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Motivations

• Consider an ARCH(1) Markov chain {Xn} given by

Xk+1 =
√
β + λX 2

k Zk+1, k ­ 0,

where β, λ > 0 and {Zn}n∈N is a Gaussian standard i.i.d. sequence that
is independent of X0.

• The squares of ARCH(1) satisfy a stochastic recurrence equation - see
a recent reference Buraczewski, Damek, Mikosch (2016) .

X 2
k+1 = βZ 2

k+1 + λZ 2
k+1X 2

k = Ak+1 + Bk+1X 2
k , k ­ 0.

• If β > 0 and λ ∈ (0,2eγ), then {Xk}k­0 is strictly stationary iff

X0 ∼ r0

√√√√√β ∞∑
m=1

Z 2
m

m−1∏
j=1

(λZ 2
j ),

where r0 is a Rademacher random variable (P(r0 = ±1) = 1/2),
independent of {Zn}.
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Motivations

• Under stationarity, {Xk}k­0 admit a power decay of tail probabilities.
• Let β > 0 and λ ∈ (0,2eγ) and let κ > 0 be the unique positive solution

of the equation
E(λZ 2

1 )u = 1.

• Then, as x →∞,

P(X0 > x) ∼ Cβ,λ

2
x−2κ,

where

Cβ,λ =
E
[(
β + λX 2

0
)κ − (λX 2

0
)κ]

κλκE
[(
λZ 2

1 )κ ln(λZ 2
1 )
] ∈ (0,+∞).

• It follows that if κ ∈ (0,1) then the law of X0 belongs to the domain of
strict attraction of some strictly stable law.

• In particular, if λ ∈ (1, λ0) then 2κ ∈ (1,2) and {Xn} is a stationary
sequence of martingale defferences.
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• Consider the normalized partial sums

Sn =
X1 + X2 + . . .+ Xn

(nCβ,λ)
1

2κ

,Tn =
Y1 + Y2 + . . .+ Yn

(nCβ,λ)
1

2κ

,

where {Yk} is an i.i.d. sequence with marginals Yn ∼ Xn.
• Davis and Mikosch (AoP, 1998) proved that the limit of Sn is stable and

Bartkiewicz, J., Mikosch and Wintenberger (PRTF, 2011) identified the
parameters of the limit.

• If exp(−C|θ|2κ) is the characteristic function of the limit for Tn, then the
characteristic function of the limit for Sn is of the form exp(−τC|θ|2κ),
where 1 > τ = E

[
|1 + S∞|2κ − |S∞|2κ

]
> 0 and the series

S∞ =
∞∑

j=1

λj/2[ j−1∏
k=1

|Zk |
]
Zj

converges a.s.
• The limit for Sn is different from the limit for Tn!
• Unlike in the case of finite variance!
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Motivations

It is natural to ask about extra conditions that guarantee the same behavior
of partial sums of Markov chains and the corresponding i.i.d. sequence.
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Motivations

• Another motivation is provided by Jara, Komorowski and Olla (AoAP,
2009).

• They built a probabilistic solution to a linear Boltzmann equation as a
functional of a suitable Markov chain.

• Then they obtained a fractional diffusion (in fact: a stable Lévy process)
as a scaled (both in time and space) limit of these solutions.

• It was important that the limit process was the same as if the summands
were independent, to allow for the clear interpretation of the parameters.

• Moreover, modeling with Markov chains provides a physically
acceptable solution, while using independent random variables is
physically meaningless.
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The Markovian machinery

• Let (Xn)n­0 be a Markov chain with a general state space (S,S) and the
transition operator P.

• Recall that Pf (x) =
∫

P(x ,dy)f (y), where P(x ,dy) is the transition
probability.

• Let π be an invariant probability measure for the chain.
• Let Ψ : S→ R be such that π ◦Ψ−1 belongs to the domain of attraction

of a stable law µα (0 < α < 2).
• We will be interested in limit theorems of the form

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα.

(Possibly with explicit centering).
• As if {Ψ(Xn)}n­0 were independent!
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Stable laws

• Recall that a stable distribution with exponent α ∈ (0,2) has the
characteristic function of the form

µ̂(θ) = exp
(
iθah +

∫ (
eiθx − 1− iθx 1I{|x |¬h}

)
να,c+,c−(dx)

)
,

where ah ∈ R1, the Lévy measure να,c+,c− has the density

pα,c+,c−(x) = α
(
c+x−(α+1) 1I{x>0} + c−|x |−(α+1) 1I{x<0}

)
,

and h > 0 is a fixed level of truncation.
• We will consider only the strictly stable limits µα of the form:

µ̂α,c+,c−(θ) =


exp

( ∫ (
eiθx − 1

)
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)
, α ∈ (0,1);

exp
( ∫ (

eiθx − 1
)
ν1,c,c(dx)

)
, α = 1;

exp
( ∫ (

eiθx − 1− iθx
)
να,c+,c−(dx)

)
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Domains of attraction

• Recall also that π ◦Ψ−1 belongs to the domain of attraction of a stable
law µα,c+,c− (0 < α < 2), if

π
(
x ; |Ψ(x)| > t

)
= t−α`(t),

where `(t) is a slowly varying function as t →∞, and there exist the
limits

lim
t→∞

π
(
x ; Ψ(x) > t

)
π
(
x ; |Ψ(x)| > t

) =
c+

c+ + c−
,

lim
t→∞

π
(
x ; Ψ(x) < −t

)
π
(
x ; |Ψ(x)| > t

) =
c−

c+ + c−
.

• A suitable choice of the norming constants Bn is

n
Bα

n
`(Bn)→ c+ + c−.
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The idea

• The idea consists in finding a possibly minimal form of operator
contractivity.

Example

• For 0 < |ρ| < 1 set

P(x ,dy) =
1√

2π(1− ρ2)
e
− (y−ρx)2

2(1−ρ2) dy .

• Because P(x ,dy) = p(x , y)π(dy), where π is N (0,1). and∫
π(dx)π(dy)p(x , y)q < +∞, provided 2 < q < 1+|ρ|

|ρ| , we have

• P : L2(π)→ Lq(π) is a bounded linear operator. This is
hyperboundedness!

• Important: there is neither φ-mixing nor ultraboundedness!
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Condition 2-U.I.

• Notions like “hyperboundedness" or “ultraboundedness” are known from
the analysis of Markov semigroups and most of previously known
examples were taken from the continuous time theory.

• Examples in our paper show that such properties are quite common
within the theory of Markov chains.

• Following Wu (JoFA, 2000) we will say that the transition operator P is
uniformly integrable in L2 (or 2-U.I.) if

{|Pf |2 ; f ∈ L2(π), ‖f‖2 ¬ 1} is uniformly π-integrable.

• The hyperboundedness implies 2-U.I.
• We provide an example of a discrete in time and space Markov chain

which satisfies our assumptions but is not hyperbounded.
• As a consequence we are able to weaken considerably the assumptions

of JKO (2009) and Cattiaux and Manou-Abi (ESAIM, 2014).
• We believe that 2-U.I. is the proper minimal form for operator

contractivity.
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L2-spectral gap and geometric ergodicity

• The transition operator P is said to have an L2-spectral gap if there is a
number a < 1 such that

sup{‖Pf‖L2(π) ;

∫
S

f (x)dπ(x) = 0, ‖f‖L2(π) ¬ 1} ¬ a.

• For reversible, ψ-irreducible and aperiodic Markov chains the spectral
gap property is known to be equivalent to geometric ergodicity, i.e.
existence of 0 < ρ < 1 and C : S→ R+ such that

‖Pn(x , ·)− π‖TV ¬ C(x)ρn, for π-a.e. x ∈ S,

where ‖ · ‖TV is the total variance distance.
• If {Xn} is irreversible, then the spectral gap property implies the

geometric ergodicity, but there are Markov chains that are geometrically
ergodic and do not have an L2-spectral gap.

• Notice that the central limit theorem need not hold for such Markov
chains!
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Limit theorems

Theorem 1

Let {Xn} be a Markov chain on (S,S), with P and π as above. We assume
that P has an L2-spectral gap and satisfies the 2-U.I. condition.

Suppose π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2). Let
Bn →∞ be suitably chosen.

If α ∈ (0,1) or α = 1 and c+ = c− = c, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− (µ1,c,c).

If α ∈ (1,2), then∑n
j=1 Ψ(Xj)− E

(
Ψ(Xj)|Fj−1

)
Bn

−→
D

µα,c+,c− .
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Comments on Theorem 1

• Let us notice that in the case α ∈ (1,2) the tails of conditional
expectations may a priori influence the form of the limit.

But they do not.

• It is worth stressing that for α = 1 we need only that the limit is
symmetric and not π ◦Ψ−1 itself.

Corollary

In assumptions of Theorem 1, if α ∈ (1,2) and

E
(
Ψ(X1)

∣∣F0
)

= 0.

i.e. Ψ(X1),Ψ(X2), . . . form a martingale difference sequence, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− .
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Under the hyperboundedness

• As shown by JKO (2009) and CM-A (2014), we can get rid of centering
by conditional expectations, when we assume the hyperboundedness.

• We weaken their assumptions.

Theorem 2

In assumptions of Theorem 1 replace
- the 2-U.I. condition with the hyperboundedness;
- the L2-spectral gap property with the strong mixing at geometric rate (in
particular: with the geometric ergodicity).

If α ∈ (0,1) or α = 1 and c+ = c− or α ∈ (1,2) and
∫

Ψ(x)π(dx) = 0, then

Ψ(X1) + Ψ(X2) + . . .+ Ψ(Xn)

Bn
−→
D

µα,c+,c− .
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Removing technicalities

• The improvement over the previous results consists also in removing
technicalities.

• For example, it is assumed in main Theorem 2.4 of JKO(2009) that:
• π ◦Ψ−1 is in the domain of attraction of µα,c+,c− , α ∈ (0,2) (RIGHT).
• P has an L2-spectral gap (RIGHT).
• There exists a measurable family of Borel measures Q(x ,dy) and a

measurable, nonnegative function p(x , y) such that

P(x ,dy) = p(x , y)π(dy) + Q(x ,dy) for all x ∈ E .

Q(x , [y : |Ψ(y)| ­ λ]) ¬ C
∫

[|Ψ(y)|­λ]
p(x , y)π(dy), λ ­ 0;

C(2) : = sup
y∈E

∫
p2(x , y)π(dx) < +∞.

• Observe that by the inequality in the second line the term p(x , y)π(dy)
is essential for properties of the transition operator P.
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Removing technicalities

• Let Rf be defined as

Rf (x) =

∫
p(x , y)f (y)π(dy).

• One can prove that

C(2) := sup
y∈E

∫
p2(x , y)π(dx) < +∞

implies that the operator R is a bounded mapping from L1(π) into L2(π).
• Then by the Riesz-Thorin interpolation theorem we have that R is a

bounded operator from L2(π) to L4−ε(π), for any 2 > ε > 0.
• So we have the HYPERBOUNDEDNESS.
• In particular we can ignore the auxiliary random kernel Q(x ,dy).
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Principle of Conditioning

• It is a new, efficient version of the Principle of Conditioning what allows
us both to weaken assumptions used in JKO (2009) and CM-A (2014)
and to remove the technicalities appearing in these papers.

• The Principle of Conditioning (PoC) is a heuristic rule that allows us to
produce limit theorems for dependent random variables given limit
theorems for independent random variables.

• For example, the PoC converts the standard Lindeberg-Feller CLT into
the CLT for martingale difference arrays due to Brown and Eagleson
(1971).

• For the old history of PoC and details see A.J. (AoP, 1986).
• For us it is interesting how the PoC gives a theorem on convergence to

stable laws, valid for triangular arrays of adapted random variables.
• Let {Xn,j ; j ∈ N,n ∈ N} be an array of random variables, which are

row-wise adapted to a sequence of filtrations
{{Fn,j ; j = 0,1, . . .} ; n ∈ N}.
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Principle of Conditioning
Theorem 3

If max
1¬j¬kn

P
(
|Xn,j | > ε

∣∣Fn,j−1
)
−→
P

0, ε > 0;

kn∑
j=1

P
(
Xn,j > x |Fn,j−1

)
−→
P

c+x−α,
kn∑

j=1

P
(
Xn,j < −x

∣∣Fn,j−1
)
−→
P

c−|x |−α, x > 0;

kn∑
j=1

E
(
Xn,j 1I{|Xn,j |¬h}

∣∣Fn,j−1
)
−→
P

ah;

kn∑
j=1

Var
(
Xn,j 1I{|Xn,j |¬h}

∣∣Fn,j−1
)
−→
P

∫
{|x |¬h}

x2 να,c+,c−(dx);

then
kn∑

j=1

Xn,j −→D δah ∗ ch-Poiss(α, c+, c−).
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Principle of Conditioning

• In other words, the PoC says that if we replace in a limit theorem for
row-wise independent summands:

• the expectations by conditional expectations with respect to the past,

• the convergence of numbers by convergence in probability of random
variables appearing in the conditions,

then still the conclusion will hold.

• In fact, one can also replace the summation to constants by summation
to stopping times.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

20

Principle of Conditioning

• In other words, the PoC says that if we replace in a limit theorem for
row-wise independent summands:

• the expectations by conditional expectations with respect to the past,

• the convergence of numbers by convergence in probability of random
variables appearing in the conditions,

then still the conclusion will hold.

• In fact, one can also replace the summation to constants by summation
to stopping times.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

20

Principle of Conditioning

• In other words, the PoC says that if we replace in a limit theorem for
row-wise independent summands:

• the expectations by conditional expectations with respect to the past,

• the convergence of numbers by convergence in probability of random
variables appearing in the conditions,

then still the conclusion will hold.

• In fact, one can also replace the summation to constants by summation
to stopping times.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

20

Principle of Conditioning

• In other words, the PoC says that if we replace in a limit theorem for
row-wise independent summands:

• the expectations by conditional expectations with respect to the past,

• the convergence of numbers by convergence in probability of random
variables appearing in the conditions,

then still the conclusion will hold.

• In fact, one can also replace the summation to constants by summation
to stopping times.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

20

Principle of Conditioning

• In other words, the PoC says that if we replace in a limit theorem for
row-wise independent summands:

• the expectations by conditional expectations with respect to the past,

• the convergence of numbers by convergence in probability of random
variables appearing in the conditions,

then still the conclusion will hold.

• In fact, one can also replace the summation to constants by summation
to stopping times.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

20

Principle of Conditioning

• In other words, the PoC says that if we replace in a limit theorem for
row-wise independent summands:

• the expectations by conditional expectations with respect to the past,

• the convergence of numbers by convergence in probability of random
variables appearing in the conditions,

then still the conclusion will hold.

• In fact, one can also replace the summation to constants by summation
to stopping times.



SLfMC

Adam Jakubowski

Motivations

The Markov
machinery

Contractivity
properties

Limit theorems

Principle of
Conditioning

21

Principle of Conditioning

• Behind the verbal form of the PoC there is a result on convergence of
conditional characteristic functions (J. 1980).

Theorem 4

Let the system {Xn,j ,Fn,j} be as in Theorem 3.

If for some z ∈ C, z 6= 0,

φn(θ) =
kn∏

j=1

E
(
eiθXn,j |Fn,j−1

)
−→
P

z,

then also E exp(iθ
kn∑

j=1

Xn,j)−→ z.

In particular, if φn(θ) −→
P

µ̂(θ) 6= 0, θ ∈ R1, then

kn∑
j=1

Xn,j −→D µ.
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Principle of Conditioning (a new version)

Theorem 5

Let {Xn,j ; j ∈ N,n ∈ N} be an array of random variables, which are row-wise
adapted to a sequence of filtrations {{Fn,j ; j = 0,1, . . .} ; n ∈ N}.

Suppose that the following condition holds.

kn∑
j=1

∣∣1− E
(
eiθXn,j |Fn,j−1

) ∣∣2 −→
P

0, θ ∈ R1.

Let An be arbitrary random variables and Φ(θ) ∈ C be a constant for each
θ ∈ R1. The following conditions are equivalent:

( kn∑
j=1

(
E
(
eiθXn,j |Fn,j−1

)
− 1

))
− iθAn −→

P
Φ(θ).

( kn∏
j=1

E
(
eiθXn,j |Fn,j−1

) )
e−iθAn −→

P
eΦ(θ).
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Principle of Conditioning

Theorem 5 - continued

In either case we have also

E exp(iθ
( kn∑

j=1

Xn,j − An
)
)−→ eΦ(θ).

In particular, if eΦ(θ) = µ̂(θ), θ ∈ R1, for some probability measure µ, then
either of the equivalent conditions implies

kn∑
j=1

Xn,j − An −→
D

µ.
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