N_t$ converges almost surely to W.

Remark.

Recall that, $S_{1,n+1} = \sum_{i=1}^{n+1} \xi(X_i)$. Suppose that $\mathbb{E}\left[e^{-\gamma S_{1,n+1}} | X_0 = x\right] = \alpha(\gamma, x) \mathcal{L}^{n+1}(\gamma) + r_{n+1}(\gamma, x)$ (14)

for suitable non-negative functions α , L and $(r_n)_n$ satisfying

- (a) $\forall x \in \mathbb{X}, \alpha(\cdot, x), L$ and $r_n(\cdot, x)$ can be extended to analytic functions in $\{z = u + iy, |u| \le \delta + \epsilon < \nu, y \in \mathbb{R}\}$
- (b) L is positive and non-increasing on R^{*}₊. The equation κ₁L(z) = 1, has a unique positive solution in C, denoted by ν.
 (c) The series Σ_{n>0} κⁿ₁r_n(γ, x) converges uniformly in γ in a neighborhood of ν uniformly in x.

Remark.

Recall that, $S_{1,n+1} = \sum_{i=1}^{n+1} \xi(X_i)$. Suppose that $\mathbb{E}\left[e^{-\gamma S_{1,n+1}} | X_0 = x\right] = \alpha(\gamma, x) L^{n+1}(\gamma) + r_{n+1}(\gamma, x)$ (14)

for suitable non-negative functions α , L and $(r_n)_n$ satisfying

- (a) $\forall x \in \mathbb{X}, \alpha(\cdot, x), L$ and $r_n(\cdot, x)$ can be extended to analytic functions in $\{z = u + iy, |u| \le \delta + \epsilon < \nu, y \in \mathbb{R}\}$
- (b) L is positive and non-increasing on R^{*}₊. The equation κ₁L(z) = 1, has a unique positive solution in C, denoted by ν.
 (c) The series Σ_{n>0} κⁿ₁r_n(γ, x) converges uniformly in γ in a

neighborhood of ν uniformly in x.

Lemma

The assumptions of the technical lemma are satisfied under Conditions (a)-(b)-(c) with

$$ilde{C}_0(x) = -rac{(\kappa_1-1)}{\kappa_1^2 \nu L'(
u)} lpha(
u,x)$$

- V. Baladi. *Positive transfer operators and decay of correlations*. World Scientific Publishing Co. Inc. (2000), River Edge, NJ.
- T. E. HARRIS (1963). The theory of branching processes. Springer-Verlag, Berlin.
- H. Hennion. Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Amer. Math. Soc. 118 (1993), 627-634.
- L. Hervé, S. Louhichi, F. Pène (2017). Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence. https://arxiv.org/abs/1701.00718

- G. Keller and C. Liverani. *Stability of the Spectrum for Transfer Operators*. Annali della Scuola Normale Superiore di Pisa Classe di Scienze Sér. 4, 28 (1999), 141-152.
- I. Kontoyiannis and S.P. Meyn. Spectral Theory and Limit Theorems for Geometrically Ergodic Markov Processes. Annals of Applied Probability 13 (2003), 304-362.
- I. Kontoyiannis and S.P. Meyn. Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electronic Journal of Probability 10(3) (2005), 61-123.
- S. Louhichi and B. Ycart (2015). *Exponential growth of bifurcating processes with ancestral dependence*. Adv. Appl. Probab, 47(2), 545-564.