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Toruń, Poland



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

2

Motivations

• Consider an ARCH(1) Markov chain {Xn} given by

Xk+1 =
√
β + λX 2

k Zk+1, k  0,

where β, λ > 0 and {Zn}n∈N is a Gaussian standard i.i.d. sequence that
is independent of X0.

• The squares of ARCH(1) satisfy a stochastic recurrence equation - see
a recent reference Buraczewski, Damek, Mikosch (2016) .

X 2
k+1 = βZ 2

k+1 + λZ 2
k+1X 2

k = Ak+1 + Bk+1X 2
k , k  0.

• If β > 0 and λ ∈ (0,2eγ), then {Xk}k0 is strictly stationary iff

X0 ∼ r0

√√√√√β ∞∑
m=1

Z 2
m

m−1∏
j=1

(λZ 2
j ),

where r0 is a Rademacher random variable (P(r0 = ±1) = 1/2),
independent of {Zn}.
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Motivations

• Under stationarity, {Xk}k0 admit a power decay of tail probabilities.
• Let β > 0 and λ ∈ (0,2eγ) and let κ > 0 be the unique positive solution

of the equation
E(λZ 2

1 )u = 1.

• Then, as x →∞,

P(X0 > x) ∼ Cβ,λ

2
x−2κ,

where

Cβ,λ =
E
[(
β + λX 2

0
)κ − (λX 2

0
)κ]

κλκE
[(
λZ 2

1 )κ ln(λZ 2
1 )
] ∈ (0,+∞).

• It follows that if κ ∈ (0,1) then the law of X0 belongs to the domain of
strict attraction of some strictly stable law.

• In particular, if λ ∈ (1, λ0) then 2κ ∈ (1,2) and {Xn} is a stationary
sequence of martingale defferences.
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• Consider the normalized partial sums

Sn =
X1 + X2 + . . .+ Xn

(nCβ,λ)
1

2κ

,Tn =
Y1 + Y2 + . . .+ Yn

(nCβ,λ)
1

2κ

,

where {Yk} is an i.i.d. sequence with marginals Yn ∼ Xn.
• Davis and Mikosch (AoP, 1998) proved that the limit of Sn is stable and

Bartkiewicz, J., Mikosch and Wintenberger (PRTF, 2011) identified the
parameters of the limit.

• If exp(−C|θ|2κ) is the characteristic function of the limit for Tn, then the
characteristic function of the limit for Sn is of the form exp(−τC|θ|2κ),
where 1 > τ = E

[
|1 + S∞|2κ − |S∞|2κ

]
> 0 and the series

S∞ =
∞∑

j=1

λj/2[ j−1∏
k=1

|Zk |
]
Zj

converges a.s.
• The limit for Sn is different from the limit for Tn!
• Unlike in the case of finite variance!
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Motivations

It is natural to ask about extra conditions that guarantee the same behavior
of partial sums of Markov chains and the corresponding i.i.d. sequence.
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Motivations

• Another motivation is provided by Jara, Komorowski and Olla (AoAP,
2009).

• They built a probabilistic solution to a linear Boltzmann equation as a
functional of a suitable Markov chain.

• Then they obtained a fractional diffusion (in fact: a stable Lévy process)
as a scaled (both in time and space) limit of these solutions.

• It was important that the limit process was the same as if the summands
were independent, to allow for the clear interpretation of the parameters.

• Moreover, modeling with Markov chains provides a physically
acceptable solution, while using independent random variables is
physically meaningless.
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The Markovian machinery

• Let (Xn)n0 be a Markov chain with a general state space (S,S) and the
transition operator P.

• Recall that Pf (x) =
∫

P(x ,dy)f (y), where P(x ,dy) is the transition
probability.

• Let π be an invariant probability measure for the chain.
• Let Ψ : S→ R be such that π ◦Ψ−1 belongs to the domain of attraction

of a stable law µα (0 < α < 2).
• We will be interested in limit theorems of the form

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα.

(Possibly with explicit centering).
• As if {Ψ(Xn)}n0 were independent!
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Stable laws

• Recall that a stable distribution with exponent α ∈ (0,2) has the
characteristic function of the form

µ̂(θ) = exp
(
iθah +

∫ (
eiθx − 1− iθx 1I{|x |¬h}

)
να,c+,c−(dx)

)
,

where ah ∈ R1, the Lévy measure να,c+,c− has the density

pα,c+,c−(x) = α
(
c+x−(α+1) 1I{x>0} + c−|x |−(α+1) 1I{x<0}

)
,

and h > 0 is a fixed level of truncation.
• We will consider only the strictly stable limits µα of the form:

µ̂α,c+,c−(θ) =


exp

( ∫ (
eiθx − 1

)
να,c+,c−(dx)

)
, α ∈ (0,1);

exp
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Domains of attraction

• Recall also that π ◦Ψ−1 belongs to the domain of attraction of a stable
law µα,c+,c− (0 < α < 2), if

π
(
x ; |Ψ(x)| > t

)
= t−α`(t),

where `(t) is a slowly varying function as t →∞, and there exist the
limits

lim
t→∞

π
(
x ; Ψ(x) > t

)
π
(
x ; |Ψ(x)| > t

) =
c+

c+ + c−
,

lim
t→∞

π
(
x ; Ψ(x) < −t

)
π
(
x ; |Ψ(x)| > t

) =
c−

c+ + c−
.

• A suitable choice of the norming constants Bn is

n
Bα

n
`(Bn)→ c+ + c−.
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The idea

• The idea consists in finding a possibly minimal form of operator
contractivity.

Example

• For 0 < |ρ| < 1 set

P(x ,dy) =
1√

2π(1− ρ2)
e
− (y−ρx)2

2(1−ρ2) dy .

• Because P(x ,dy) = p(x , y)π(dy), where π is N (0,1). and∫
π(dx)π(dy)p(x , y)q < +∞, provided 2 < q < 1+|ρ|

|ρ| , we have

• P : L2(π)→ Lq(π) is a bounded linear operator. This is
hyperboundedness!

• Important: there is neither φ-mixing nor ultraboundedness!
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Condition 2-U.I.

• Notions like “hyperboundedness" or “ultraboundedness” are known from
the analysis of Markov semigroups and most of previously known
examples were taken from the continuous time theory.

• Examples in our paper show that such properties are quite common
within the theory of Markov chains.

• Following Wu (JoFA, 2000) we will say that the transition operator P is
uniformly integrable in L2 (or 2-U.I.) if

{|Pf |2 ; f ∈ L2(π), ‖f‖2 ¬ 1} is uniformly π-integrable.

• The hyperboundedness implies 2-U.I.
• We provide an example of a discrete in time and space Markov chain

which satisfies our assumptions but is not hyperbounded.
• As a consequence we are able to weaken considerably the assumptions

of JKO (2009) and Cattiaux and Manou-Abi (ESAIM, 2014).
• We believe that 2-U.I. is the proper minimal form for operator

contractivity.
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L2-spectral gap and geometric ergodicity

• The transition operator P is said to have an L2-spectral gap if there is a
number a < 1 such that

sup{‖Pf‖L2(π) ;

∫
S

f (x)dπ(x) = 0, ‖f‖L2(π) ¬ 1} ¬ a.

• For reversible, ψ-irreducible and aperiodic Markov chains the spectral
gap property is known to be equivalent to geometric ergodicity, i.e.
existence of 0 < ρ < 1 and C : S→ R+ such that

‖Pn(x , ·)− π‖TV ¬ C(x)ρn, for π-a.e. x ∈ S,

where ‖ · ‖TV is the total variance distance.
• If {Xn} is irreversible, then the spectral gap property implies the

geometric ergodicity, but there are Markov chains that are geometrically
ergodic and do not have an L2-spectral gap.

• Notice that the central limit theorem need not hold for such Markov
chains!
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Limit theorems

Theorem 1

Let {Xn} be a Markov chain on (S,S), with P and π as above. We assume
that P has an L2-spectral gap and satisfies the 2-U.I. condition.

Suppose π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2). Let
Bn →∞ be suitably chosen.

If α ∈ (0,1) or α = 1 and c+ = c− = c, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− (µ1,c,c).

If α ∈ (1,2), then∑n
j=1 Ψ(Xj)− E

(
Ψ(Xj)|Fj−1

)
Bn

−→
D

µα,c+,c− .



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

13

Limit theorems

Theorem 1

Let {Xn} be a Markov chain on (S,S), with P and π as above. We assume
that P has an L2-spectral gap and satisfies the 2-U.I. condition.

Suppose π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2). Let
Bn →∞ be suitably chosen.

If α ∈ (0,1) or α = 1 and c+ = c− = c, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− (µ1,c,c).

If α ∈ (1,2), then∑n
j=1 Ψ(Xj)− E

(
Ψ(Xj)|Fj−1

)
Bn

−→
D

µα,c+,c− .



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

13

Limit theorems

Theorem 1

Let {Xn} be a Markov chain on (S,S), with P and π as above. We assume
that P has an L2-spectral gap and satisfies the 2-U.I. condition.

Suppose π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2). Let
Bn →∞ be suitably chosen.

If α ∈ (0,1) or α = 1 and c+ = c− = c, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− (µ1,c,c).

If α ∈ (1,2), then∑n
j=1 Ψ(Xj)− E

(
Ψ(Xj)|Fj−1

)
Bn

−→
D

µα,c+,c− .



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

13

Limit theorems

Theorem 1

Let {Xn} be a Markov chain on (S,S), with P and π as above. We assume
that P has an L2-spectral gap and satisfies the 2-U.I. condition.

Suppose π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2). Let
Bn →∞ be suitably chosen.

If α ∈ (0,1) or α = 1 and c+ = c− = c, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− (µ1,c,c).

If α ∈ (1,2), then∑n
j=1 Ψ(Xj)− E

(
Ψ(Xj)|Fj−1

)
Bn

−→
D

µα,c+,c− .



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

13

Limit theorems

Theorem 1

Let {Xn} be a Markov chain on (S,S), with P and π as above. We assume
that P has an L2-spectral gap and satisfies the 2-U.I. condition.

Suppose π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2). Let
Bn →∞ be suitably chosen.

If α ∈ (0,1) or α = 1 and c+ = c− = c, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− (µ1,c,c).

If α ∈ (1,2), then∑n
j=1 Ψ(Xj)− E

(
Ψ(Xj)|Fj−1

)
Bn

−→
D

µα,c+,c− .



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

13

Limit theorems

Theorem 1

Let {Xn} be a Markov chain on (S,S), with P and π as above. We assume
that P has an L2-spectral gap and satisfies the 2-U.I. condition.

Suppose π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2). Let
Bn →∞ be suitably chosen.

If α ∈ (0,1) or α = 1 and c+ = c− = c, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− (µ1,c,c).

If α ∈ (1,2), then∑n
j=1 Ψ(Xj)− E

(
Ψ(Xj)|Fj−1

)
Bn

−→
D

µα,c+,c− .



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

14

Comments on Theorem 1

• Let us notice that in the case α ∈ (1,2) the tails of conditional
expectations may a priori influence the form of the limit.

But they do not.

• It is worth stressing that for α = 1 we need only that the limit is
symmetric and not π ◦Ψ−1 itself.

Corollary

In assumptions of Theorem 1, if α ∈ (1,2) and

E
(
Ψ(X1)

∣∣F0
)

= 0.

i.e. Ψ(X1),Ψ(X2), . . . form a martingale difference sequence, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− .
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Under the hyperboundedness

• As shown by JKO (2009) and CM-A (2014), we can get rid of centering
by conditional expectations, when we assume the hyperboundedness.

• We weaken their assumptions.

Theorem 2

In assumptions of Theorem 1 replace
- the 2-U.I. condition with the hyperboundedness;
- the L2-spectral gap property with the strong mixing at geometric rate (in
particular: with the geometric ergodicity).

If α ∈ (0,1) or α = 1 and c+ = c− or α ∈ (1,2) and
∫

Ψ(x)π(dx) = 0, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− .
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Removing technicalities

• The improvement over the previous results consists also in removing
technicalities.

• For example, it is assumed in main Theorem 2.4 of JKO(2009) that:
• π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2) (RIGHT).
• P has an L2-spectral gap (RIGHT).
• There exists a measurable family of Borel measures Q(x ,dy) and a

measurable, nonnegative function p(x , y) such that

P(x ,dy) = p(x , y)π(dy) + Q(x ,dy) for all x ∈ E .

Q(x , [y : |Ψ(y)|  λ]) ¬ C
∫

[|Ψ(y)|λ]
p(x , y)π(dy), λ  0;

C(2) : = sup
y∈E

∫
p2(x , y)π(dx) < +∞.

• Observe that by the inequality in the second line the term p(x , y)π(dy)
is essential for properties of the transition operator P.
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Removing technicalities

• Let Rf be defined as

Rf (x) =

∫
p(x , y)f (y)π(dy).

• One can prove that

C(2) := sup
y∈E

∫
p2(x , y)π(dx) < +∞

implies that the operator R is a bounded mapping from L1(π) into L2(π).
• Then by the Riesz-Thorin interpolation theorem we have that R is a

bounded operator from L2(π) to L4−ε(π), for any 2 > ε > 0.
• So we have the HYPERBOUNDEDNESS.
• In particular we can ignore the auxiliary random kernel Q(x ,dy).
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Principle of Conditioning

• It is a new, efficient version of the Principle of Conditioning what allows
us both to weaken assumptions used in JKO (2009) and CM-A (2014)
and to remove the technicalities appearing in these papers.

• The Principle of Conditioning (PoC) is a heuristic rule that allows us to
produce limit theorems for dependent random variables given limit
theorems for independent random variables.

• For example, the PoC converts the standard Lindeberg-Feller CLT into
the CLT for martingale difference arrays due to Brown and Eagleson
(1971).

• For the old history of PoC and details see A.J. (AoP, 1986).
• For us it is interesting how the PoC gives a theorem on convergence to

stable laws, valid for triangular arrays of adapted random variables.
• Let {Xn,j ; j ∈ N,n ∈ N} be an array of random variables, which are

row-wise adapted to a sequence of filtrations
{{Fn,j ; j = 0,1, . . .} ; n ∈ N}.
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produce limit theorems for dependent random variables given limit
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(1971).
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Principle of Conditioning
Theorem 3

If max
1¬j¬kn

P
(
|Xn,j | > ε

∣∣Fn,j−1
)
−→
P

0, ε > 0;

kn∑
j=1

P
(
Xn,j > x |Fn,j−1

)
−→
P

c+x−α,
kn∑

j=1

P
(
Xn,j < −x

∣∣Fn,j−1
)
−→
P

c−|x |−α, x > 0;

kn∑
j=1

E
(
Xn,j 1I{|Xn,j |¬h}

∣∣Fn,j−1
)
−→
P

ah;

kn∑
j=1

Var
(
Xn,j 1I{|Xn,j |¬h}

∣∣Fn,j−1
)
−→
P

∫
{|x |¬h}

x2 να,c+,c−(dx);

then
kn∑

j=1

Xn,j −→D δah ∗ ch-Poiss(α, c+, c−).
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Principle of Conditioning

• In other words, the PoC says that if we replace in a limit theorem for
row-wise independent summands:

• the expectations by conditional expectations with respect to the past,

• the convergence of numbers by convergence in probability of random
variables appearing in the conditions,

then still the conclusion will hold.

• In fact, one can also replace the summation to constants by summation
to stopping times.
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Principle of Conditioning

• Behind the verbal form of the PoC there is a result on convergence of
conditional characteristic functions (J. 1980).

Theorem 4

Let the system {Xn,j ,Fn,j} be as in Theorem 3.

If for some z ∈ C, z 6= 0,

φn(θ) =
kn∏

j=1

E
(
eiθXn,j |Fn,j−1

)
−→
P

z,

then also E exp(iθ
kn∑

j=1

Xn,j)−→ z.

In particular, if φn(θ) −→
P

µ̂(θ) 6= 0, θ ∈ R1, then

kn∑
j=1

Xn,j −→D µ.
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Principle of Conditioning (a new version)

Theorem 5

Let {Xn,j ; j ∈ N,n ∈ N} be an array of random variables, which are row-wise
adapted to a sequence of filtrations {{Fn,j ; j = 0,1, . . .} ; n ∈ N}.

Suppose that the following condition holds.

kn∑
j=1

∣∣1− E
(
eiθXn,j |Fn,j−1

) ∣∣2 −→
P

0, θ ∈ R1.

Let An be arbitrary random variables and Φ(θ) ∈ C be a constant for each
θ ∈ R1. The following conditions are equivalent:

( kn∑
j=1

(
E
(
eiθXn,j |Fn,j−1

)
− 1

))
− iθAn −→

P
Φ(θ).

( kn∏
j=1

E
(
eiθXn,j |Fn,j−1

) )
e−iθAn −→

P
eΦ(θ).
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Principle of Conditioning

Theorem 5 - continued

In either case we have also

E exp(iθ
( kn∑

j=1

Xn,j − An
)
)−→ eΦ(θ).

In particular, if eΦ(θ) = µ̂(θ), θ ∈ R1, for some probability measure µ, then
either of the equivalent conditions implies

kn∑
j=1

Xn,j − An −→
D

µ.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

23

Principle of Conditioning

Theorem 5 - continued

In either case we have also

E exp(iθ
( kn∑

j=1

Xn,j − An
)
)−→ eΦ(θ).

In particular, if eΦ(θ) = µ̂(θ), θ ∈ R1, for some probability measure µ, then
either of the equivalent conditions implies

kn∑
j=1

Xn,j − An −→
D

µ.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

23

Principle of Conditioning

Theorem 5 - continued

In either case we have also

E exp(iθ
( kn∑

j=1

Xn,j − An
)
)−→ eΦ(θ).

In particular, if eΦ(θ) = µ̂(θ), θ ∈ R1, for some probability measure µ, then
either of the equivalent conditions implies

kn∑
j=1

Xn,j − An −→
D

µ.


	Motivations
	The Markov machinery
	Contractivity properties
	Limit theorems
	Principle of Conditioning

